Native Versus Exotic Grasses: the Interaction Between Generalist Insect

Total Page:16

File Type:pdf, Size:1020Kb

Native Versus Exotic Grasses: the Interaction Between Generalist Insect Native versus Exotic Grasses: The Interaction between Generalist Insect Herbivores and Their Host Plants A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy In the Department of Biological Sciences of the College of Arts and Sciences by Alina Avanesyan Candidate of Science Degree, Zoology Herzen State University, April 2002 Committee Chair: T. M. Culley, Ph.D. i ABSTRACT Although the interaction between native and exotic plants and their insect herbivores has been examined extensively, experimental studies on plant responses to generalist insects as well as feeding preferences of generalist insects on native versus exotic plants have provided inconsistent results. This dissertation addresses this issue by incorporating recent methodological recommendations and by exploring interactions between generalist herbivores and native and exotic plants from both the plant and insect perspectives. Using native (Andropogon gerardii and Bouteloua curtipendula) and exotic grasses (Miscanthus sinensis and Bothriochloa ischaemum) with generalist Melanoplus grasshoppers, I combined behavioral and molecular approaches to explore (1) plant resistance and tolerance to grasshopper herbivory, and (2) feeding preferences of Melanoplus grasshoppers for native and exotic plants. Overall, the results from this dissertation project have demonstrated lower resistance of exotic grasses to generalist grasshopper herbivory compared to native grasses; and similar level of plant tolerance to herbivory in native and exotic grasses. Melanoplus grasshoppers demonstrated strong feeding preferences for exotic plants in most of the behavioral experiments and under natural conditions. This suggests that exotic M. sinensis and B. ischaemum grasses with a lack of coevolutionary history with native generalist Melanoplus grasshoppers might have lower physical and chemical defenses than native grasses. Furthermore, generalist Melanoplus grasshoppers may provide biotic resistance to these exotic grasses should they invade natural areas. The results from this dissertation project have important applications for predicting the interaction between exotic plants and generalist herbivores in the introduced range, and if plant invasion has already occurred, for developing effective control plans. ii Copyright 2014 By Alina Avanesyan iii ACKNOWLEDGMENTS I thank my research advisor, Dr. Theresa Culley, for all her help, support and guidance that she provided during all my years in my doctoral program. I am very grateful to Dr. Culley that she accepted me almost without any botanical background in her lab and gave me freedom to choose any topic I would enjoy, and to go in any, even narrow entomological research direction. I thank Dr. Culley for introducing me to the world of plants and to molecular techniques which became a substantial part of my dissertation. I’ve learned a lot about field work, growing plants, genetic analysis, as well as the world of US academia – an experience which is hard to overestimate. I am very grateful to Dr. Culley’s time and help with improving my scientific writing - for numerous revisions of my manuscripts, for all her suggestions on better wording, and for all the countless corrections she made of my sometimes terrible grammar. Thank you for being a very good mentor and very helpful friend, who was always available for advice, for teaching, and for simply listening to my complaints about my life; who even drove me several days in a row to the lab and back home while my car was broken. Dr. Culley’s unconditional support, her insightful comments, and the numerous conversations we have had on my academic progress and future career plans have been the key to my success at UC. I thank Dr. Josh Gross for helping me with my research from the very early stages in my program. Dr. Gross helped me understand molecular biology since his very first days at our department - even before he became a member of my dissertation committee. I am grateful for all his help - for guiding me through primer design, for having long discussions with me, for introducing me to the DNASTAR and later to the EthoVision programs. I am very lucky to have Dr. Gross on my committee and I am thankful for his helpful suggestions on the molecular part iv of my dissertation project, for being always available to discuss my work, for his encouragement and support in my research progress. I thank Dr. Stephen Matter for introducing me to the world of data analysis, for making the R program "become my friend", for helping me with research design and the analysis of the experimental data I used in my dissertation. I am grateful to Dr. Matter for his in-depth reviews of my dissertation proposal and my revised paper. I am also grateful for our frequent discussions, which were most helpful in many ways, but especially in developing my skills of effective communication about data analysis and my research in general. I thank Dr. George Uetz for his kindness, support, and encouragement during all my years in my doctoral program. I will never forget his help - at a time in my doctoral program when I needed it most - I will be forever grateful for this. I also thank Dr. Uetz for his thoughtful comments on my dissertation proposal, for helping me with literature on animal behavior and suggestions on feeding trials with grasshoppers, as well as for allowing me to keep my grasshoppers in his lab during several experiments. The conversations we have had over the past years on my research interests and future plans have been both useful and inspiring; they helped me in my academic progress and always made me believe in my abilities and feel proud of my work. I thank Dr. Bill Lamp for being a mentor, colleague, and friend, whose continuing support and encouragement, beyond his duties as a committee member, are hard to quantify. I am forever grateful for Dr. Lamp’s trust in my abilities and providing me with access to research facilities, as well as research seminars, at the University of Maryland – one half of my dissertation simply would not have been possible without it. I am grateful to Dr. Lamp for “adopting me” as an external lab member and introducing me to his lab; I had a great time with his students at the v entomological meetings, and they became my good friends and colleagues. Our numerous discussions on my dissertation and my future in academia were encouraging and most helpful. I am especially grateful for the opportunity to co-organize and co-moderate the symposium with Dr. Lamp at the upcoming ESA meeting - thank you for this invaluable experience! But, most importantly, thank you for believing in me. There are many people besides my committee whom I would like to thank for helping me in my research, which has led to this dissertation, and, ultimately, to my Ph.D. The following list is, most likely, incomplete – and I apologize to those whom I have not mentioned. I thank Tim Ellis for all his help during the past two field seasons – establishing the plot for my experiments at the Western Maryland Research and Education Center, watering my plants, advice on planting and taking care of my plants. I’ve learned a lot about agricultural techniques from him, and I’ve never felt alone while commuting and working at my distant plot in Maryland. I enjoyed working with Tim, who became my good friend. I thank Angelo Randaci for his help with planting seeds, watering my plants and transferring hundreds of them from pots to pots. We had many discussions on plant cultivars and methods for removing weeds, that were very helpful to me. I thank Roger Ruff for establishing the plot for my experiments at the University of Cincinnati field station and for being always available there to help me with watering or mowing. I thank my fellow Ph.D. students and lab mates - Sunita, Kim, Allison, Susan, Yamini, Megan, Eric - for their help, their friendship and support. My special thanks go to my parents Dzhaneta and Vachagan Avanesyan, and to my brother, Artem Avanesyan, for their love, support, and believing in me during these years and all my life. vi I am infinitely grateful to my husband Sergey Golitsynskiy. Without his patience, advice, and constant support this dissertation would not have been be possible. He has been the greatest friend I have ever had, who while finishing his own dissertation and doing crazy weekly commutes to Maryland and then to Iowa, was always there for me. vii TABLE OF CONTENTS Abstract ........................................................................................................................................... ii Acknowledgments ..........................................................................................................................iv List of Tables ................................................................................................................................. ix List of Figures ................................................................................................................................ xi Chapter 1: General introduction ......................................................................................................1 Chapter 2: Resistance of native and exotic grasses to herbivory by nymph Melanoplus grasshoppers .................................................................................................................................. 10 Chapter 3: Comparison of native and exotic grasses in their
Recommended publications
  • Soil Response to Cropping Sequences and Grazing Under Integrated Crop-Livestock System Hanxiao Feng South Dakota State
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Theses and Dissertations 2017 Soil Response to Cropping Sequences and Grazing Under Integrated Crop-livestock System Hanxiao Feng South Dakota State Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Agronomy and Crop Sciences Commons, and the Soil Science Commons Recommended Citation Feng, Hanxiao, "Soil Response to Cropping Sequences and Grazing Under Integrated Crop-livestock System" (2017). Theses and Dissertations. 2160. https://openprairie.sdstate.edu/etd/2160 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. SOIL RESPONSE TO CROPPING SEQUENCES AND GRAZING UNDER INTEGRATED CROP-LIVESTOCK SYSTEM BY HANXIAO FENG A thesis submitted in partial fulfillment of the requirement for the Master of Science Major in Plant Science South Dakota State University 2017 iii ACKNOWLEDGEMENTS Foremost, I would like to express my grateful thanks to my advisor, Dr. Sandeep Kumar for his continuous encouragement, useful suggestion, great patience, and excellent guidance throughout the whole study process. Without his support and help, careful review, and critical recommendation on several versions of this thesis manuscript, I could not finish this paper and my MS degree. I would also like to offer my sincere gratitude to all committee members, Dr. Shannon Osborne, Dr.
    [Show full text]
  • Grass Genera in Townsville
    Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers.
    [Show full text]
  • Ethnobotanical Usages of Grasses in Central Punjab-Pakistan
    International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 452 ISSN 2229-5518 Ethnobotanical Usages of Grasses in Central Punjab-Pakistan Arifa Zereen, Tasveer Zahra Bokhari & Zaheer-Ud-Din Khan ABSTRACT- Poaceae (Gramineae) constitutes the second largest family of monocotyledons, having great diversity and performs an important role in the lives of both man and animals. The present study was carried out in eight districts (viz., Pakpattan, Vehari, Lahore, Nankana Sahib, Faisalabad, Sahiwal, Narowal and Sialkot) of Central Punjab. The area possesses quite rich traditional background which was exploited to get information about ethnobotanical usage of grasses. The ethnobotanical data on the various traditional uses of the grasses was collected using a semi- structured questionnaire. A total of 51 species of grasses belonging to 46 genera were recorded from the area. Almost all grasses were used as fodder, 15% were used for medicinal purposes in the area like for fever, stomach problems, respiratory tract infections, high blood pressure etc., 06% for roof thatching and animal living places, 63% for other purposes like making huts, chicks, brooms, baskets, ladders stabilization of sand dunes. Index Terms: Ethnobotany, Grasses, Poaceae, Fodder, Medicinal Use, Central Punjab —————————— —————————— INTRODUCTION Poaceae or the grass family is a natural homogenous group purposes. Chaudhari et al., [9] studied ethnobotanical of plants, containing about 50 tribes, 660 genera and 10,000 utilization of grasses in Thal Desert, Pakistan. During this species [1], [2]. In Pakistan Poaceae is represented by 158 study about 29 species of grasses belonging to 10 tribes genera and 492 species [3].They are among the most were collected that were being utilized for 10 different cosmopolitan of all flowering plants.
    [Show full text]
  • Plant Associations and Descriptions for American Memorial Park, Commonwealth of the Northern Mariana Islands, Saipan
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Vegetation Inventory Project American Memorial Park Natural Resource Report NPS/PACN/NRR—2013/744 ON THE COVER Coastal shoreline at American Memorial Park Photograph by: David Benitez Vegetation Inventory Project American Memorial Park Natural Resource Report NPS/PACN/NRR—2013/744 Dan Cogan1, Gwen Kittel2, Meagan Selvig3, Alison Ainsworth4, David Benitez5 1Cogan Technology, Inc. 21 Valley Road Galena, IL 61036 2NatureServe 2108 55th Street, Suite 220 Boulder, CO 80301 3Hawaii-Pacific Islands Cooperative Ecosystem Studies Unit (HPI-CESU) University of Hawaii at Hilo 200 W. Kawili St. Hilo, HI 96720 4National Park Service Pacific Island Network – Inventory and Monitoring PO Box 52 Hawaii National Park, HI 96718 5National Park Service Hawaii Volcanoes National Park – Resources Management PO Box 52 Hawaii National Park, HI 96718 December 2013 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • A New Species of Bothriochloa (Poaceae, Andropogoneae) Endemic to Montane Grasslands of Santa Catarina, Brazil
    Phytotaxa 183 (1): 044–050 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.183.1.5 A new species of Bothriochloa (Poaceae, Andropogoneae) endemic to montane grasslands of Santa Catarina, Brazil 1 1 EMILAINE BIAVA DALMOLIM & ANA ZANIN 1 Programa de Pós-Graduação em Biologia de Fungos, Algas e Plantas, Departamento de Botânica, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900, Florianópolis, Santa Catarina, Brazil. Email: [email protected] Abstract Bothriochloa catharinensis, a new species of Andropogoneae (Poaceae: Panicoideae, Andropogoneae) endemic to mon- tane grasslands associated with araucaria forest in the state of Santa Catarina, Southern Brazil, is described and illustrated. Morphological similarities between the new taxon and other species of Bothriochloa are discussed. Comments on habitat, morphology, distribution and conservation status are provided. Key words: araucaria forest, grasses, Panicoideae, SEM, taxonomy Resumo Bothriochloa catharinensis, uma nova espécie de Poaceae considerada endêmica de campos de altitude associados à Floresta Ombró- fila Mista (floresta com araucária) do Estado de Santa Catarina, Sul do Brasil, é aqui descrita e ilustrada. Similaridades morfológicas entre a nova espécie e outros táxons de Bothriochloa são discutidas. São fornecidos dados sobre hábitat, morfologia, distribuição e estado de conservação. Palavras chave: Floresta Ombrófila Mista, gramíneas, MEV, Panicoideae, taxonomia Introduction Bothriochloa Kuntze (1891: 762) comprises about 40 species distributed largely in warm-temperate areas of the world (Scrivanti et al. 2009). In the Americas, the genus is represented by about 27 species widely distributed in tropical, temperate and subtropical regions; four of these have been cultivated and naturalized (Vega 2000, Vega & Scrivanti 2012).
    [Show full text]
  • Introductory Grass Identification Workshop University of Houston Coastal Center 23 September 2017
    Broadleaf Woodoats (Chasmanthium latifolia) Introductory Grass Identification Workshop University of Houston Coastal Center 23 September 2017 1 Introduction This 5 hour workshop is an introduction to the identification of grasses using hands- on dissection of diverse species found within the Texas middle Gulf Coast region (although most have a distribution well into the state and beyond). By the allotted time period the student should have acquired enough knowledge to identify most grass species in Texas to at least the genus level. For the sake of brevity grass physiology and reproduction will not be discussed. Materials provided: Dried specimens of grass species for each student to dissect Jewelry loupe 30x pocket glass magnifier Battery-powered, flexible USB light Dissecting tweezer and needle Rigid white paper background Handout: - Grass Plant Morphology - Types of Grass Inflorescences - Taxonomic description and habitat of each dissected species. - Key to all grass species of Texas - References - Glossary Itinerary (subject to change) 0900: Introduction and house keeping 0905: Structure of the course 0910: Identification and use of grass dissection tools 0915- 1145: Basic structure of the grass Identification terms Dissection of grass samples 1145 – 1230: Lunch 1230 - 1345: Field trip of area and collection by each student of one fresh grass species to identify back in the classroom. 1345 - 1400: Conclusion and discussion 2 Grass Structure spikelet pedicel inflorescence rachis culm collar internode ------ leaf blade leaf sheath node crown fibrous roots 3 Grass shoot. The above ground structure of the grass. Root. The below ground portion of the main axis of the grass, without leaves, nodes or internodes, and absorbing water and nutrients from the soil.
    [Show full text]
  • Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site a Report to the U
    Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site A report to the U. S. Army and U. S. Fish and Wildlife Service G. J. Michels, Jr., J. L. Newton, H. L. Lindon, and J. A. Brazille Texas AgriLife Research 2301 Experiment Station Road Bushland, TX 79012 2008 Report Introductory Notes The invertebrate survey in 2008 presented an interesting challenge. Extremely dry conditions prevailed throughout most of the adult activity period for the invertebrates and grass fires occurred several times throughout the summer. By visual assessment, plant resources were scarce compared to last year, with few green plants and almost no flowering plants. Eight habitats and nine sites continued to be sampled in 2008. The Ponderosa pine/ yellow indiangrass site was removed from the study after the low numbers of species and individuals collected there in 2007. All other sites from the 2007 survey were included in the 2008 survey. We also discontinued the collection of Coccinellidae in the 2008 survey, as only 98 individuals from four species were collected in 2007. Pitfall and malaise trapping were continued in the same way as the 2007 survey. Sweep net sampling was discontinued to allow time for Asilidae and Orthoptera timed surveys consisting of direct collection of individuals with a net. These surveys were conducted in the same way as the time constrained butterfly (Papilionidea and Hesperoidea) surveys, with 15-minute intervals for each taxanomic group. This was sucessful when individuals were present, but the dry summer made it difficult to assess the utility of these techniques because of overall low abundance of insects.
    [Show full text]
  • Bothriochloa Insculpta Scientific Name  Bothriochloa Insculpta (Hochst
    Tropical Forages Bothriochloa insculpta Scientific name Bothriochloa insculpta (Hochst. ex A. Rich.) A. Camus Strongly stoloniferous cv. Bisset (L); weakly stoloniferous cv. Hatch (R) Synonyms Basionym: Andropogon insculptus Hochst. ex A. Rich.; Andropogon pertusus (L.) Willd. var. insculptus (Hochst. A perennial tussock, often strongly or ex A. Rich.) Hack.; Dichanthium insculptum (Hochst. ex weakly stoloniferous (cv. Bisset) A. Rich.) Clayton Family/tribe Family: Poaceae (alt. Gramineae) subfamily: Panicoideae tribe: Andropogoneae. Morphological description Pink to mauve stolons (cv. Bisset) A perennial tussock, 30‒80 cm tall (‒1.5 m at maturity); Dense flowering in seed crop (cv. Bisset) often strongly or weakly stoloniferous; stolons 1.5‒2.5 mm diameter, reddish pink to mauve. Leaves glaucous; leaf blades linear, tapering, to 30 cm long and 8 mm wide, mostly glabrous except for spreading hairs at the base; ligule a fringed membrane, hairs shorter than the membrane. Culm internodes yellow, nodes with annulus of spreading white hairs, to 4 mm long. Inflorescence subdigitate or with a central axis seldom over 3 cm long; 3 to >20 racemes per panicle, 2‒9 cm long, olive green to purplish in colour, lower racemes often branched. Spikelets in pairs, sessile spikelet with single deep pit, and geniculate and twisted awn 15‒25 mm long in the Inflorescence subdigitate or with a Seed units with pits in the lower glume. lower glume; pedicellate spikelet glabrous, unawned, central axis seldom over 3 cm long; 3 to usually neuter, with 1‒3 pits in the lower glume. >20 racemes per panicle. Inflorescence, seed and leaves emit an aromatic odour when crushed.
    [Show full text]
  • PASTURES: Mackay Whitsunday Region
    Queensland the Smart State PASTURES: Mackay Whitsunday region A guide for developing productive and sustainable pasture-fed grazing systems PASTURES: Mackay Whitsunday region A guide for developing productive and sustainable pasture-fed grazing systems Department of Primary Industries and Fisheries ii PASTURES: Mackay Whitsunday region Many people have provided and Many photos contained in this book assisted with information contained in were sourced from Tropical Forages: this book. Thanks to the many Mackay an interactive selection tool (Cook, Whitsunday property owners, graziers B.G., Pengelly, B.C., Brown, S.D., and managers who have worked with Donnelly, J.L., Eagles, D.A., Franco, DPI&F over the past decades to trial, M.A., Hanson, J., Mullen, B.F., understand and develop successful Partridge, I.J., Peters, M. and Schultze- pasture technologies for productive Kraft, R. 2005. Tropical Forages: an and sustainable pasture-fed grazing interactive selection tool, [CD-ROM], systems. CSIRO, DPI&F (Qld), CIAT and ILRI, Brisbane, Australia). Thanks to Mick Quirk, Science Leader (Sustainable Grazing Systems) Additional photos have been provided within DPI&F Animal Science, for by Terry Hilder, Caroline Sandral, Paul his support and encouragement with Wieck, and Christine Peterson. this project. I gratefully acknowledge Acknowledgements the financial support provided by the Mackay Whitsunday Natural Resource Management Group (MWNRMG). Thanks to Kelly Flower and Vivienne Dwyer (MWNRM Group Inc.), Tanya Radke and Lee Cross (DPI&F) for their assistance in organising the agreement between DPI&F and MWNRM Group Inc. Special thanks to those people who have given of their time to review and comment on early and progressive drafts; in particular John Hopkinson, John Hughes, Kendrick Cox, Ross Dodt, Terry Hilder, Caroline Sandral, Bill Schulke (DPI&F) and Nigel Onley (Consultant).
    [Show full text]
  • Field Guide for Managing Yellow and Caucasian (Old World) Bluestems in the Southwest
    USDA United States Department of Agriculture - Field Guide for Managing Yellow and Caucasian (Old World) Bluestems in the Southwest Forest Southwestern Service Region TP-R3-16-36 October 2018 Cover Photos Top left — Yellow bluestem; courtesy photo by Max Licher, SEINet Top right — Yellow bluestem panicle; courtesy photo by Billy Warrick; Soil, Crop and More Information Lower left — Caucasian bluestem panicle; courtesy photo by Max Licher, SEINet Lower right — Caucasian bluestem; courtesy photo by Max Licher, SEINet Authors Karen R. Hickman — Professor, Oklahoma State University, Stillwater OK Keith Harmoney — Range Scientist, KSU Ag Research Center, Hays KS Allen White — Region 3 Pesticides/Invasive Species Coord., Forest Service, Albuquerque NM Citation: USDA Forest Service. 2018. Field Guide for Managing Yellow and Caucasian (Old World) Bluestems in the Southwest. Southwestern Region TP-R3-16-36, Albuquerque, NM. In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident. Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA’s TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339.
    [Show full text]
  • Vascular Plants and a Brief History of the Kiowa and Rita Blanca National Grasslands
    United States Department of Agriculture Vascular Plants and a Brief Forest Service Rocky Mountain History of the Kiowa and Rita Research Station General Technical Report Blanca National Grasslands RMRS-GTR-233 December 2009 Donald L. Hazlett, Michael H. Schiebout, and Paulette L. Ford Hazlett, Donald L.; Schiebout, Michael H.; and Ford, Paulette L. 2009. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands. Gen. Tech. Rep. RMRS- GTR-233. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Abstract Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of vascular plant species representing 81 plant families are known to occur on or near these public lands. This report includes a history of the area; ethnobotanical information; an introductory overview of the area including its climate, geology, vegetation, habitats, fauna, and ecological history; and a plant survey and information about the rare, poisonous, and exotic species from the area. A vascular plant checklist of 816 vascular plant taxa in the appendix includes scientific and common names, habitat types, and general distribution data for each species. This list is based on extensive plant collections and available herbarium collections. Authors Donald L. Hazlett is an ethnobotanist, Director of New World Plants and People consulting, and a research associate at the Denver Botanic Gardens, Denver, CO.
    [Show full text]
  • Illustrated Flora of East Texas Illustrated Flora of East Texas
    ILLUSTRATED FLORA OF EAST TEXAS ILLUSTRATED FLORA OF EAST TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: DAVID GIBSON AND WILL CRENSHAW DISCOVERY FUND U.S. FISH AND WILDLIFE FOUNDATION (NATIONAL PARK SERVICE, USDA FOREST SERVICE) TEXAS PARKS AND WILDLIFE DEPARTMENT SCOTT AND STUART GENTLING BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) TEMPLE-INLAND FOUNDATION SUMMERLEE FOUNDATION AMON G. CARTER FOUNDATION ROBERT J. O’KENNON PEG & BEN KEITH DORA & GORDON SYLVESTER DAVID & SUE NIVENS NATIVE PLANT SOCIETY OF TEXAS DAVID & MARGARET BAMBERGER GORDON MAY & KAREN WILLIAMSON JACOB & TERESE HERSHEY FOUNDATION INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE II OTHER CONTRIBUTORS: ALLDREDGE, LINDA & JACK HOLLEMAN, W.B. PETRUS, ELAINE J. BATTERBAE, SUSAN ROBERTS HOLT, JEAN & DUNCAN PRITCHETT, MARY H. BECK, NELL HUBER, MARY MAUD PRICE, DIANE BECKELMAN, SARA HUDSON, JIM & YONIE PRUESS, WARREN W. BENDER, LYNNE HULTMARK, GORDON & SARAH ROACH, ELIZABETH M. & ALLEN BIBB, NATHAN & BETTIE HUSTON, MELIA ROEBUCK, RICK & VICKI BOSWORTH, TONY JACOBS, BONNIE & LOUIS ROGNLIE, GLORIA & ERIC BOTTONE, LAURA BURKS JAMES, ROI & DEANNA ROUSH, LUCY BROWN, LARRY E. JEFFORDS, RUSSELL M. ROWE, BRIAN BRUSER, III, MR. & MRS. HENRY JOHN, SUE & PHIL ROZELL, JIMMY BURT, HELEN W. JONES, MARY LOU SANDLIN, MIKE CAMPBELL, KATHERINE & CHARLES KAHLE, GAIL SANDLIN, MR. & MRS. WILLIAM CARR, WILLIAM R. KARGES, JOANN SATTERWHITE, BEN CLARY, KAREN KEITH, ELIZABETH & ERIC SCHOENFELD, CARL COCHRAN, JOYCE LANEY, ELEANOR W. SCHULTZE, BETTY DAHLBERG, WALTER G. LAUGHLIN, DR. JAMES E. SCHULZE, PETER & HELEN DALLAS CHAPTER-NPSOT LECHE, BEVERLY SENNHAUSER, KELLY S. DAMEWOOD, LOGAN & ELEANOR LEWIS, PATRICIA SERLING, STEVEN DAMUTH, STEVEN LIGGIO, JOE SHANNON, LEILA HOUSEMAN DAVIS, ELLEN D.
    [Show full text]