Possibilities with Battery Technology 35

Total Page:16

File Type:pdf, Size:1020Kb

Possibilities with Battery Technology 35 JANUARY/FEBRUARY 2021 www.energymanagermagazine.co.uk POSSIBILITIES WITH 35 BATTERY TECHNOLOGY INSIDE THIS ISSUE: 16 26 41 Uncovering Working A comparison the truth towards between about inrush achieve net solar currents zero carbon energy and emissions geothermal during 2021 energy FRONT COVER STORY: Possibilities with battery technology See page 35 JANUARY/FEBRUARY 2021 www.energymanagermagazine.co.uk PUBLISHER: Ralph Scrivens ralph@ energymanagermagazine.co.uk INSIDE PRODUCTION: Sarah Daviner THE ONLY PUBLIC SECTOR sarah@ energymanagermagazine.co.uk ENERGY JOURNAL ACCOUNTS: 4 News accounts@ energymanagermagazine.co.uk PRINT: Mixam Print 9 Opinion Register now to receive your ENERGY MANAGER MAGAZINE digital issue of Energy Manager is published 10 times a year Monitoring & Metering by Energy Manager. 12 Magazine FREE of charge www.energymanagermagazine.co.uk 42 Wymington Park, Rushden, 18 Ventilation Northants, NN10 9JP Tel: 01933 316931 Email: mail@ energymanagermagazine.co.uk 21 Energy Management REGISTRATION: Qualifying readers receive Energy Manager free of charge. The annual subscription rate is £80 in 25 Net Zero the UK, £95 for mainland Europe and £115 for the rest of the world. Single copies £10. 29 BMS/EMS Some manufacturers and suppliers have made a contribution toward the cost of reproducing some photographs in Energy Manager. 30 Water Management PAPER USED TO PRODUCE THIS MAGAZINE IS SOURCED FROM energymanagermagazine.co.uk/ subscribe SUSTAINABLE FORESTS. 32 Energy Supply/Storage Please Note: No part of this publication may be reproduced by any means without prior permission from the publishers. The publishers do not accept 36 CHP any responsibility for, or necessarily agree with, any views expressed in articles, letters or supplied advertisements. Renewable Energy All contents © Energy Manager Magazine 2021 39 Image © East Street Imagery ISSN 2057-5912 (Print) ISSN 2057-5920 (Online) 46 Driving the Future ENERGY MANAGER MAGAZINE • JANUARY/FEBRUARY 2021 3 NEWS THE BUSINESS ENERGY More energy is required to keep a room at a constant EFFICIENCY PROJECT (BEEP) temperature than to re-heat it after it has cooled. EEP supports, County Durham and saving over 2000 tons of Heat naturally moves to cooler spaces. If the heat input is high, based, small to medium businesses carbon emissions, contributing B(SMEs) to identify opportunities towards the county’s carbon the warmth is constantly dissipating, even in well insulated rooms. in making financial savings through reduction targets. energy efficient measures and helping The BEEP team is passionate efficiency, by way of behavourial change reduce their carbon footprint. about supporting SMEs, and this year, or upgrading to more energy efficient Energy loss is slower when a room’s temperature drops. The longer a room equipment.. It also provides a grant Funded by the European Reginal having encountered the coronavirus remains cooler, the more energy is saved when compared with the energy Development Fund and Durham County pandemic (Covid19) and the challenges fund for qualifying SMEs helping toward Council, the Business Energy Efficiency it brought for many businesses, we purchasing recommended equipment. lost by maintaining a constant higher temperature. Project launched in 2016. It was due understand that it is more important The support also extends to to end in September 2019 however than ever now to support in identifying additional advice around funding through its success and growth during financial savings that can be made through opportunities, behavioural measures that time it relaunched in October 2019 energy efficiency and businesses are and can help a business build their own and will run to September 2022. not paying more than they should. environmental/energy efficiency policy. So, why heat a room that no one is in? So far, the project has supported The project offers a fully funded and For more information visit 350 – (and growing) County Durham tailored energy audit helping identify areas www.beep.uk.net call 03000 265547 or email [email protected]. SMEs, become more energy efficient that a business can improve their energy Our controls are always striving to minimise the use of heat. The 3-stage profile keeps students comfortable while they are in their rooms but, ensures energy isn’t wasted when rooms are empty New initiative, EnergyTag, allows energy users – making potential savings of 30-40%*. to verify the source of their energy every hour EnergyTag, an initiative led by some of the world’s largest players in renewable energy, will help bring greater transparency for energy consumers and accelerate the shift to clean energy. n independent, non-profit initiative, Ørsted, PwC, RECS International, WattTime, certificates (707 TWh) were issued in will enable energy consumers to Wind Energy Europe and many others. Europe last year involving 26 European Atrack the source of their energy EnergyTag’s Council and Advisory countries. This success demonstrates and understand their carbon emissions Board are working together to define what can be achieved when the industry in a totally new way. EnergyTag, which a set of guidelines that will form the identifies a need, builds a solution itself and brings together over 60 of some of basis of a market for energy certificates then gets legislative support and regulatory the biggest names in tech and energy, with a timestamp of 1 hour or less. In approval once established. Current is developing an industry standard to parallel, the initiative will stimulate the renewable energy procurement methods deliver hourly certificates that show first voluntary markets for the certificates match average supply and demand over consumers exactly where their energy by coordinating a series of demonstrator a 12-month period, but to reach the level is coming from, and understand their projects around the world showcasing of renewables required to meet new carbon emissions in real time. real-time energy tracking technologies. climate targets, there has to be some way EnergyTag brings together leading Dr Toby Ferenczi, EnergyTag’s to track the time of generation, which is players including Accenture, Microsoft, founder commented: “It’s a cruel irony why EnergyTag is the critical next step.” Google, Association of Issuing Bodies, that the more successful we are at Google is one example of a corporate CertiQ, EIT InnoEnergy, ECOHZ, Elering, deploying renewable energy the harder clean energy buyer that has set itself an Eneco, Energinet, Energy Web Foundation, it gets to integrate that energy into the ambitious goal for 24/7 energy tracking. ENGIE, Eurelectric, FlexiDAO, Iberdrola, grid. Adopting hour-by-hour energy “Google intends to run on carbon- I-REC Standard, M-RETS, OVO Energy, certificates build’s consumer trust by free energy everywhere, at all times by ecostat2 Irus - Centrally controlled linking production directly to 2030,” says Michael Terrell, Director of Programmed locally via the internet portal consumption, supports the growth Operations at Google and head of its of energy storage, and enables 24/7 carbon-free energy programme. accurate carbon accounting. “EnergyTag will be an important tool for Our goal is to establish a helping Google and many others source common, tradable instrument carbon-free energy for their operations, that provides traceability across at an hourly level. We are excited to be markets for power, flexibility part of the EnergyTag initiative and look and carbon. Speeding up the forward to supporting the development switch to renewables is vital of this important standard.” if we are going to keep within EnergyTag works with and within the 1.5-degree climate goal.” existing electricity certification schemes Phil Moody, who will chair the (such as GOs and RECs) as a voluntary EnergyTag council and advisory ‘add-on’ and will not replace these board said: “707 million electricity schemes. www.energytag.org prefectcontrols.com • 01787 320604 4 ENERGY MANAGER MAGAZINE • JANUARY/FEBRUARY 2021 The ETL symbol is a UK registered certification mark of the Department of Energy and Climate Change - Authorised User: 02371 * Savings are dependant on building, current control methods and settings used. NEWS JOINT EFFORT TO UNLOCK EV CHARGING FOR ALL ive local authorities are joining forces wider network of public chargers, so country to meet its target to reduce with the UK’s biggest electricity that all communities can achieve the carbon emissions to Net Zero by 2050. Optimising energy costs Fnetwork operator in a bid to end charging infrastructure they need. Transport remains the biggest cause of Electric Vehicle (EV) charging blackspots. UK Power Networks will collaborate pollution in the UK, accounting for 28% Charge Collective, a pilot project being with Cambridge City and Cambridgeshire of all greenhouse gas emissions. The launched by UK Power Networks, will see County Councils, Norwich City Council, pace of EV uptake is accelerating, with sustainably with BiU it partner with local councils in Cambridge, Norfolk County Council and the London 3.6 million EVs forecasted to connect to Norwich and London to help ensure Borough of Redbridge. They will work UK Power Networks’ system by 2030. nobody is left behind in the EV revolution. together to identify areas that have Charge Collective will help assess The aim is to ensure that everyone yet to install enough electric vehicle how much of a discount to connect has the confidence to switch to EVs, chargers and would benefit from to the electricity network is required, regardless of where they live or what improved air quality. These areas to encourage charge point installers parking space they have. By sharing are likely to be in towns, with denser to invest in areas where the market data and expertise, the local authorities populations and less off-street parking. is struggling to deliver today. It will will help UK Power Networks to identify The innovative scheme will also develop be a model that could be scaled up Decarbonise your energy charge point blackspots. The network a framework to measure the wider across the country if successful.
Recommended publications
  • Hydrogen Fuel Cell Vehicles in Tunnels
    SAND2020-4507 R Hydrogen Fuel Cell Vehicles in Tunnels Austin M. Glover, Austin R. Baird, Chris B. LaFleur April 2020 Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. 2 ABSTRACT There are numerous vehicles which utilize alternative fuels, or fuels that differ from typical hydrocarbons such as gasoline and diesel, throughout the world. Alternative vehicles include those running on the combustion of natural gas and propane as well as electrical drive vehicles utilizing batteries or hydrogen as energy storage. Because the number of alternative fuels vehicles is expected to increase significantly, it is important to analyze the hazards and risks involved with these new technologies with respect to the regulations related to specific transport infrastructure, such as bridges and tunnels. This report focuses on hazards presented by hydrogen fuel cell electric vehicles that are different from traditional fuels. There are numerous scientific research and analysis publications on hydrogen hazards in tunnel scenarios; however, compiling the data to make conclusions can be a difficult process for tunnel owners and authorities having jurisdiction over tunnels. This report provides a summary of the available literature characterizing hazards presented by hydrogen fuel cell electric vehicles, including light-duty, medium and heavy-duty, as well as buses. Research characterizing both worst-case and credible scenarios, as well as risk-based analysis, is summarized. Gaps in the research are identified to guide future research efforts to provide a complete analysis of the hazards and recommendations for the safe use of hydrogen fuel cell electric vehicles in tunnels.
    [Show full text]
  • Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy
    Review Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy Michael Handwerker 1,2,*, Jörg Wellnitz 1,2 and Hormoz Marzbani 2 1 Faculty of Mechanical Engineering, University of Applied Sciences Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany; [email protected] 2 Royal Melbourne Institute of Technology, School of Engineering, Plenty Road, Bundoora, VIC 3083, Australia; [email protected] * Correspondence: [email protected] Abstract: Climate change is one of the major problems that people face in this century, with fossil fuel combustion engines being huge contributors. Currently, the battery powered electric vehicle is considered the predecessor, while hydrogen vehicles only have an insignificant market share. To evaluate if this is justified, different hydrogen power train technologies are analyzed and compared to the battery powered electric vehicle. Even though most research focuses on the hydrogen fuel cells, it is shown that, despite the lower efficiency, the often-neglected hydrogen combustion engine could be the right solution for transitioning away from fossil fuels. This is mainly due to the lower costs and possibility of the use of existing manufacturing infrastructure. To achieve a similar level of refueling comfort as with the battery powered electric vehicle, the economic and technological aspects of the local small-scale hydrogen production are being investigated. Due to the low efficiency Citation: Handwerker, M.; Wellnitz, and high prices for the required components, this domestically produced hydrogen cannot compete J.; Marzbani, H. Comparison of with hydrogen produced from fossil fuels on a larger scale.
    [Show full text]
  • EPRI Journal--Driving the Solution: the Plug-In Hybrid Vehicle
    DRIVING THE SOLUTION THE PLUG-IN HYBRID VEHICLE by Lucy Sanna The Story in Brief As automakers gear up to satisfy a growing market for fuel-efficient hybrid electric vehicles, the next- generation hybrid is already cruis- ing city streets, and it can literally run on empty. The plug-in hybrid charges directly from the electricity grid, but unlike its electric vehicle brethren, it sports a liquid fuel tank for unlimited driving range. The technology is here, the electricity infrastructure is in place, and the plug-in hybrid offers a key to replacing foreign oil with domestic resources for energy indepen- dence, reduced CO2 emissions, and lower fuel costs. DRIVING THE SOLUTION THE PLUG-IN HYBRID VEHICLE by Lucy Sanna n November 2005, the first few proto­ vide a variety of battery options tailored 2004, more than half of which came from Itype plug­in hybrid electric vehicles to specific applications—vehicles that can imports. (PHEVs) will roll onto the streets of New run 20, 30, or even more electric miles.” With growing global demand, particu­ York City, Kansas City, and Los Angeles Until recently, however, even those larly from China and India, the price of a to demonstrate plug­in hybrid technology automakers engaged in conventional barrel of oil is climbing at an unprece­ in varied environments. Like hybrid vehi­ hybrid technology have been reluctant to dented rate. The added cost and vulnera­ cles on the market today, the plug­in embrace the PHEV, despite growing rec­ bility of relying on a strategic energy hybrid uses battery power to supplement ognition of the vehicle’s potential.
    [Show full text]
  • Making Markets for Hydrogen Vehicles: Lessons from LPG
    Making Markets for Hydrogen Vehicles: Lessons from LPG Helen Hu and Richard Green Department of Economics and Institute for Energy Research and Policy University of Birmingham Birmingham B15 2TT United Kingdom Hu: [email protected] Green: [email protected] +44 121 415 8216 (corresponding author) Abstract The adoption of liquefied petroleum gas vehicles is strongly linked to the break-even distance at which they have the same costs as conventional cars, with very limited market penetration at break-even distances above 40,000 km. Hydrogen vehicles are predicted to have costs by 2030 that should give them a break-even distance of less than this critical level. It will be necessary to ensure that there are sufficient refuelling stations for hydrogen to be a convenient choice for drivers. While additional LPG stations have led to increases in vehicle numbers, and increases in vehicles have been followed by greater numbers of refuelling stations, these effects are too small to give self-sustaining growth. Supportive policies for both vehicles and refuelling stations will be required. 1. Introduction While hydrogen offers many advantages as an energy vector within a low-carbon energy system [1, 2, 3], developing markets for hydrogen vehicles is likely to be a challenge. Put bluntly, there is no point in buying a vehicle powered by hydrogen, unless there are sufficient convenient places to re-fuel it. Nor is there any point in providing a hydrogen refuelling station unless there are vehicles that will use the facility. What is the most effective way to get round this “chicken and egg” problem? Data from trials of hydrogen vehicles can provide information on driver behaviour and charging patterns, but extrapolating this to the development of a mass market may be difficult.
    [Show full text]
  • Green Illusions Is Not a Litany of Despair
    “In this terrific book, Ozzie Zehner explains why most current approaches to the world’s gathering climate and energy crises are not only misguided but actually counterproductive. We fool ourselves in innumerable ways, and Zehner is especially good at untangling sloppy thinking. Yet Green Illusions is not a litany of despair. It’s full of hope—which is different from false hope, and which requires readers with open, skeptical minds.”— David Owen, author of Green Metropolis “Think the answer to global warming lies in solar panels, wind turbines, and biofuels? Think again. In this thought-provoking and deeply researched critique of popular ‘green’ solutions, Zehner makes a convincing case that such alternatives won’t solve our energy problems; in fact, they could make matters even worse.”—Susan Freinkel, author of Plastic: A Toxic Love Story “There is no obvious competing or comparable book. Green Illusions has the same potential to sound a wake-up call in the energy arena as was observed with Silent Spring in the environment, and Fast Food Nation in the food system.”—Charles Francis, former director of the Center for Sustainable Agriculture Systems at the University of Nebraska “This is one of those books that you read with a yellow marker and end up highlighting most of it.”—David Ochsner, University of Texas at Austin Green Illusions Our Sustainable Future Series Editors Charles A. Francis University of Nebraska–Lincoln Cornelia Flora Iowa State University Paul A. Olson University of Nebraska–Lincoln The Dirty Secrets of Clean Energy and the Future of Environmentalism Ozzie Zehner University of Nebraska Press Lincoln and London Both text and cover are printed on acid-free paper that is 100% ancient forest free (100% post-consumer recycled).
    [Show full text]
  • Frequently Asked Questions About Commercial Hydrogen Vehicle Refueling
    Frequently Asked Questions About Commercial Hydrogen Vehicle Refueling General Questions 1. Why is the U.S. continuing to develop hydrogen fuel cell vehicle technology? U.S. industries and government are at the forefront of research and development of hydrogen and fuel cell technology to power vehicles, homes, businesses, and remote equipment such as cell phone towers. The goals of this effort were to lessen U.S. dependence on foreign oil and advance an environmentally clean, safe, and reliable energy agenda. Hydrogen is one of many alternative fuels being explored. When hydrogen is used to power a hydrogen fuel cell electric vehicle (HFCEV), it offers one possible solution to meeting some of the growing demand in the U.S.A. for a reliable supply of clean and sustainable energy. Hydrogen is considered the ultimate clean vehicle fuel. The only emissions from a HFCEV are heat and clean water, which makes hydrogen a fuel that can help to protect the environment and keep our air cleaner. Hydrogen gas is 14.4 times lighter than air and dissipates rapidly and harmlessly if released into the air. Hydrogen has higher energy content by weight than other fuels, but lower energy content by volume. This means that sufficient quantities of hydrogen stored in liquid or compressed gaseous form onboard a HFCEV can provide a comparable driving range to conventional gasoline-powered vehicles. Fuel cells are lighter in weight than batteries used in plug-in electric vehicles, also making hydrogen fuel cell vehicles lighter and more suited to long-range applications than battery electric vehicles. In addition, FCEVs can be fully refueled in under 5 minutes at a hydrogen fueling station, compared to the 3 hours to more than 20 hours it takes to recharge battery electric vehicles.
    [Show full text]
  • Hydrogen Energy Storage: Grid and Transportation Services Workshop
    02 Hydrogen Energy Storage: Grid and Transportation Services February 2015 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy EfficiencyWorkshop Structure and Renewable / 1 Energy, operated by the Alliance for Sustainable Energy, LLC. Hydrogen Energy Storage: Grid and Transportation Services February 2015 Hydrogen Energy Storage: Grid and Transportation Services Proceedings of an Expert Workshop Convened by the U.S. Department of Energy and Industry Canada, Hosted by the National Renewable Energy Laboratory and the California Air Resources Board Sacramento, California, May 14 –15, 2014 M. Melaina and J. Eichman National Renewable Energy Laboratory Prepared under Task No. HT12.2S10 Technical Report NREL/TP-5400-62518 February 2015 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 www.nrel.gov NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]
  • Carbonomics the Rise of Clean Hydrogen
    EQUITY RESEARCH | July 8, 2020 | 11:34PM BST Carbonomics The Rise of Clean Hydrogen Clean hydrogen has a major role to play in the path towards net zero carbon, providing de-carbonization solutions in the most challenging parts of the Carbonomics cost curve - including long-haul transport, steel, chemicals, heating and long-term power storage. Clean hydrogen cost competitiveness is also closely linked to cost deflation and large scale developments in renewable power and carbon capture (two key technologies to produce it), creating three symbiotic pillars of de-carbonization. Clean hydrogen is gaining strong political and business momentum, emerging as a major component in governments' net zero plans such as the European Green Deal. This is why we believe that the hydrogen value chain deserves serious focus after three false starts in the past 50 years. Hydrogen is very versatile, both in its production and consumption: it is light, storable, has high energy content per unit mass and can be readily produced at an industrial scale. The key challenge comes from the fact that hydrogen (in its ambient form as a gas) is the lightest element and so has a low energy density per unit of volume, making long-distance transportation and storage complex and costly. In this report we analyze the clean hydrogen company ecosystem, the cost competitiveness of green and blue hydrogen in key applications and its key role in Carbonomics: the green engine of economic recovery. Michele Della Vigna, CFA Zoe Stavrinou Alberto Gandolfi +44 20 7552-9383 +44 20 7051-2816 +44 20 7552-2539 [email protected] [email protected] alberto.gandolfi@gs.com Goldman Sachs International Goldman Sachs International Goldman Sachs International Goldman Sachs does and seeks to do business with companies covered in its research reports.
    [Show full text]
  • 2008 Advanced Vehicle Technology Analysis and Evaluation Activities
    annual progress report 2008V EHICLE T ECHNOLOGIES P ROGRAM ADVANCED VEHICLE TECHNOLOGY ANALYSIS AND EVALUATION ACTIVITIES AND HEAVY VEHICLE SYSTEMS OPTIMIZATION PROGRAM A Strong Energy Portfolio for a Strong America Energy efficiency and clean, renewable energy will mean a stronger economy, a cleaner environment, and greater energy independence for America. Working with a wide array of state, community, industry, and university partners, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy invests in a diverse portfolio of energy technologies. For more information contact: EERE Information Center 1-877-EERE-INF (1-877-337-3463) www.eere.energy.gov U.S. Department of Energy Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2008 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager FY 2008 Annual Report AVTAE Activities & HVSO Program ii AVTAE Activities & HVSO Program FY 2008 Annual Report CONTENTS I. INTRODUCTION.................................................................................................................................1 II. MODELING AND SIMULATION....................................................................................................9 A. PSAT Model Validation ...............................................................................................................9
    [Show full text]
  • Hydrogen Fuel Cell Road Vehicles and Their Infrastructure: an Option Towards an Environmentally Friendly Energy Transition
    energies Article Hydrogen Fuel Cell Road Vehicles and Their Infrastructure: An Option towards an Environmentally Friendly Energy Transition Olivier Bethoux 1,2 1 Laboratoire de Génie Electrique et Electronique de Paris, CNRS, Group Sorbonne Université, 75252 Paris, France; [email protected]; Tel.: +331-69-85-16-56 2 Laboratoire de Génie Electrique et Electronique de Paris, CNRS, CentraleSupélec, Université Paris-Saclay, 91192 Gif-sur-Yvette, France Received: 22 September 2020; Accepted: 17 November 2020; Published: 23 November 2020 Abstract: The latest pre-production vehicles on the market show that the major technical challenges posed by integrating a fuel cell system (FCS) within a vehicle—compactness, safety, autonomy, reliability, cold starting—have been met. Regarding the ongoing maturity of fuel cell systems dedicated to road transport, the present article examines the advances still needed to move from a functional but niche product to a mainstream consumer product. It seeks to address difficulties not covered by more traditional innovation approaches. At least in long-distance heavy-duty vehicles, fuel cell vehicles (FCVs) are going to play a key role in the path to zero-emissions in one or two decades. Hence the present study also addresses the structuring elements of the complete chain: the latter includes the production, storage and distribution of hydrogen. Green hydrogen appears to be one of the potential uses of renewable energies. The greener the electricity is, the greater the advantage for hydrogen since it permits to economically store large energy quantities on seasonal rhythms. Moreover, natural hydrogen might also become an economic reality pushing the fuel cell vehicle to be a competitive and environmentally friendly alternative to the battery electric vehicle.
    [Show full text]
  • Zero-Emission Vehicles in California: Community Readiness Guidebook
    Zero-Emission Vehicles in California: COMMUNITY READINESS GUIDEBOOK Toward 1.5 Million Zero-Emission Vehicles on California Roadways by 2025 State of California Edmund G. Brown, Jr., Governor Governor’s Office of Planning and Research Ken Alex, Director Project Manager and Lead Author Ben Rubin, OPR Contributors Michelle Chester, OPR Jeffrey Mankey, OPR Editing and Layout California Center for Sustainable Energy Guidebook Production California Plug-In Electric Vehicle Collaborative California Fuel Cell Partnership Published fall 2013. First Edition. This Guidebook is intended to be an accessible informational resource that supports the expansion of zero-emission vehicles. It may be reproduced and distributed without permission. Please acknowledge this Guidebook as a source of information when using its content in other documents or presentations. Working Group Acknowledgements OPR is thankful for the time, expertise and dedication of the ZEV Community Readiness Guidebook Working Group members who helped create this Guidebook. David Almeida, California Center for Sustainable Energy Richard Battersby, University of California, Davis Rocky Burks, California Commission on Disability Access Roxana Bekemohammadi, California Air Resources Board Ayala Ben-Yehuda, University of California, Los Angeles Jared Cacho, California Energy Commission Lisa Chiladakis, California Plug-In Electric Vehicle Collaborative Kurt Cooknick, American Institute of Architects Dennis Corelis, State of California, Division of the State Architect Joshua Cunningham, California
    [Show full text]
  • Research and Prospects for the Development of Alternative Fuels in the Transport Sector in Poland: a Review
    energies Review Research and Prospects for the Development of Alternative Fuels in the Transport Sector in Poland: A Review Dorota Burchart-Korol 1,* , Magdalena Gazda-Grzywacz 2 and Katarzyna Zar˛ebska 2 1 Faculty of Transport and Aviation Engineering, Silesian University of Technology, ul. Krasi´nskiego8, 40-019 Katowice, Poland 2 Faculty of Energy and Fuels, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland; [email protected] (M.G.-G.); [email protected] (K.Z.) * Correspondence: [email protected] Received: 13 May 2020; Accepted: 8 June 2020; Published: 10 June 2020 Abstract: The aim of this publication is to review the current state and possibilities of developing electromobility and alternative fuels in Poland. It was found that the current market for alternative fuels in Poland is insufficiently developed. At the end of 2019 in Poland, liquefied petroleum gas-powered cars accounted for approximately 3.3 million pieces, which amounts to 14.3% all passenger vehicles up to 3.5 tonnes of gross vehicle weight. There were over 9000 electric cars on the road, the share of which accounted for 0.04% of domestic passenger transport. The lack of a sufficient number of charging points, inhibiting the development of electromobility, was also noted. There were approximately 4000 (0.02%) passenger cars powered by compressed natural gas. Liquefied gas-powered vehicles were exclusively public transport vehicles or trucks. The share of biofuels in the Polish transport sector stands at 4%, while European Union requirements are at a level of 10%. Although there is huge potential for the use of hydrogen as an alternative to conventional transport fuels in Poland, just one hydrogen-powered vehicle has been registered in the country so far, with no filling station in existence for this fuel.
    [Show full text]