Pub Iec 2014-04

Total Page:16

File Type:pdf, Size:1020Kb

Pub Iec 2014-04 Vydané medzinárodné normy a iné publikácie IEC za obdobie od 1. 4. 2014 do 30. 4. 2014 IEC TC/SC Dokument Dátum vydania Názov ACOS IEC Guide 110 2014-04-10 Home control systems - Guidelines relating to safety ISO/IEC JTC 1/SC 6 ISO/IEC/IEEE 8802-3 2014-04-08 Standard for Ethernet TC 1 IEC 60050-651 2014-04-04 International Electrotechnical Vocabulary - Part 651: Live working SC 18A IEC 60092-360 2014-04-24 Electrical installations in ships - Part 360: Insulating and sheathing materials for shipboard and offshore units, power, control, instrumentation and telecommunication cables TC 61 IEC 60335-1 2014-04-23 Corrigendum 1 - Household and similar electrical appliances - Safety - Part 1: General requirements SC 62D IEC 60601-2-36 2014-04-10 Medical electrical equipment - Part 2-36: Particular requirements for the basic safety and essential performance of equipment for extracorporeally induced lithotripsy TC 100 IEC 60958-1 2014-04-29 Digital audio interface - Part 1: General TC 100 IEC 60958-1-am1 2014-04-29 Amendment 1 - Digital audio interface - Part 1: General SC 86B IEC 61300-3-21 2014-04-24 Fibre optic interconnecting devices and passive components - Basic test and measurement procedures - Part 3-21: Examinations and measurements - Switching time TC 9 IEC/TR 61375-2-7 2014-04-10 Electronic railway equipment - Train communication network (TCN) - Part 2-7: Wireless Train Backbone (WLTB) TC 88 IEC 61400-SER 2014-04-08 Wind turbine generator systems - ALL PARTS TC 88 IEC 61400-1 2014-04-15 Wind turbines - Part 1: Design requirements TC 88 IEC 61400-23 2014-04-08 Wind turbines - Part 23: Full-scale structural testing of rotor blades TC 96 IEC 61558-2-10 2014-04-10 Safety of transformers, reactors, power supply units and combinations thereof - Part 2-10: Particular requirements and tests for separating transformers with high insulation level and separating transformers with output voltages exceeding 1 000 V SC 86B IEC 61753-081-2 2014-04-24 Fibre optic interconnecting devices and passive components - Performance standard - Part 081-2: Non- connectorized single-mode fibre optic middle-scale 1 x N DWDM devices for category C - Controlled environments TC 100 IEC 61966-12-2 2014-04-24 Multimedia systems and equipment - Colour measurement and management - Part 12-2: Simple metadata format for identification of colour gamut TC 9 IEC 61992-1 2014-04-29 Railway applications - Fixed installations - DC switchgear - Part 1: General TC 9 IEC 61992-1-am1 2014-04-29 Amendment 1 - Railway applications - Fixed installations - DC switchgear - Part 1: General TC 9 IEC 61992-2 2014-04-29 Railway applications - Fixed installations - DC switchgear - Part 2: DC circuit-breakers TC 9 IEC 61992-2-am1 2014-04-29 Amendment 1 - Railway applications - Fixed installations - DC switchgear - Part 2: DC circuit-breakers TC 9 IEC 61992-6 2014-04-29 Railway applications - Fixed installations - DC switchgear - Part 6: DC switchgear assemblies TC 9 IEC 61992-6-am1 2014-04-29 Amendment 1 - Railway applications - Fixed installations - DC switchgear - Part 6: DC switchgear assemblies SC 34A IEC 62035 2014-04-10 Discharge lamps (excluding fluorescent lamps) - Safety specifications SC 86C IEC 62149-8 2014-04-24 Fibre optic active components and devices - Performance standards - Part 8: Seeded reflective semiconductor optical amplifier devices Strana 1 z 3 SC 86C IEC 62149-9 2014-04-24 Fibre optic active components and devices - Performance standards - Part 9: Seeded reflective semiconductor optical amplifier transceivers SC 17A IEC 62271-SER 2014-04-24 High-voltage switchgear and controlgear - ALL PARTS SC 17C IEC 62271-211 2014-04-24 High-voltage switchgear and controlgear - Part 211: Direct connection between power transformers and gas-insulated metal-enclosed switchgear for rated voltages above 52 kV TC 112 IEC/TS 62332-2 2014-04-24 Electrical insulation systems (EIS) - Thermal evaluation of combined liquid and solid components - Part 2: Simplified test TC 110 IEC 62341-1-2 2014-04-24 Organic light emitting diode (OLED) displays - Part 1-2: Terminology and letter symbols SC 34C IEC 62442-2 2014-04-24 Energy performance of lamp controlgear - Part 2: Controlgear for high intensity discharge lamps (excluding fluorescent lamps) - Method of measurement to determine the efficiency of the controlgear SC 34C IEC 62442-3 2014-04-24 Energy performance of lamp controlgear - Part 3: Controlgear for halogen lamps and LED modules - Method of measurement to determine the efficiency of the controlgear TC 65 IEC 62443-3-3 2014-04-24 Corrigendum 1 - Industrial communication networks - Network and system security - Part 3-3: System security requirements and security levels TC 87 IEC/TS 62556 2014-04-24 Ultrasonics - Field characterization - Specification and measurement of field parameters for high intensity therapeutic ultrasound (HITU) transducers and systems SC 65C IEC/TS 62657-1 2014-04-24 Industrial communication networks - Wireless communication networks - Part 1: Wireless communication requirements and spectrum considerations TC 79 IEC 62676-4 2014-04-29 Video surveillance systems for use in security applications - Part 4: Application guidelines TC 110 IEC 62679-3-1 2014-04-24 Electronic paper displays - Part 3-1: Optical measuring methods TC 9 IEC/TS 62773 2014-04-10 Railway applications - Procedure to determine the performance requirements for radio systems applied to radio-based train control systems TC 79 IEC 62851-1 2014-04-10 Alarm and electronic security systems - Social alarm systems - Part 1: System requirements TC 79 IEC 62851-2 2014-04-10 Alarm and electronic security systems - Social alarm systems - Part 2: Trigger devices TC 79 IEC 62851-3 2014-04-10 Alarm and electronic security systems - Social alarm systems - Part 3: Local unit and controller TC 79 IEC 62851-5 2014-04-10 Alarm and electronic security systems - Social alarm systems - Part 5: Interconnections and communications ISO/IEC JTC 1/SC 29 ISO/IEC 12818-1-am3 2014-04-10 Amendment 3 - Information technology -- Generic coding of moving pictures and associated audio information -- Part 1: Systems - Transport of HEVC video over MPEG-2 systems ISO/IEC JTC 1/SC 29 ISO/IEC 13818-1-am2 2014-04-10 Amendment 2 - Information technology -- Generic coding of moving pictures and associated audio information -- Part 1: Systems - Signalling of transport files, signalling MVC view association to eye and MIME type registration ISO/IEC JTC 1/SC 29 ISO/IEC 13818-1-am4 2014-04-10 Amendment 4 - Information technology -- Generic coding of moving pictures and associated audio information -- Part 1: Systems - Support for event signalling in Transport Stream in MPEG-2 systems ISO/IEC JTC 1/SC 17 ISO/IEC 14443-3-am3 2014-04-14 Amendment 3 - Identification cards - Contactless integrated circuit cards - Proximity cards - Part 3: Initialization and anticollision - Alternating between PICC and PCD functionalities, and PICC supporting both type ISO/IEC JTC 1/SC 29 ISO/IEC 14496-30 2014-04-11 Information technology -- Coding of audio-visual objects -- Part 30: Timed text and other visual overlays in ISO base media file format ISO/IEC JTC 1/SC 25 ISO/IEC 14776-251 2014-04-15 Information technology - Small computer system interface (SCSI) - Part 251: USB Attached SCSI (UAS) Strana 2 z 3 ISO/CASCO ISO/IEC/TS 17021-5 2014-04-01 Conformity assessment -- Requirements for bodies providing audit and certification of management systems -- Part 5: Competence requirements for auditing and certification of asset management systems ISO/IEC JTC 1 ISO/IEC 19508 2014-04-23 Information technology -- Object Management Group Meta Object Facility (MOF) Core ISO/IEC JTC 1 ISO/IEC 19509 2014-04-23 Information technology -- Object Management Group XML Metadata Interchange (XMI) ISO/IEC JTC 1/SC 29 ISO/IEC 23002-4 2014-04-09 Information technology -- MPEG video technologies -- Part 4: Video tool library ISO/IEC JTC 1/SC 25 ISO/IEC 24764 2014-04-30 Information technology - Generic cabling systems for data centres ISO/IEC JTC 1/SC 25 ISO/IEC 24764-am1 2014-04-30 Amendment 1 - Information technology - Generic cabling systems for data centres ISO/IEC JTC 1/SC 37 ISO/IEC 29109-5 2014-04-14 Information technology - Conformance testing methodology for biometric data interchange formats defined in ISO/IEC 19794 - Part 5: Face image data Strana 3 z 3.
Recommended publications
  • Page 1 of 37 Current Standards Activities 5/4/2014 Http
    Current Standards Activities Page 1 of 37 Browse By Group: View All New Publications | Supplements | Amendments | Errata | Endorsements | Reaffirmations | Withdrawals | Formal Interpretations | Informs & Certification Notices | Previous Reports Last updated: May 2, 2014 New Publications This section lists new standards, new editions (including adoptions), and special publications that have been recently published. Clicking on "View Detail" will display the scope of the document and other details available on CSA’s Online store. Program Standard Title Date Posted Scope Electrical / CAN/CSA-C22.2 NO. Household and similar electrical appliances - Safety - Part 2-45: 4/17/2014 View Detail Electronics 60335-2-45:14 Particular requirements for portable heating tools and similar appliances (Adopted IEC 60335-2-45:2002, edition 3:2002, consolidated with amendment 1:2008 and amendment 2:2011, with Canadian deviations) Appareils électrodomestiques et analogues - Sécurité - Partie 2-45 : Règles particulières pour les outils chauffants mobiles et appareils analogues (norme CEI 60335-2-45:2002 adoptée, edition 3:2002, consolidée par l'amendement 1:2008 et l'amendement 2:2011, avec exigences propres au Canada) http://standardsactivities.csa.ca/standardsactivities/recent_infoupdate.asp 5/4/2014 Current Standards Activities Page 2 of 37 Gas Equipment ANSI Z21.41-2014/CSA Quick disconnect devices for use with gas fuel appliances 4/10/2014 View Detail 6.9-2014 Gas Equipment ANSI Z21.74-2014 Portable refrigerators for use with HD-5 propane gas 4/10/2014 View Detail Electrical / CAN/CSA-C22.2 NO. Low-voltage switchgear and controlgear - Part 4-1: Contactors and 4/10/2014 View Detail Electronics 60947-4-1-14 motor-starters - Electromechanical contactors and motor-starters (Bi-national standard, with UL 60947-1) Electrical / CAN/CSA-C22.2 NO.
    [Show full text]
  • Efficient Probabilistic Analysis of Offshore Wind Turbines Based On
    Efficient probabilistic analysis of offshore wind turbines based on time-domain simulations Von der Fakultät für Bauingenieurwesen und Geodäsie der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades Doktor-Ingenieur - Dr.-Ing. - genehmigte Dissertation von Clemens Janek Hübler M. Sc. 2019 Hauptreferent: Prof. Dr.-Ing. habil. Raimund Rolfes, Leibniz Universität Hannover Korreferent: Prof. John Dalsgaard Sørensen, M.Sc., Lic.techn., B.Com. Aalborg University Tag der mündlichen Prüfung: 11. Januar 2019 Abstract Offshore wind energy plays an important role in the successful implementation of the energy transition. However, without subsidies, it is not yet sufficiently competitive compared to other renewables or conventional fossil fuels. This is why offshore wind turbines have to be structurally optimised with regard to economic efficiency. One possibility to significantly increase economic efficiency is to improve the reliability or at least to assess present reliability levels precisely. For an accurate reliability assessment during the design phase, probabilistic analyses based on time-domain simulations have to be conducted. In this thesis, a methodol- ogy for a comprehensive probabilistic design of offshore wind turbines with special focus on their substructures is developed and applied. All investigations are based on time-domain simulations. This leads to more accurate results compared to semi-analytical approaches that are commonly used for probabilistic modelling at the expense of higher computing times. In contrast to previous probabilistic analyses, considering only particular aspects of the probabilistic design, this work defines a comprehensive analysis that can be split up into the following seven aspects: deterministic load model, resistance model (failure modes), uncer- tainty of inputs, design of experiments, sensitivity analysis, long-term extrapolation/lifetime distribution, and economic effects.
    [Show full text]
  • Assessment of Offshore Wind System Design, Safety, and Operation
    Assessment of Offshore Wind System Design, Safety, and Operation Standards Senu Sirnivas and Walt Musial National Renewable Energy Laboratory Bruce Bailey and Matthew Filippelli AWS Truepower LLC NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-5000-60573 January 2014 Contract No. DE-AC36-08GO28308 Assessment of Offshore Wind System Design, Safety, and Operation Standards Senu Sirnivas and Walt Musial National Renewable Energy Laboratory Bruce Bailey and Matthew Filippelli AWS Truepower LLC Prepared under Task No. WE11.5057 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-5000-60573 Golden, CO 80401 January 2014 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Adobe Reader
    Turinys AKTUALIJOS .................................................................................................... 5 SEMINARAS MAÞOMS IR VIDUTINËMS ÁMONËMS „DALYVAVIMAS STANDARTIZACIJOJE IR STANDARTØ TAIKYMAS – MVÁ PRIVALUMAI“ ........... 5 RENGIAMAS LST EN ISO 5667-3 VANDENS KOKYBË. MËGINIØ ËMIMAS. 3 DALIS. VANDENS MËGINIØ KONSERVAVIMAS IR APDOROJIMAS (ISO 5667-3:2012) LIETUVIØ KALBA .................................................................. 5 SUKURTA PAGRINDINIØ MAÐINØ SRITIES TERMINØ DUOMENØ BAZË, PALENGVINANTI STANDARTØ RENGIMÀ NACIONALINËMIS KALBOMIS ......... 6 ISO SEMINARAS APIE ENERGIJOS VADYBOS STANDARTÀ ISO 50001, JO TAIKYMO GALIMYBES IR NAUDÀ VYKO VILNIUJE ...................................... 6 STANDARTIZACIJA .......................................................................................... 9 INFORMACIJA APIE VIEÐAJAI APKLAUSAI TEIKIAMUS EUROPOS IR LIETUVOS STANDARTØ BEI KITØ LEIDINIØ PROJEKTUS ................................ 9 IÐLEISTI LIETUVOS STANDARTAI IR KITI LEIDINIAI ........................................... 9 NETEKÆ GALIOS LIETUVOS STANDARTAI IR KITI LEIDINIAI .............................. 16 NETEKSIANTIS GALIOS LIETUVOS STANDARTAS ............................................. 21 SIÛLOMAS SKELBTI NETEKSIANÈIU GALIOS ORIGINALUSIS LIETUVOS STANDARTAS ................................................................................... 21 TARPTAUTINIØ IR EUROPOS ÁSTAIGØ BEI ORGANIZACIJØ STANDARTAI IR KITI LEIDINIAI, KURIUOS DEPARTAMENTAS GAVO KOVO MËNESÁ .................. 22 TARPTAUTINËS STANDARTIZACIJOS
    [Show full text]
  • I.ICT-2011-285135 FINSENY D1.11 Version 1.0 Security Elements for the FINSENY Functional Architecture
    Ref. Ares(2014)490312 - 25/02/2014 FINSENY D1.11 , Version 1.0 I.ICT-2011-285135 FINSENY D1.11 version 1.0 Security Elements for the FINSENY Functional Architecture Contractual Date of Delivery to the CEC: March 30 th , 2013 Actual Date of Delivery to the CEC: March 30 th , 2013 Author(s): Lionel Besson, Steffen Fries, Andreas Furch, Henryka Jormakka, Fabienne Waidelich, Maria M artin-De-Vidales-Ramirez Participant(s): Siemens AG, Thales, VTT, Atos Research & Innovation Workpackage: WP1, Task 1.6 Security Estimated person months: (resources spent on the deliverable) Security: PU Nature: R Version: 1.0 Total number of pages: 134 Abstract: Deliverable D1.11 presents all FINSENY security elements, especially including the energy domain specific security elements needed for the FINSENY scenarios. These are described as enablers, constraints, general elements countermeasures, or controls. Scenario specific security elements needed for FINSENY are also analyzed. It represents a direct continuation of deliverable D1.10 [181] and therefore fully includes its structure and content. Keyword list: Threat and risk analysis, security, risk assessment, interfaces, security requirements, scenario, use case, system analysis, authentication, authorization, privacy, confidentiality, trust domain, availability, reliability, functional architecture, security enablers, security standards, security elements, FINSENY, FI- WARE Disclaimer: Page 1 (134) FINSENY D1.11 , Version 1.0 Not applicable. Page 2 (134) FINSENY D1.11 , Version 1.0 Executive Summary D1.11, titled “Security Elements for the FINSENY Functional Architecture” is a direct continuation of deliverable D1.10 [181] and therefore fully includes the structure and contents of it. D1.11 is thus as well based upon a threat and risk analysis which led to the definition of a set of security requirements that can be applied to all scenario work packages and a scenario specific security requirement.
    [Show full text]
  • Twincat 3 Wind Framework for Wind Turbine Automation 1 Framework and 10 Years of Expertise Through 40,000 Installations
    cover PC Control | Wind Special 2015 PC Control | Wind Special 2015 cover TwinCAT 3 Wind Framework for wind turbine automation 1 Framework and 10 years of expertise through 40,000 installations The new TwinCAT 3 Wind Framework will enable manufacturers of wind turbines to program their systems quickly and easily on their own. All functions are integrated into one universal software package: from event management to database connectivity, and even basic func- ttitionsonns susuchch aass sststateate macmachinehine anandd hyhydraulics.draulics. A preprefabricatedf application template considerably sisimplifiesmmplifies tthehhe pprogrammingrogramming pprocess,rocess, enablienablingng ddevelopers to concentrate on the essential sysystemstem ffunctions.unctions. The resuresult:lt: efefficientficient enengineering,gineering shorter time-to-market, and the benefits oof IndIndustryusttry 4.4.00 foforr ththee wind indindustry.ustry. © AREVA Wind/Jan Oelker cover PC Control | Wind Special 2015 Cloud Database TwinCAT Transport Layer – ADS Proxy Database TcCOM TcCOM Status Parameter Command TcCOM TcCOM TcCOM Statistics Capture User Framework (Generic) Framework TcCOM TcCOM TcCOM TwinCAT 3 Wind Library PLC Supervisory Operational Simulation TcCOM Control Control Pitch Rotor Generator Converter Yaw Template (Specifi c) Fieldbus Application templates and encapsulated Comprehensive functionalities are implemented in encapsulated TwinCAT mod- ules, which are then integrated into the TwinCAT 3 architecture. Efficient soft- modules enable modular software ware development is ensured through a modular architecture in the application architecture with high functionality template, as well as through proven and directly applicable TwinCAT modules and functions. The flexible configuration makes adaptation to user-specific application requirements very straightforward. System diagnostic functionality Beckhoff has offered advanced wind industry solutions for over 16 years.
    [Show full text]
  • Communication Network Standards for Smart Grid Infrastructures
    Article Communication Network Standards for Smart Grid Infrastructures Konstantinos Demertzis 1,2,* , Konstantinos Tsiknas 3, Dimitrios Taketzis 4 , Dimitrios N. Skoutas 5 , Charalabos Skianis 5, Lazaros Iliadis 2 and Kyriakos E. Zoiros 3 1 Department of Physics, Faculty of Sciences, Kavala Campus, International Hellenic University, 65404 St. Loukas, Greece 2 Faculty of Mathematics Programming and General Courses, School of Civil Engineering, Democritus University of Thrace, Kimmeria, 67100 Xanthi, Greece; [email protected] 3 Department of Electrical and Computer Engineering, Democritus University of Thrace, Vas. Sofias 12, 67100 Xanthi, Greece; [email protected] (K.T.); [email protected] (K.E.Z.) 4 Hellenic National Defense General Staff, Stratopedo Papagou, Mesogeion 227-231, 15561 Athens, Greece; [email protected] 5 Department of Information and Communication Systems Engineering, University of the Aegean, Samos, 83200 Karlovassi, Greece; [email protected] (D.N.S.); [email protected] (C.S.) * Correspondence: [email protected] Abstract: Upgrading the existing energy infrastructure to a smart grid necessarily goes through the provision of integrated technological solutions that ensure the interoperability of business processes and reduce the risk of devaluation of systems already in use. Considering the heterogeneity of the current infrastructures, and in order to keep pace with the dynamics of their operating environment, we should aim to the reduction of their architectural complexity and the addition of new and more efficient technologies and procedures. Furthermore, the integrated management of the Citation: Demertzis, K.; Tsiknas, K.; overall ecosystem requires a collaborative integration strategy which should ensure the end-to-end Taketzis, D.; Skoutas, D.N.; Skianis, interconnection under specific quality standards together with the establishment of strict security C.; Iliadis, L.; Zoiros, K.E.
    [Show full text]
  • Communication Network Architectures for Smart-Wind Power Farms
    Energies 2014, 7, 3900-3921; doi:10.3390/en7063900 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Article Communication Network Architectures for Smart-Wind Power Farms Mohamed A. Ahmed 1 and Young-Chon Kim 2,* 1 Department of Computer Engineering, Chonbuk National University, Jeonju 561-756, Korea; E-Mail: [email protected] 2 Smart Grid Research Center, Chonbuk National University, Jeonju 561-756, Korea * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +82-63-270-2413; Fax: +82-63-270-2394. Received: 11 February 2014; in revised form: 28 May 2014 / Accepted: 9 June 2014 / Published: 23 June 2014 Abstract: Developments in the wind power industry have enabled a new generation of wind turbines with longer blades, taller towers, higher efficiency, and lower maintenance costs due to the maturity of related technologies. Nevertheless, wind turbines are still blind machines because the control center is responsible for managing and controlling individual wind turbines that are turned on or off according to demand for electricity. In this paper, we propose a communication network architecture for smart-wind power farms (Smart-WPFs). The proposed architecture is designed for wind turbines to communicate directly and share sensing data in order to maximize power generation, WPF availability, and turbine efficiency. We also designed a sensor data frame structure to carry sensing data from different wind turbine parts such as the rotor, transformer, nacelle, etc. The data frame includes a logical node ID (LNID), sensor node ID (SNID), sensor type (ST), and sensor data based on the International Electrotechnical Commission (IEC) 61400-25 standard.
    [Show full text]
  • HZN Oglasnik Za Normativne Dokumente 3
    Hrvatski zavod za norme Oglasnik za normativne dokumente 3/2013 lipanj, 2013. Oglasnik za normativne dokumente Hrvatskog zavoda za norme sadrži popise hrvatskih norma, nacrta hrvatskih norma, prijedloga za prihvaćanje stranih norma u izvorniku, povučene hrvatske norme, povučene nacrte hrvatskih norma te ispravke, rezultate europske i međunarodne normizacije razvrstane po predmetnom ustroju i obavijesti HZN-a. Tko u popisima normativnih dokumenata koji su objavljeni u ovom Oglasniku otkrije koju grešku, koja može voditi do krive primjene, moli se da o tome neodložno obavijesti Hrvatski zavod za norme, kako bi se mogli otkloniti uočeni propusti. Izdavač: Sadržaj: 1 Rezultati hrvatske normizacije 2 Rezultati međunarodne i europske 1.1 Hrvatske norme ............................................................ A3 normizacije razvrstani po predmetnom ustroju .................................................A57 1.2 Nacrti hrvatskih norma ............................................... A28 1.3 Prijedlozi za prihvaćanje stranih norma u izvorniku ... A28 3 Popis radnih dokumenata Codex Alimentariusa 1.4 Povučene hrvatske norme.......................................... A38 1.5 Povučeni nacrti hrvatskih norma ....................................... 4 Obavijesti HZN-a 4.1 Cjenik hrvatskih norma 1.6 Ispravci hrvatskih norma .............................................A52 1.7 Naslovi objavljenih hrvatskih norma na hrvatskome jeziku........................................................A53 1.8 Drugi normativni dokumenti 1.9 Opća izdanja HZN-a A2 HZN
    [Show full text]
  • Final Report Standards for Smart Grids
    Final report of the CEN/CENELEC/ETSI Joint Working Group on Standards for Smart Grids Final report of the CEN/CENELEC/ETSI Joint Working Group on Standards for Smart Grids Status: approved by the CEN/CENELEC/ETSI Joint Presidents Group (JPG) on 4 May 2011, subject to the formal approval by 2011-06-05 by the individual ESOs Final report of the CEN/CENELEC/ETSI Joint Working Group on Standards for Smart Grids Foreword < to be added> Final report of the CEN/CENELEC/ETSI Joint Working Group on Standards for Smart Grids Contents 1. Executive summary .................................................................................................................................. 6 2. Introduction ............................................................................................................................................... 8 2.1 Basic idea of smart grids ..................................................................................................................... 9 2.2 Current political background in Europe ............................................................................................. 11 2.3 Aim of a European standardization report ........................................................................................ 11 2.4 Standardization activities around the world ...................................................................................... 13 3. Description of the overall concept ....................................................................................................... 17 3.1
    [Show full text]
  • Evaluation of OCPP and IEC 61850 for Smart Charging Electric Vehicles
    World Electric Vehicle Journal Vol. 6 - ISSN 2032-6653 - © 2013 WEVA Page Page 0863 EVS27 Barcelona, Spain, November 17 - 20, 2013 Evaluation of OCPP and IEC 61850 for Smart Charging Electric Vehicles Jens Schmutzler1, Claus Amtrup Andersen2, Christian Wietfeld1 1Dortmund University of Technology, Communication Networks Institute, Dortmund, Germany, EMails: [email protected], [email protected] 2EURISCO Research & Development, Odense, Denmark, EMails: [email protected] Abstract Interoperability of charging infrastructures is a key success factor for E-Mobility. Standards like ISO/IEC 15118 and IEC 61851-1 are developed to ensure base level interoperability of front-end com- munication and signaling processes for smart charging between electric vehicles and charge spots. With the Open Charge Point Protocol (OCPP) a forum of European industry members also moves towards a common back-end protocol for charge spots intending to reduce and secure overall investment costs. However, in the current form OCPP lacks means for enabling grid services based on smart charging. In this paper the authors provide a review of today’s state of the art in ISO/IEC standardization of the V2G Interface and furthermore detail how OCPP could leverage existing standardization efforts for grid automation from IEC 61850 in order to overcome its shortcomings. Keywords: Smart Charging, OCPP, IEC 61850, ISO/IEC 15118, Vehicle-to-Grid Communication Interface, V2G 1 Introduction beneficial to standardize back-end integration as- pects of charging infrastructures in the long term. With the introduction of EVs certain challenges According to the European Commission’s cli- arise for the power grid since it was deployed mate and energy targets set in 2007 as well as at times, when such additional loads were not following directives like 2009/28/EC [1] on the yet considered.
    [Show full text]
  • XEM Product Line Technical Differentiators
    XEM Product Line Technical Differentiators Introduction The Xelas Energy Management (XEM) 61850 product line architecture is built for seamless smart grid management: • Seamless between 61850 clients and servers • Seamless between existing non 61850 equipment/applications and 61850 compliant equipment/applications • Seamless between the Operations functions (OT) and the information functions (IT), between control centre (OT) and back office (IT) This is a substantial step ahead from basic “stack vendors”. With XEM product line building blocks, a wide range of business solutions can be realized. • Using XEM 61850 Client development and/or Server development it is easy to add, test, and verify IEC 61850 management capabilities to your equipment or applications. • Using XEM dynamic integration framework, the network management communication with equipment and applications using different protocols and legacy is made easy, changeable and manageable. Below we list the key technical advantages, the principles and their importance. We have sorted them, divided in IT features, OT features and generic architectural features. Leading Information Technology (IT) features • Fully modular and distributed architecture (using TCP- IP). • The various XEM components (client adapters, server adapters, database, integration adapters, and translators) communicate using TCP-IP. This enables easy distributed component implementation and ensures the re-use of functions and logic among the XEM components. The overall system is therefore completely extensible and scalable, and configured for carrier grade availability (99,99x %). • Fully customizable scripting environment o All functions are described using scripts, which can be easily developed and adapted (also with a runtime license). The scripts range from elementary operations functions, to full test suite scripts, user-case scripts, “standard” administrative actions scripts and report scripts.
    [Show full text]