Strengthening the Global Semiconductor Supply Chain in An

Total Page:16

File Type:pdf, Size:1020Kb

Strengthening the Global Semiconductor Supply Chain in An 1 About Boston Consulting Group (BCG) Boston Consulting Group (BCG) is a leading global management consulting firm, with offices in over 50 countries. BCG partners with leaders in business and society to tackle their most important challenges and capture their greatest opportunities. BCG was the pioneer in business strategy when it was founded in 1963. Today, we help clients with total transformation—inspiring complex change, enabling organizations to grow, building competitive advantage, and driving bottom-line impact. About the Semiconductor Industry Association (SIA) The Semiconductor Industry Association (SIA) is the voice of the semiconductor industry in the US, one of America’s top export industries and a key driver of America’s economic strength, national security, and global competitiveness. The semiconductor industry directly employs nearly a quarter of a million workers in the United States, and US semiconductor company sales totaled $208 billion in 2020. SIA represents 98 percent of the US semiconductor industry by revenue and nearly two-thirds of non-US chip firms. Through this coalition, SIA seeks to strengthen leadership of semiconductor manufacturing, design, and research by working with Congress, the Administration, and key industry stakeholders around the world to encourage policies that fuel innovation, propel business, and drive international competition. About the Authors Antonio Varas is a Senior Partner and Managing Director in the Silicon Valley office of Boston Consulting Group and is a core member of its Technology, Media & Telecommunications practice. You may contact him by email at [email protected]. Raj Varadarajan is a Senior Partner and Managing Director in the Dallas office of Boston Consulting Group and leads its Global Advantage practice in North America. You may contact him by email at [email protected]. Jimmy Goodrich is the Vice President, Global Policy at the Semiconductor Industry Association. You may contact him at [email protected]. Falan Yinug is the Director, Industry Statistics and Economic Policy at the Semiconductor Industry Association. You may contact him at fyinug@ semiconductors.org. Acknowledgments This report would not have been possible without the contributions of our BCG colleagues Ramiro Palma, Anoop Shah, Zhenyu Bo, Kaitlyn Alsup, Sohini Kar, Yeonsoo Lee, Ian Kleinman, and our SIA colleague Devi Keller. 2 Contents 4 Executive Summary 7 Introduction Overview of the 9 Semiconductor Supply Chain A Global Integrated Structure based 27 on Geographic Specialization 39 Emerging Risks in the New Context Strengthening the Supply Chain 51 for the Next Decade of Innovation 3 Executive Summary he widespread shortage of semiconductors An Integrated Global Supply Chain that began in late 2020 highlighted how indispensable these specialized components Semiconductors are highly complex products to T are in today’s economy. Semiconductors design and manufacture. No other industry has the are used to power a vast array of electronic same high level of investment in both R&D (22% devices—everything from smartphones and cloud of annual semiconductor sales to electronic device servers to modern cars, industrial automation, makers) and capital expenditure (26%). and critical infrastructure and defense systems. The need for deep technical know-how and scale The global structure of the semiconductor supply has resulted in a highly specialized global supply chain, developed over the past three decades, chain, in which regions perform different roles has enabled the industry to deliver continual leaps according to their comparative advantages. (See in cost savings and performance enhancements Exhibit 1.) The US leads in the most R&D-intensive that ultimately made possible the explosion in activities—electronic design automation (EDA), information technology and digital services. In the core intellectual property (IP), chip design, and past few years, however, several new factors have advanced manufacturing equipment—owing to its emerged that could put the successful continuation world-class universities, vast pool of engineering of this global model at risk. Addressing these talent and market-driven innovation ecosystem. vulnerabilities requires a combination of carefully East Asia is at the forefront in wafer fabrication, designed actions from policymakers, including which requires massive capital investments targeted incentives to encourage domestic supported by government incentives as well as production in order to address strategic gaps. access to robust infrastructure and skilled workforce. China is a leader in assembly, packaging and testing, which is relatively less skill- and capital-intensive, and is investing aggressively to expand throughout the value chain. All countries are interdependent in this integrated global supply chain, relying on free trade to move materials, equipment, IP, and products around the world to the optimal location for performing each activity. In fact, semiconductors are the world’s fourth-most-traded product after only crude oil, refined oil, and cars. This global structure delivers enormous value. A hypothetical alternative with parallel, fully “self- sufficient” local supply chains in each region to meet its current levels of semiconductor consumption would have required at least $1 trillion in incremental upfront investment, resulting in a 35% to 65% overall increase in semiconductor prices and ultimately higher costs of electronic devices for end users. 4 EXHIBIT 1 The global semiconductor supply chain based on geographic specialization has delivered enormous value for the industry Semiconductor Supply Chain Precompetitive Research Share by region (% of worldwide total, 2019) Cost savings vs. fully localized US China1 East Asia2 Europe Other “self-sufficient” supply chains: EDA and Core IP 74% 20% EDA Design Logic 67% 15% 8% • Logic $0.9-1.2T • DAO avoided upfront Core IP • Memory DAO 37% 7% 33% 19% investment Memory 29% 70% $45-125B annual cost efficiencies Equipment Manufacturing Equipment 41% 36% 18% • Wafer fabrication • Assembly, Materials 11% 13% 57% 12% 35-65% Materials packaging enabled reduction and testing Wafer fabrication 12% 16% 56% 9% in semiconductor prices Assembly, packaging 38% 43% 12% and testing Source: BCG analysis Note: DAO = discrete, analog, and other (including optoelectronics and sensors); EDA = electronic design automation; OSAT = outsourced assembly and test 1. Mainland China 2. East Asia includes South Korea, Japan, and Taiwan Risks and Vulnerabilities market share, although the level of risk associated with each of these varies. Manufacturing emerges as Over the next ten years, the industry will need a major focal point when it comes to the resilience of to invest about $3 trillion in R&D and capital the global semiconductor supply chain. About 75% expenditure globally across the value chain in order of semiconductor manufacturing capacity, as well to meet the increasing demand for semiconductors. as many suppliers of key materials—such as silicon Industry participants and governments must wafers, photoresist, and other specialty chemicals— collaborate to continue facilitating worldwide access are concentrated in China and East Asia, a region to markets, technologies, capital, and talent, and significantly exposed to high seismic activity and make the supply chain more resilient. geopolitical tensions. Furthermore, all of the world’s most advanced semiconductor manufacturing While geographic specialization has served the capacity—in nodes below 10 nanometers—is industry well, it also creates vulnerabilities that each currently located in South Korea (8%) and Taiwan region needs to assess in a manner specific to its (92%). These are single points of failure that could own economic and security considerations. There be disrupted by natural disasters, infrastructure are more than 50 points across the supply chain shutdowns, or international conflicts, and may cause where one region holds more than 65% of the global severe interruptions in the supply of chips. 5 Besides the risks associated with concentration with onshore capacity—would require over in certain geographic locations, geopolitical $400 billion in government incentives and cost tensions may result in export controls that more than one trillion dollars over ten years. impair access to critical providers of essential technology, tools, and products that are clustered In setting policies to promote supply chain resilience, in certain countries. Such controls could also governments must guarantee a level global playing restrict access to important end markets, field for domestic and foreign firms alike, as well potentially resulting in a significant loss of scale as strong protection of IP rights. They must also and compromising the industry’s ability to sustain take steps to further promote global trade and the current levels of R&D and capital intensity. international collaboration on R&D and technology standards. In parallel, policymakers need to step The solution to these challenges is not the up efforts to stimulate basic research and address pursuit of complete self-sufficiency through the shortage of talent threatening to constrain the large-scale national industrial policies with a industry’s ability to maintain its innovation pace. staggering cost and questionable execution To that end, further public investment in science feasibility. Instead, the semiconductor industry and engineering education is needed, as well as needs nuanced targeted
Recommended publications
  • Quantum Imaging for Semiconductor Industry
    Quantum Imaging for Semiconductor Industry Anna V. Paterova1,*, Hongzhi Yang1, Zi S. D. Toa1, Leonid A. Krivitsky1, ** 1Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore *[email protected] **[email protected] Abstract Infrared (IR) imaging is one of the significant tools for the quality control measurements of fabricated samples. Standard IR imaging techniques use direct measurements, where light sources and detectors operate at IR range. Due to the limited choices of IR light sources or detectors, challenges in reaching specific IR wavelengths may arise. In our work, we perform indirect IR microscopy based on the quantum imaging technique. This method allows us to probe the sample with IR light, while the detection is shifted into the visible or near-IR range. Thus, we demonstrate IR quantum imaging of the silicon chips at different magnifications, wherein a sample is probed at 1550 nm wavelength, but the detection is performed at 810 nm. We also analyze the possible measurement conditions of the technique and estimate the time needed to perform quality control checks of samples. Infrared (IR) metrology plays a significant role in areas ranging from biological imaging1-5 to materials characterisation6 and microelectronics7. For example, the semiconductor industry utilizes IR radiation for non-destructive microscopy of silicon-based devices. However, IR optical components, such as synchrotrons8, quantum cascade lasers, and HgCdTe (also known as MCT) photodetectors, are expensive. Some of these components, in order to maximize the signal-to-noise ratio, may require cryogenic cooling, which further increases costs over the operational lifetime.
    [Show full text]
  • OBS Transforming CX
    Winning the Global Consumer Electronics Industry A checklist for global, consistent and secure CX "The Age of Experience will be defined by personalized technology that meets your needs… the devices you use will understand you as an individual, blurring the boundaries between the digital and physical worlds." HS KIM President and CEO of Consumer Electronics Division Samsung Electronics Smartphones, smart TVs, laptops and tablets, The global electrical appliances, wearable devices – the US$1 trillion consumer electronics industry permeates every aspect consumer of our lives. It is a proof of the incredible pace of Global consumer electronics innovation around us. electronics market The intense competition especially from many of the size in 2019 industry industry’s Asian leaders such as Samsung, Huawei, Sony, Xiaomi and LG, renders differentiation around product and pricing difficult. COVID-19 has accelerated competition as consumer behaviours shift from purchasing and in-person browsing to their digital equivalents. Companies are looking to create unique personalized Key trends: experiences that optimize every stage of the customer journey across each interaction, be it in-store, or via a Increased demand in website, a mobile app, social media, smartphones, or the emerging markets e-mail, to deliver the right experiences at the right Growing dominance time. Done well, enriched customer experiences will enable businesses in the consumer electronics of Asian companies industry to build customer loyalty in driving Convergence of sustainable competitive advantage in the long-term. technologies, devices and industries ¹ Consumer Electronics Market Size, Global Market Insights Key trends shaping the future Localization drives conversions As consumer electronics giants such as Xiaomi, Huawei, and Samsung compete for market shares in new geographies, a nuanced approach is crucial for building a strong brand presence across diverse markets.
    [Show full text]
  • High-End EUV Photomask Repairs for Advanced Nodes
    High-end EUV Photomask Repairs for advanced nodes Dr. Michael Waldow Product Manager vZTech - Virtual SMS Tech Conference, 18.05.2021 Agenda 1 Introduction 2 High-end EUV photomask repairs 3 Summary Carl ZEISS SMT GmbH, Dr. Michael Waldow, Semiconductor Mask Solutions 18.05.2021 2 Agenda 1 Introduction 2 High-end EUV photomask repairs 3 Summary Carl ZEISS SMT GmbH, Dr. Michael Waldow, Semiconductor Mask Solutions 18.05.2021 3 Introduction EUV High-Volume manufacturing ramping up SAMSUNG newsroom C. C. Wei – TSMC - CEO & Vice Chairman* MAY 21, 2021 JULY 16, 2020 “…new production line in Pyeongtaek, Korea…will produce 14- ‚Next, let me talk about our N5 ramp up and N4 introduction. N5 is the foundry nanometer DRAM and 5-nanometer logic, …based on EUV...” industry's most advanced solution with best PPA. N5 is already in volume Anandtech.com - APRIL 02, 2021 production with good yield, while we continue to improve the “… South Korea authorities this week gave SK Hynix a green light to build We are seeing robust productivity and performance of the EUV tools. a new, 120 trillion won ($106.35 billion) fab complex…. using demand for N5 and expect a strong ramp of N5 in the second half of this year, driven by both 5G smartphones and HPC applications.‘ process technologies that rely on extreme ultraviolet lithography (EUV)…’ ▪ EUV is becoming more and more important and Intel: The Empire Strikes Back** MAY 21, 2021 amount of EUV lithographic layers is rising ‚while the outlook on EUV was still quite uncertain. Hence, Intel's initial 7nm ▪ First consumer products based on EUV seems to have used EUV quite conservatively, in relatively few layers.
    [Show full text]
  • The Evolving Electronics Industry Courting the Customer Through Insight and Innovation
    Smarter electronics Point of view The evolving electronics industry Courting the customer through insight and innovation Transistor by transistor, the electronics industry is literally changing the world. Consider this: today’s fastest computer can now achieve 17 quadril- lion calculations per second1, and by 2015 there will be more than seven billion mobile devices in the world consuming and generating massive amounts of data.2 Right now there are more than one billion transistors for each person on the planet.3 With innovations like these, it is no surprise that the electronics industry continues to be a leader in research and development investment across the world.4 However, despite an impressive track record of pioneering technology, today’s electronics industry is in a state of disruption. Product life-cycles are compressing, emphasizing the need to create innovative products and services faster and more cheaply than ever before. Competitive pressures are at an all-time high, with aggressive new entrants vying with a continuing need to contain operational costs. And though profit margins for some electronics segments remain relatively high, most are under heavy margin pressure. Together, these trends are driving electronics companies to find new growth opportunities. Many believe that the best way to do this—perhaps the only way to do it—is to transform their business models by getting closer to their customers. In fact, the 2012 IBM CEO study revealed that 86 percent of global electronics CEOs are implementing extensive changes in their organizations to deepen their understanding of individual customer needs, while enabling faster, more relevant responses to markets and individuals.5 CEOs realize that innovative products and services are only successful when they deliver on customer needs.
    [Show full text]
  • Global Semiconductor Industry | Accenture
    GLOBALITY AND COMPLEXITY of the Semiconductor Ecosystem The semiconductor industry is a truly global affair. Around the world, semiconductor chip designers use intellectual property (IP) licenses and design verification to provide designs to wafer fabricators, which use raw silicon, photomasks, and equipment to create chips for package manufacturing to assemble with printed circuit board (PCB) substrates for delivery to end customers. In fact, components for a chip could travel more than 25,000 miles by the time it finds its way into a television set, mobile phone, automobile, computer, or any of the millions of products that now rely on chips to operate (Figure 1). 2 | Globality and Complexity of the Semiconductor Ecosystem Figure 1: Components for a chip could travel more than 25,000 miles before completion IP Licenses Euipment Modules Package Raw Silicon Manufacturing PC Substrates Asembly Standard Products and Test components Wafer Fabrication Equipment Chip Design Design Verification Photomask Wafer Manufacturing Fabrication The Global Semiconductor Alliance (GSA) and Accenture have teamed up to conduct a joint study on the globality and complexity of the semiconductor ecosystem to explore the interdependencies and benefits of the cross-border partnerships required to produce semiconductors, as well as to illustrate what’s needed to keep this global ecosystem operating efficiently and profitably. Industry executives can use this study to inform their company strategies, as well as to educate non-semiconductor partners, including policy makers, on the nature of their business to promote a better understanding of the important role semiconductors play in everyday life and on the globe-spanning ecosystem that’s needed to produce them.
    [Show full text]
  • Fundamentals of Nanoelectronics (Fone)
    ESF EUROCORES Programme Fundamentals of NanoElectronics (FoNE) Highlights European Science Foundation (ESF) Physical and Engineering Sciences (PESC) The European Science Foundation (ESF) is an The Physical and Engineering Sciences are key drivers independent, non-governmental organisation, the for research and innovation, providing fundamental members of which are 78 national funding agencies, insights and creating new applications for mankind. research performing agencies, academies and learned The goal of the ESF Standing Committee for Physical societies from 30 countries. and Engineering Sciences (PESC) is to become the The strength of ESF lies in its influential membership pan-European platform for innovative research and and in its ability to bring together the different domains competitive new ideas while addressing societal of European science in order to meet the challenges of issues in a more effective and sustainable manner. the future. The Committee is a unique cross-disciplinary Since its establishment in 1974, ESF, which has its group, with networking activities comprising a good headquarters in Strasbourg with offices in Brussels mix of experimental and theoretical approaches. and Ostend, has assembled a host of organisations It distinguishes itself by focusing on fundamental that span all disciplines of science, to create a research and engineering. PESC covers the following common platform for cross-border cooperation in broad spectrum of fields: chemistry, mathematics, Europe. informatics and the computer sciences, physics, ESF is dedicated to promoting collaboration in fundamental engineering sciences and materials scientific research, funding of research and science sciences. policy across Europe. Through its activities and instruments ESF has made major contributions to science in a global context.
    [Show full text]
  • Going Vertical: a New Integration Era in the Semiconductor Industry Table of Contents
    Going vertical: A new integration era in the semiconductor industry Table of contents 01 Executive overview Integration in the 02 semiconductor industry Strategic options for 03 semiconductor companies Moving forward: what semiconductor 04 companies must consider today Going vertical: A new integration era in the semiconductor industry 2 Executive overview Like many industries, the semiconductor industry is not immune to waves of diversification and consolidation through inorganic and organic growth. While inflection points with large-scale systemic changes in the value chain are relatively rare, our perspective is that there is a systemic change currently trending in the industry. Since the inception of the industry, semiconductor companies have recognized the value of technology. Accordingly, the market has rewarded semiconductor companies for specializing in distinct parts of the value chain by developing technological advantages by investing in R&D and by scaling technology through horizontal integration. This way of working transformed an industry that was initially vertically integrated (semiconductor design, semiconductor manufacturing, and system integration) into an ecosystem focused on specific areas of design, manufacturing, and/or systems. In the past five years, business value in some segments has moved from underlying technology to specific use cases to better monetize end-customer data and experience. • 5G, automotive, AI, cloud, system integration and hardware-software integration System integrators and software and cloud platform companies are no longer just important customers for the semiconductor industry—they are directly expanding into multiple upstream areas. • Taking advantage of silicon and system design • Control more of the technology stack • Optimize system performance • Improve the customer experience This vertical integration trend is distinctly different from the vertical integration which occurred at the inception of the semiconductor and integrated device manufacturing industry more than 50 years ago.
    [Show full text]
  • (NASDAQ: ASML) Recommendation: Long I Current Stock Price
    ASML Holding NV (NASDAQ: ASML) Recommendation: Long I Current stock price: $651 I 5-year target price: $245 / $1,039 / $1,371 (Bear / Base / Bull) All financial and valuation information is presented in Euro Shradha Mani I sm4843 I [email protected] I April 22, 2021 ASML is a market leader (almost a monopoly) in lithography equipment, an advanced, precision technology which is essential to the manufacture of semiconductor chips. In turn, semiconductors power our phones, computers, automobiles and are basically the foundation of technology as we know it today. Thus, the semiconductor industry (customers of ASML) is poised for strong secular growth. “We provide our customers with everything they need – hardware, software and services – to mass produce patterns on silicon, allowing them to increase the value and lower the cost of a chip.” ASML’s essential position in the semiconductor ecosystem, and its product lines are described below1: . Lithography systems that print the tiny features that form the basis of a microchip with precision. These systems can be new or refurbished. o Extreme Ultraviolet Lithography Systems o Deep Ultraviolet Lithography Systems . Metrology and Inspection Systems measure the quality of patterns on chips and help locate and analyze chip defects . Computational Lithography algorithms optimize the manufacturing process to minimize defects . Customer Support and Service What does ASML do i.e. how does it earn revenue and who are the company’s customers ? Revenue disaggregation 2018 2019 2020 Extreme UV lithography
    [Show full text]
  • Chapter1: Semiconductor Diode
    Chapter1: Semiconductor Diode. Electronics I Discussion Eng.Abdo Salah Theoretical Background: • The semiconductor diode is formed by doping P-type impurity in one side and N-type of impurity in another side of the semiconductor crystal forming a p-n junction as shown in the following figure. At the junction initially free charge carriers from both side recombine forming negatively c harged ions in P side of junction(an atom in P -side accept electron and be comes negatively c harged ion) and po sitive ly c harged ion on n side (an atom in n-side accepts hole i.e. donates electron and becomes positively charged ion)region. This region deplete of any type of free charge carrier is called as depletion region. Further recombination of free carrier on both side is prevented because of the depletion voltage generated due to charge carriers kept at distance by depletion (acts as a sort of insulation) layer as shown dotted in the above figure. Working principle: When voltage is not app lied acros s the diode , de pletion region for ms as shown in the above figure. When the voltage is applied be tween the two terminals of the diode (anode and cathode) two possibilities arises depending o n polarity of DC supply. [1] Forward-Bias Condition: When the +Ve terminal of the battery is connected to P-type material & -Ve terminal to N-type terminal as shown in the circuit diagram, the diode is said to be forward biased. The application of forward bias voltage will force electrons in N-type and holes in P -type material to recombine with the ions near boundary and to flow crossing junction.
    [Show full text]
  • Product Engineer Program Apply Now the Product/Test Engineers at Texas Instruments Are Powered by a Passion for Continual Improvement
    Product Engineer Program Apply Now The Product/Test Engineers at Texas Instruments are powered by a passion for continual improvement. Our solutions make a real difference, and yours will, too. We make the semiconductor product design process easier and faster, which helps our customers succeed in today's fast-paced marketplace. Opportunities are available in North America and Asia. About the job In this role, you will work on the development and implementation of strategies that achieve profitability targets on assigned TI product lines through a variety of new product development, cost reduction, capacity expansion and yield enhancement projects. You will serve as the primary point of contact for all operational aspects related to your assigned product portfolio, resolve customer quality and application issues, and facilitate cross- functional teams for problem solving. You will also take a leadership role to establish relationships with key contacts in TI wafer fabrication and assembly manufacturing sites to ensure strong communication and effective problem solving. About the program In this empowering, two-year rotation program, you will be on an accelerated development track that’s focused on the product development cycle. As a program participant, you will rotate through four six-month assignments centered on improving product efficiency and quality, which contributes directly to the company’s bottom line. Here, you will have the opportunity to establish solid customer relationships and make deep and meaningful connections. You will also have the chance to be mentored and develop strong collaboration skills through cross-functional group interaction and international travel. Program participants begin with a two-week orientation.
    [Show full text]
  • A Report on Semiconductor Foundry Access by US Academics (Discussion Held at a Meeting Virtually Held at the National Science Foundation on Dec 16, 2020)
    A Report on Semiconductor Foundry Access by US Academics (Discussion held at a meeting virtually held at the National Science Foundation on Dec 16, 2020) Organizers: Sankar Basu1, Erik Brunvand2, Subhasish Mitra3, H.-S. Philip Wong4 Scribes: Sayeef Salahuddin5, Shimeng Yu6 1 NSF, [email protected] 2 NSF, [email protected] 3 Stanford University, [email protected] 4 Stanford University, [email protected] 5 University of California, Berkeley, [email protected] 6 Georgia Institute of Technology, [email protected] 2 Executive Summary Semiconductor technology and microelectronics7 is a foundational technology that without its continued advancement, the promises of artificial intelligence (AI), 5G/6G communication, and quantum computing will never be realized in practice. Our nation’s economic competitiveness, technology leadership, and national security, depend on our staying at the forefront of microelectronics. We must accelerate the pace of innovation and broaden the pool of researchers who possess research capability in circuit design and device technologies, and provide a pathway to translate these innovations to industry. This meeting has brought to the fore the urgent need for access to semiconductor foundry and design ecosystem to achieve these goals. Microelectronics is a field that requires sustained and rapid innovations, especially as the historical rate of progress following a predictable path, is no longer guaranteed as it had been in the past. Yet, there are many plausible paths to move forward, and the potential for further advances is immense. There is a future in system integration of heterogeneous technologies that requires end-to-end co-design and innovation. Isolated push along silos, such as miniaturization of components, will be inadequate.
    [Show full text]
  • Engineered Carbon Nanotubes and Graphene for Nanoelectronics And
    Engineered Carbon Nanotubes and Graphene for Nanoelectronics and Nanomechanics E. H. Yang Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ, USA, 07030 ABSTRACT We are exploring nanoelectronic engineering areas based on low dimensional materials, including carbon nanotubes and graphene. Our primary research focus is investigating carbon nanotube and graphene architectures for field emission applications, energy harvesting and sensing. In a second effort, we are developing a high-throughput desktop nanolithography process. Lastly, we are studying nanomechanical actuators and associated nanoscale measurement techniques for re-configurable arrayed nanostructures with applications in antennas, remote detectors, and biomedical nanorobots. The devices we fabricate, assemble, manipulate, and characterize potentially have a wide range of applications including those that emerge as sensors, detectors, system-on-a-chip, system-in-a-package, programmable logic controls, energy storage systems, and all-electronic systems. INTRODUCTION A key attribute of modern warfare is the use of advanced electronics and information technologies. The ability to process, analyze, distribute and act upon information from sensors and other data at very high- speeds has given the US military unparalleled technological superiority and agility in the battlefield. While recent advances in materials and processing methods have led to the development of faster processors and high-speed devices, it is anticipated that future technological breakthroughs in these areas will increasingly be driven by advances in nanoelectronics. A vital enabler in generating significant improvements in nanoelectronics is graphene, a recently discovered nanoelectronic material. The outstanding electrical properties of both carbon nanotubes (CNTs) [1] and graphene [2] make them exceptional candidates for the development of novel electronic devices.
    [Show full text]