Prediction and Expression Analysis of G Protein-Coupled Receptors in the Laboratory Stick Insect, Carausius Morosus

Total Page:16

File Type:pdf, Size:1020Kb

Prediction and Expression Analysis of G Protein-Coupled Receptors in the Laboratory Stick Insect, Carausius Morosus Turkish Journal of Biology Turk J Biol (2019) 43: 77-88 http://journals.tubitak.gov.tr/biology/ © TÜBİTAK Research Article doi:10.3906/biy-1809-27 Prediction and expression analysis of G protein-coupled receptors in the laboratory stick insect, Carausius morosus 1 1,2, Burçin DUAN ŞAHBAZ , Necla BİRGÜL İYİSON * 1 Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Boğaziçi University, İstanbul, Turkey 2 Center for Life Sciences and Technologies, Boğaziçi University, İstanbul, Turkey Received: 16.09.2018 Accepted/Published Online: 18.12.2018 Final Version: 07.02.2019 Abstract: G protein-coupled receptors (GPCRs) are 7-transmembrane proteins that transduce various extracellular signals into intracellular pathways. They are the major target of neuropeptides, which regulate the development, feeding behavior, mating behavior, circadian rhythm, and many other physiological functions of insects. In the present study, we performed RNA sequencing and de novo transcriptome assembly to uncover the GPCRs expressed in the stick insect Carausius morosus. The transcript assemblies were predicted for the presence of 7-transmembrane GPCR domains. As a result, 430 putative GPCR transcripts were obtained and 43 of these revealed full-length sequences with highly significant similarity to known GPCR sequences in the databases. Thirteen different GPCRs were chosen for tissue expression analysis. Some of these receptors, such as calcitonin, inotocin, and tyramine receptors, showed specific expression in some of the tissues. Additionally, GPCR prediction yielded a novel uncharacterized GPCR sequence, which was specifically expressed in the central nervous system and ganglia. Previously, the only information about the anatomy of the stick insect was on its gastrointestinal system. This study provides complete anatomical information about the adult insect. Key words: GPCR, stick insect, RNAseq 1. Introduction The laboratory stick insect is an organism defined as G protein-coupled receptors (GPCRs) constitute the an agricultural pest in some countries but fed as a pet major targets of small regulatory peptides or peptide in others. Its locomotion behavior is widely studied and hormones. They transduce these extracellular stimuli to modeled (Bläsing and Cruse, 2004; Gruhn et al., 2016; intracellular molecular responses and become the key Dallmann et al., 2017). Additionally, other peptidergic regulators of endocrine signaling. They contain conserved mechanisms, such as ecdysis behavior, circadian rhythm, 7-transmembrane (7TM) helices, a variable extracellular and heartbeat frequency, are as well studied (Wadsworth et N-terminus, and an intracellular C-terminus. They al., 2014; Marco et al., 2018). Although the most researched interact with the trimeric G-proteins from the intracellular mechanisms of the stick insect rely on peptidergic site. GPCRs are the largest group of proteins in eukaryotes pathways, there is limited information on its neuropeptides and are clustered in separate classes, namely rhodopsin- and GPCRs. Even though its neuropeptidome was revealed like Class A, secretin-like Class B1, adhesion GPCRs Class recently (Liessem et al., 2018), we need to uncover the B2, glutamate receptors Class C, Frizzled receptors Class GPCRs they target and activate in order to understand F, and Taste-2 receptors. Within these receptors, peptides the mechanism of action of the neuropeptides. There are interact with the GPCRs of Class A and Class B1. Our well-fitted approaches and tools for GPCR prediction previous work identified a C type of Allatostatin receptor from RNA sequencing (RNAseq) data. For instance, the (AlstR) from Class A in the laboratory stick insect, RNAseq approach has been recently used to predict the Carausius morosus (Duan Sahbaz et al., 2017). All types GPCR profiles of different arthropods (Buckley et al., of AlstRs (A, B, and C) have a common function, which is 2016; Guerrero et al., 2016). These studies utilized the open inhibition of juvenile hormone (JH) secretion. However, reading frame and 7TM domain prediction tools to predict their expression profiles differ in a stage-specific, tissue- GPCR candidates. Then they filtered the reliable GPCRs specific, and species-specific manner. In addition, their with the help of the GPCRPred tool, which annotates and inhibitory effect varies between species. predicts GPCRs from other proteins with an accuracy of * Correspondence: [email protected] 77 This work is licensed under a Creative Commons Attribution 4.0 International License. DUAN ŞAHBAZ and BİRGÜL İYİSON / Turk J Biol 99.5% (Bhasin and Raghava, 2004). Therefore, we utilized annotations were performed via blastx against NCBI B. the transcriptome data for identification of the GPCRome germanica sequences. The data were submitted to Sequence of C. morosus including all AlstRs and predicted the Read Archives (SRA7949781). functions of some of these GPCRs in comparison to their 2.4. GPCRome prediction expression profiles and neuropeptide ligands. In order to predict open reading frames (ORFs), the sequences were submitted to ORFPREDICTOR (Min et 2. Materials and methods al., 2005). All six ORFs were analyzed for the presence 2.1. Animals of TM helices in TMHMM (Krogh et al., 2001). TM- The stick insects (Carausius morosus) were obtained from containing ORFs were separated into different files. The the University of Cologne, Germany. They were kept in ORFs, which included more than 2 TM regions, were cages at room temperature (RT) and fed ad libitum in a aligned with the NCBI BLASTp tool. Results of the top 12-h light/dark cycle. Sampling was performed in daylight ten hits were taken and filtered according to the presence when the animals were least active. The adult females, of GPCR domains. In order to check for the functional which were ready to lay eggs, were sacrificed via CO2 and units and patterns of these sequences ExPASy (Gasteiger cooled down in PBS at –20 °C. Dissection was performed et al., 2003), BLASTp, and SMART (Schultz et al., 1998) in the presence of cold PBS. The organs were immediately were used. Structural GPCR domains were determined put into TRIzol reagent and stored at –80 °C. For RNA in GPCRHMM (Wistrand et al., 2006). Finally, putative sequencing, the animals were flash-frozen in liquid GPCR classification was performed in 6 groups according nitrogen, disrupted by a mortar and pestle, and stored at to the nomenclature generated by GPCRdb (Pándy- –80 °C. Szekeres et al., 2018). 2.2. RNA isolation 2.5. cDNA synthesis Frozen total animal tissues were mixed with TRIzol and The amount of RNA of different tissues was adjusted to the mixture was homogenized in a MagNA Lyser for 1 min. 1 µg. First strand cDNA synthesis was performed as The homogenates were put in clean tubes and incubated recommended in the protocol of the SensiFAST cDNA at RT for 5 min. Centrifugation was performed at 12,000 Synthesis Kit (BIO-65054, BIOLINE, London, UK). × g for 10 min at 4 °C. The clear lysate was transferred 2.6. qPCR into a clean microcentrifuge tube and chloroform was The primers were designed from the putative GPCR added in 1:5 ratio. The tube was mixed vigorously for 20 transcripts via the BlastPrimer tool. Quantitative s and incubated at RT for 2–3 min. Centrifugation was PCR reactions were prepared according to the performed at 10,000 × g for 18 min. The aqueous part was recommendations of the SensiFAST SYBR No-ROX Kit transferred into a clean microcentrifuge tube and 1 volume (SF581-B054620, BIOLINE). Each sample was prepared of 100% EtOH was added. The tube was inverted 6 times. in technical duplicates. The PCR efficiency of each primer Next, 700 µL of this sample was loaded into a NucleoSpin set was calculated by the standard curve method taking RNA column. Centrifugation was performed at 11,000 × g the curves with R2 ≥ 0.99. Fold changes in expression for 30 s and the flowthrough was discarded. The rest of the levels were calculated via the REST method (including the procedure was performed as recommended in the protocol PCR efficiencies) with regard to GAPDH as the reference of NucleoSpin RNA (740955.50, MN, Germany). The RNA gene and ovary tissue as the calibrator. The other tissues samples were evaluated in MOPS gel electrophoresis in included in the analysis were the brain together with the denaturing conditions. For RNA sequencing one animal endocrine glands corpora allata (CA) and corpora cardiaca sample was prepared and dried in RNAstable (Biomatrica) (CC), ganglia, Malpighian tubules, crop and foregut, for shipping. For expression analyses, at least three adult gastric cecum, postposterior midgut with the hindgut, fat animals were utilized in one replica, according to the mass body, and the aorta. Each qPCR reaction was performed of the organ. in biological triplicates, each containing at least three 2.3. Sequencing and de novo RNA assembly animals. The specificity and consistency of the reactions Paired-end sequencing (2 × 100 bp) was generated by were determined via RT-PCR. GENEWIZ Inc. Assembly was performed by Epigenetiks Ltd. Co. using Trinity (Grabherr et al., 2013). Sequence- 3. Results read files were retrieved in FASTQ format. Quality control 3.1. Novel GPCR sequences were predicted from the was performed on FastQC (Andrews, no date). Blatella transcriptome of the adult stick insect germanica and Zootermopsis nevadensis were chosen as The total body of adult female C. morosus specimens was the genomes closest to C. morosus. The assembly file was used for total RNA sequencing
Recommended publications
  • Neuromedin U Directly Stimulates Growth of Cultured Rat Calvarial Osteoblast-Like Cells Acting Via the NMU Receptor 2 Isoform
    363-368 1/8/08 15:53 Page 363 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 22: 363-368, 2008 363 Neuromedin U directly stimulates growth of cultured rat calvarial osteoblast-like cells acting via the NMU receptor 2 isoform MARCIN RUCINSKI, AGNIESZKA ZIOLKOWSKA, MARIANNA TYCZEWSKA, MARTA SZYSZKA and LUDWIK K. MALENDOWICZ Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecicki St., 60-781 Poznan, Poland Received April 4, 2008; Accepted June 2, 2008 DOI: 10.3892/ijmm_00000031 Abstract. The neuromedin U (NMU) system is composed of nervous system. Among others, peptides involved in regulation NMU, neuromedin S (NMS) and their receptors NMUR1 and of energy homeostasis belong to this group of compounds NMUR2. This system is involved in the regulation of energy (1-3), and the best recognised is leptin, an adipocyte-derived homeostasis, neuroendocrine functions, immune response, anorexigenic hormone, which plays a role in regulating bone circadian rhythm and spermatogenesis. The present study formation. Acting directly this pleiotropic cytokine exerts a aimed to investigate the possible role of the NMU system in stimulatory effect on bone formation. While acting through regulating functions of cultured rat calvarial osteoblast-like the central nervous system (CNS) leptin suppresses bone (ROB) cells. By using QPCR, high expression of NMU formation (4-10). Moreover, OB-Rb mRNA is expressed in mRNA was found in freshly isolated ROB cells while after 7, osteoblasts, and in vitro leptin enhances their proliferation 14, and 21 days of culture, expression of the studied gene and has no effect on osteocalcin and osteopontin production by was very low.
    [Show full text]
  • Molecular Dissection of G-Protein Coupled Receptor Signaling and Oligomerization
    MOLECULAR DISSECTION OF G-PROTEIN COUPLED RECEPTOR SIGNALING AND OLIGOMERIZATION BY MICHAEL RIZZO A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Biology December, 2019 Winston-Salem, North Carolina Approved By: Erik C. Johnson, Ph.D. Advisor Wayne E. Pratt, Ph.D. Chair Pat C. Lord, Ph.D. Gloria K. Muday, Ph.D. Ke Zhang, Ph.D. ACKNOWLEDGEMENTS I would first like to thank my advisor, Dr. Erik Johnson, for his support, expertise, and leadership during my time in his lab. Without him, the work herein would not be possible. I would also like to thank the members of my committee, Dr. Gloria Muday, Dr. Ke Zhang, Dr. Wayne Pratt, and Dr. Pat Lord, for their guidance and advice that helped improve the quality of the research presented here. I would also like to thank members of the Johnson lab, both past and present, for being valuable colleagues and friends. I would especially like to thank Dr. Jason Braco, Dr. Jon Fisher, Dr. Jake Saunders, and Becky Perry, all of whom spent a great deal of time offering me advice, proofreading grants and manuscripts, and overall supporting me through the ups and downs of the research process. Finally, I would like to thank my family, both for instilling in me a passion for knowledge and education, and for their continued support. In particular, I would like to thank my wife Emerald – I am forever indebted to you for your support throughout this process, and I will never forget the sacrifices you made to help me get to where I am today.
    [Show full text]
  • Expression of Neuromedins S and U and Their Receptors in the Hypothalamus and Endocrine Glands of the Rat
    255-259 4/7/07 20:57 Page 255 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 20: 255-259, 2007 255 Expression of neuromedins S and U and their receptors in the hypothalamus and endocrine glands of the rat MARCIN RUCINSKI1, AGNIESZKA ZIOLKOWSKA1, GIULIANO NERI2, MARCIN TREJTER1, TOMASZ ZEMLEDUCH1, MARIANNA TYCZEWSKA1, GASTONE G. NUSSDORFER2 and LUDWIK K. MALENDOWICZ1 1Department of Histology and Embryology, Poznan School of Medicine, Poznan PL-69781, Poland; 2Department of Human Anatomy and Physiology, University of Padua, I-35121 Padua, Italy Received March 14, 2007; Accepted April 20, 2007 Abstract. Neuromedin S (NMS) and neuromedin U (NMU) NMS because it is highly expressed in the hypothalamic are regulatory peptides that share the C-terminal amino-acid suprachiasmatic nucleus (7-9). sequence and act via common G protein-coupled receptors Available findings stress numerous differences between called NMUR1 and NMUR2. Semiquantitative real time-PCR NMS and NMU. NMS is a neuropeptide mainly involved in showed that in the rat hypothalamus and testis NMS gene the modulation of the immune response, regulation of circadian expression was markedly higher than that of the NMU gene, rhythms and spermatogenesis. Moreover, NMS has been also while the reverse occurred in the anterior pituitary and thyroid suggested to be a potent anorexigenic hormone that acts, gland. Low expression of both genes was detected in the among others, via CRH neurons (7-9). NMU is a brain-gut thymus, adrenal gland and ovary, whereas in the pancreatic peptide involved in the regulation of energy homeostasis and islets only the expression of NMU mRNA was detected. In neuroendocrine functions (4,5,10-18).
    [Show full text]
  • Neural Regulation of Interactions Between Group 2 Innate Lymphoid Cells and Pulmonary Immune Cells
    Prime Archives in Immunology: 2nd Edition Book Chapter Neural Regulation of Interactions between Group 2 Innate Lymphoid Cells and Pulmonary Immune Cells Weiwei Chen1,2, Qiang Shu2 and Jie Fan1,3,4* 1Department of Surgery, University of Pittsburgh School of Medicine, USA 2The Children‟s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China 3Research and Development, Veterans Affairs Pittsburgh Healthcare System, USA 4McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA *Corresponding Author: Jie Fan, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA Published January 18, 2021 This Book Chapter is a republication of an article published by Jie Fan, et al. at Frontiers in Immunology in October 2020. (Chen W, Shu Q and Fan J (2020) Neural Regulation of Interactions Between Group 2 Innate Lymphoid Cells and Pulmonary Immune Cells. Front. Immunol. 11:576929. doi: 10.3389/fimmu.2020.576929) How to cite this book chapter: Weiwei Chen, Qiang Shu, Jie Fan. Neural Regulation of Interactions between Group 2 Innate Lymphoid Cells and Pulmonary Immune Cells. In: Ajmal Khan, Ahmed Al-Harrasi, editors. Prime Archives in Immunology: 2nd Edition. Hyderabad, India: Vide Leaf. 2021. 1 www.videleaf.com Prime Archives in Immunology: 2nd Edition © The Author(s) 2021. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Author Contributions: WC collected the data and drafted the manuscript. WC, QS, and JF conceived and designed the study.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • Neuropeptides Controlling Energy Balance: Orexins and Neuromedins
    Neuropeptides Controlling Energy Balance: Orexins and Neuromedins Joshua P. Nixon, Catherine M. Kotz, Colleen M. Novak, Charles J. Billington, and Jennifer A. Teske Contents 1 Brain Orexins and Energy Balance ....................................................... 79 1.1 Orexin............................................................................... 79 2 Orexin and Feeding ....................................................................... 80 3 Orexin and Arousal ....................................................................... 83 J.P. Nixon • J.A. Teske Veterans Affairs Medical Center, Research Service (151), Minneapolis, MN, USA Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA Minnesota Obesity Center, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA C.M. Kotz (*) Veterans Affairs Medical Center, GRECC (11 G), Minneapolis, MN, USA Veterans Affairs Medical Center, Research Service (151), Minneapolis, MN, USA Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA Minnesota Obesity Center, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA e-mail: [email protected] C.M. Novak Department of Biological Sciences, Kent State University, Kent, OH, USA C.J. Billington Veterans Affairs Medical Center, Research Service (151), Minneapolis, MN, USA Veterans Affairs Medical Center, Endocrine Unit (111 G), Minneapolis, MN, USA Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA Minnesota Obesity Center, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA H.-G. Joost (ed.), Appetite Control, Handbook of Experimental Pharmacology 209, 77 DOI 10.1007/978-3-642-24716-3_4, # Springer-Verlag Berlin Heidelberg 2012 78 J.P. Nixon et al. 4 Orexin Actions on Endocrine and Autonomic Systems ................................. 84 5 Orexin, Physical Activity, and Energy Expenditure ....................................
    [Show full text]
  • Neuromedin U: a Small Peptide in the Big World of Cancer
    cancers Review Neuromedin U: A Small Peptide in the Big World of Cancer Patrycja Przygodzka 1,* , Kamila Soboska 1,2, Ewelina Sochacka 1,2 and Joanna Boncela 1,* 1 Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str, 93-232 Lodz, Poland 2 Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Str, 90-236 Lodz, Poland * Correspondence: [email protected] or [email protected] (P.P.); [email protected] (J.B.) Received: 29 July 2019; Accepted: 3 September 2019; Published: 5 September 2019 Abstract: Neuromedin U (NMU), a neuropeptide isolated from porcine spinal cord and named because of its activity as a rat uterus smooth muscle contraction inducer, is emerging as a new player in the tumorigenesis and/or metastasis of many types of cancers. Expressed in a variety of tissues, NMU has been shown to possess many important activities in the central nervous system as well as on the periphery. Along with the main structural and functional features of NMU and its currently known receptors, we summarized a growing number of recently published data from different tissues and cells that associate NMU activity with cancer development and progression. We ask if, based on current reports, NMU can be included as a marker of these processes and/or considered as a therapeutic target. Keywords: Neuromedin U; NMU; GPCR receptors; cancer 1. Neuromedin U Structure: Implications for Biological Activity Since it was identified in 1985, neuromedin U (NMU) expression has been found in many species in various isoforms. The longer forms NMU-17 (toad), NMU-21 (goldfish), NMU-23 (rat, tree frog), NMU-25 (human, pig, rabbit, dog, chicken, frog, goldfish), and the shorter forms NMU-8 (pig, dog) and NMU-9 (guinea pig, chicken) have been identified (reviewed in Reference [1]).
    [Show full text]
  • Neuromedins U and S Involvement in the Regulation of the Hypothalamo–Pituitary–Adrenal Axis
    REVIEW ARTICLE published: 05 December 2012 doi: 10.3389/fendo.2012.00156 Neuromedins U and S involvement in the regulation of the hypothalamo–pituitary–adrenal axis Ludwik K. Malendowicz*, Agnieszka Ziolkowska and Marcin Rucinski Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland Edited by: We reviewed neuromedin U (NMU) and neuromedin S (NMS) involvement in the regulation Hubert Vaudry, University of Rouen, of the hypothalamo–pituitary–adrenal (HPA) axis function. NMU and NMS are structurally France related and highly conserved neuropeptides. They exert biological effects via two GPCR Reviewed by: receptors designated as NMUR1 and NMUR2 which show differential expression. NMUR1 James A. Carr, Texas Tech University, USA is expressed predominantly at the periphery, while NMUR2 in the central nervous system. Gábor B. Makara, Hungarian Elements of the NMU/NMS and their receptors network are also expressed in the HPA Academy of Sciences, Hungary axis and progress in molecular biology techniques provided new information on their *Correspondence: actions within this system. Several lines of evidence suggest that within the HPA axis Ludwik K. Malendowicz, NMU and NMS act at both hypothalamic and adrenal levels. Moreover, new data suggest Department of Histology and Embryology, Poznan University of that NMU and NMS are involved in central and peripheral control of the stress response. Medical Sciences, 6 Swie¸cickiSt., 60-781 Poznan, Poland. Keywords: neuromedin U, neuromedin S, hypothalamus, pituitary, adrenal e-mail: [email protected] INTRODUCTION Identification of specific NMU receptors (NMUR1 and In search for new biologically active peptides, the group of NMUR2) and its anorexigenic action have enhanced interest in Minamino, Kangawa, and Matsuo in the 1980s isolated numerous physiological role of NMU and NMS (Howard et al., 2000; Ida small neuropeptides from porcine spinal cord.
    [Show full text]
  • Oncogenic Features of Neuromedin U in Breast Cancer Are Associated with NMUR2 Expression Involving Crosstalk with Members of the WNT Signaling Pathway
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 22), pp: 36246-36265 Research Paper Oncogenic features of neuromedin U in breast cancer are associated with NMUR2 expression involving crosstalk with members of the WNT signaling pathway Stefan Garczyk1, Natalie Klotz1, Sabrina Szczepanski1, Bernd Denecke2, Wiebke Antonopoulos1, Saskia von Stillfried1, Ruth Knüchel1, Michael Rose1,* and Edgar Dahl1,* 1Molecular Oncology Group, Institute of Pathology, Medical Faculty of the RWTH Aachen University, D-52074 Aachen, Germany 2IZKF Aachen, Medical Faculty of the RWTH Aachen University, D-52074 Aachen, Germany *Equal co-senior authors Correspondence to: Stefan Garczyk, email: [email protected] Keywords: breast cancer, metastasis, neuromedin U, neuromedin U receptor 2, WNT signaling Received: December 20, 2016 Accepted: February 07, 2017 Published: March 11, 2017 Copyright: Garczyk et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Neuromedin U (NMU) has been shown driving the progression of various tumor entities, including breast cancer. However, the expression pattern of NMU and its receptors in breast cancer tissues as well as systematic insight into mechanisms and downstream targets of the NMU-driven signaling pathways are still elusive. Here, NMU expression was found up-regulated in all breast cancer subtypes when compared to healthy breast tissue. Using an in silico dataset comprising 1,195 samples, high NMU expression was identified as an indicator of poor outcome in breast tumors showing strong NMUR2 expression. Next, the biological impact of NMU on breast cancer cells in relation to NMUR2 expression was analyzed.
    [Show full text]
  • Rfamide Peptides: Structure, Function, Mechanisms and Pharmaceutical Potential
    Pharmaceuticals 2011, 4, 1248-1280; doi:10.3390/ph4091248 OPEN ACCESS Pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Review RFamide Peptides: Structure, Function, Mechanisms and Pharmaceutical Potential Maria Findeisen †, Daniel Rathmann † and Annette G. Beck-Sickinger * Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; E-Mails: [email protected] (M.F.); [email protected] (D.R.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-341-9736900; Fax: +49-341-9736909. Received: 29 August 2011; in revised form: 9 September 2011 / Accepted: 15 September 2011 / Published: 21 September 2011 Abstract: Different neuropeptides, all containing a common carboxy-terminal RFamide sequence, have been characterized as ligands of the RFamide peptide receptor family. Currently, five subgroups have been characterized with respect to their N-terminal sequence and hence cover a wide pattern of biological functions, like important neuroendocrine, behavioral, sensory and automatic functions. The RFamide peptide receptor family represents a multiligand/multireceptor system, as many ligands are recognized by several GPCR subtypes within one family. Multireceptor systems are often susceptible to cross-reactions, as their numerous ligands are frequently closely related. In this review we focus on recent results in the field of structure-activity studies as well as mutational exploration of crucial positions within this GPCR system. The review summarizes the reported peptide analogs and recently developed small molecule ligands (agonists and antagonists) to highlight the current understanding of the pharmacophoric elements, required for affinity and activity at the receptor family.
    [Show full text]
  • Broad Characterization of Endogenous Peptides in the Tree Shrew Visual System
    Published in -RXUQDORI3URWHRPLFV ± which should be cited to refer to this work. Broad characterization of endogenous peptides in the tree shrew visual system Vaclav Ranca, b, Filomena Petruzzielloa, Robert Kretza, Enrike G. Argandoñac, Xiaozhe Zhanga,⁎, Gregor Rainera aUniversity of Fribourg, Department of Medicine, Fribourg, Switzerland bPalacky University Olomouc, Department of Analytical Chemistry, Olomouc, Czech Republic cUnit of Anatomy, Department of medicine, University of Fribourg, Fribourg, Switzerland Endogenous neuropeptides, acting as neurotransmitters or hormones in the brain, carry out important functions including neural plasticity, metabolism and angiogenesis. Previous neuropeptide studies have focused on peptide-rich brain regions such as the striatum or hypothalamus. Here we present an investigation of peptides in the visual system, com- posed of brain regions that are generally less rich in peptides, with the aim of providing the first broad overview of peptides involved in mammalian visual functions. We target three important parts of the visual system: the primary visual cortex (V1), lateral geniculate nucleus (LGN) and superior colliculus (SC). Our study is performed in the tree shrew, a close relative of primates. Using a combination of data dependent acquisition and tar- geted LC-MS/MS based neuropeptidomics; we identified a total of 52 peptides from the tree shrew visual system. A total of 26 peptides, for example GAV and neuropeptide K were identified in the visual system for the first time. Out of the total 52 peptides, 27 peptides with high signal-to-noise-ratio (>10) in extracted ion chromatograms (EIC) were subjected to label-free quantitation. We observed generally lower abundance of peptides in the LGN compared to V1 and SC.
    [Show full text]
  • RF313, an Orally Bioavailable Neuropeptide FF Receptor
    RF313, an orally bioavailable neuropeptide FF receptor antagonist, opposes effects of RF-amide-related peptide-3 and opioid-induced hyperalgesia in rodents Khadija Elhabazi, Jean-Paul Humbert, Isabelle Bertin, Raphaelle Quillet, Valérie Utard, Martine Schmitt, Jean-Jacques Bourguignon, Emilie Laboureyras, Meric Ben Boujema, Guy Simonnet, et al. To cite this version: Khadija Elhabazi, Jean-Paul Humbert, Isabelle Bertin, Raphaelle Quillet, Valérie Utard, et al.. RF313, an orally bioavailable neuropeptide FF receptor antagonist, opposes effects of RF-amide- related peptide-3 and opioid-induced hyperalgesia in rodents. Neuropsychopharmacology, Nature Publishing Group, 2017, 118, pp.188-198. 10.1016/j.neuropharm.2017.03.012. hal-01603852 HAL Id: hal-01603852 https://hal.archives-ouvertes.fr/hal-01603852 Submitted on 25 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright Accepted Manuscript RF313, an orally bioavailable neuropeptide FF receptor antagonist, opposes effects of RF-amide-related peptide-3 and opioid-induced hyperalgesia in rodents
    [Show full text]