Sewage Irrigation As Practiced in the Western States '
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Behaviour of Mine Tailings During Hydraulic Deposition by G
The behaviour of mine tailings during hydraulic deposition by G. E. BLlGHT*. Pr.Eng.. Ph.D.. D.Sc.(Eng.). F.S.A.I.C.E. and G. M. BENTELt. M.Sc.(Eng.). Grad. S.A.I.C.E. SYNOPSIS The environmentally acceptable disposal of fine-particled mining and industrial wastes by the formltion of hydraul- ic-fill slimes dams is becoming an increasingly important aspect of the total mining endeavour. Relatively little is known of the behaviour of waste slurries during deposition. This paper describes and analyses the following aspects of slurry behaviour: (i) the relationship between viscosity, shear strength, and water content, (ii) the slope assumed by a thickened slurry, (iii) particle-size sorting on a hydraulic-fill beach, (iv) gradients of hydraulic-fill beaches, and (v) internal erosion during the deposition of slurry. SAMEVATTING Die wegdoening van mynbou- en nywerheidsafval met bale fyn partikels deur die vorming van hidroulies gevulde slykdamme, wat vir die omgewing aanvaarbaar is, word 'n al hoe belangriker aspek van die totale mynboupoging. Dur is betreklik min bekend oor die gedrag van afvalflodders tydens afsetting. Hierdie referaat beskryf en ontleed die volgende aspekte van die gedrag van flodder: (i) die verhouding tussen viskositeit, skuifsterkte en waterinhoud, (ii) die helling wat 'n verdikte flodder inneem, (iii) partikelgroottesortering op 'n hidroulies gevulde strand, (iv) gradient van hidroulies gevulde strande, en (v) inwendige erosie tydens die afsetting van flodder. Introduction TABLE I SELECTED INFORMATION ON RATES OF PRODUCTION OF MINING The disposal of fine-grained mining and industrial WASTE wastes by the formation of hydraulic-fill tailings dams is becoming a design and construction activity of ever- Product mined Region producing Dry solid waste waste produced per year increasing scale and importance to the mining industry. -
Safe Use of Wastewater in Agriculture: Good Practice Examples
SAFE USE OF WASTEWATER IN AGRICULTURE: GOOD PRACTICE EXAMPLES Hiroshan Hettiarachchi Reza Ardakanian, Editors SAFE USE OF WASTEWATER IN AGRICULTURE: GOOD PRACTICE EXAMPLES Hiroshan Hettiarachchi Reza Ardakanian, Editors PREFACE Population growth, rapid urbanisation, more water intense consumption patterns and climate change are intensifying the pressure on freshwater resources. The increasing scarcity of water, combined with other factors such as energy and fertilizers, is driving millions of farmers and other entrepreneurs to make use of wastewater. Wastewater reuse is an excellent example that naturally explains the importance of integrated management of water, soil and waste, which we define as the Nexus While the information in this book are generally believed to be true and accurate at the approach. The process begins in the waste sector, but the selection of date of publication, the editors and the publisher cannot accept any legal responsibility for the correct management model can make it relevant and important to any errors or omissions that may be made. The publisher makes no warranty, expressed or the water and soil as well. Over 20 million hectares of land are currently implied, with respect to the material contained herein. known to be irrigated with wastewater. This is interesting, but the The opinions expressed in this book are those of the Case Authors. Their inclusion in this alarming fact is that a greater percentage of this practice is not based book does not imply endorsement by the United Nations University. on any scientific criterion that ensures the “safe use” of wastewater. In order to address the technical, institutional, and policy challenges of safe water reuse, developing countries and countries in transition need clear institutional arrangements and more skilled human resources, United Nations University Institute for Integrated with a sound understanding of the opportunities and potential risks of Management of Material Fluxes and of Resources wastewater use. -
Sanitary Engineering
Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru Course Title: SANITARY ENGINEERING Credits (L:T:P) : 4:0:0 Total Contact Hours: 52 Course Code: 15CE42T Type of Course: Lectures, Self Study & Credit :04 Core/ Elective: Core Student activities CIE- 25 Marks SEE- 100 Marks Prerequisites: Basic knowledge of environmental science, mathematics. Course Objectives: It aims at enabling the student to understand the urban and rural sanitation. 1. Understand the need of sewage treatment and disposal of a city/town. Course Outcomes: (CO’s) On successful completion of this course, the student will be able to CL Linked Teaching Hrs Course Outcome PO Explain the concept of waste, types of sewage, sewerage system and R/U/A 1,2,3,5,6,8 06 appurtenances. Estimate the quantity CO1 of sewage of a town/city. Analyse the Sewage samples using 1,2,3,4,5,6, standard test procedures and U/A 08 10 CO2 understand the sewerage systems Compute the quantity of storm water flow in different types of surface U/A 2,4,5,6,10 10 CO3 drains and appurtenances. Compare various methods of Sewage 2,3,5,6,7, treatment and sewage/sludge disposal U/A 14 9,,10 CO4 methods. Demonstrate the arrangement of U/A 2,4,5,6,8 06 CO5 sanitary fittings in a building. Identify the sources, effects and 1, preventive measures of air and noise U/A 08 2,5,6,7,10 CO6 pollution. CO7 Suggested activity R/U/A/C 1 to 10 * Total sessions 52 Legend- R; Remember U: Understand Ap: Application Ay: Analysis C:Creation E:Evaluvation *Related to Student activity beyond classroom hours. -
Resource Magazine September/October 2020
September/October 2020 Vol. 27 No. 5 www.asabe.org/Resource engineering and technology for a sustainable world September/October 2020 Magazine staff: Joseph C. Walker, Publisher, [email protected]; Melissa Miller, Managing Editor, [email protected]; Glenn Laing, Welcome to our eighth issue of EXPLORE! You might be getting ready to start a new chapter of Technical Editor, [email protected]; your life. Maybe you will soon be leaving home for college, choosing a major, making new Sandy Rutter, Consultants Listings, [email protected]; Darrin Drollinger, friends, searching for a career. Whatever path you take, it might all come together with agricul- Executive Director, [email protected]. tural technology and systems management (ASM). EXPLORE is a good place to start your search, Editorial Board: Chair Stephen Zahos, you might just find the road to your future success on these pages. University of Illinois; Secretary/Vice Chair Erin Webb, Oak Ridge National Laboratory; Past Chair Tony Grift, University of Illinois. If you aren’t familiar with an ag systems degree, read on! We think you will be impressed with the diverse and interesting possibilities—from hands-on internships and study abroad to jobs Board Members: Morgan Hayes, University of Kentucky; Deepak Kumar, University of Illinois; awaiting ag systems graduates. If you have decisions ahead, you may discover that you like Sushant Mehan, The Ohio State University; what ag systems has to offer. Gretchen Mosher, Iowa State University; Debabrata Sahoo, Clemson University; Leon Schumacher, University of Missouri; Brian 4 Your Ag Systems Questions Answered Steward, Iowa State University; Shane Williams, Kuhn North America. -
Water Supply and Sanitary Engineering Lecture Note
Water Supply And Sanitary Engineering Lecture Note Wilton decollated stepwise as ametabolic Leigh tantalizes her choriocarcinoma sparging villainously. Elliot is eastwardly: she generalises mutinously and yacht her town. Northwards consumptive, Aaron replaces Telugu and salivate connexions. They started firing staff that were incompetent or corrupt; and they started rewarding staff who were competent. This is not all these bottles one type of water maintains an area or by removing from aswan, and better related documents. Please enter valid email. What is water supply engineering notes i do use of engineers are all. CO TT BOILERS LTD. Fix the water hammer action removal and sanitary engineering lectures sanitation in civil engineers prepared designs for. If the issue is too little water, it would make sense that the insufficient supply would reach equilibrium at a higher price. Analysis of PSC Sections. Enjoy and sanitary work of engineers analyze our sole risk and then people have? Faster than it back to gather broad demographic information immediately to friends and sanitary engineering ae aee government must be updated based out let me. You mentioned that supply engineering lecture note on. Rating will help us to suggest even better related documents to all of our readers! Rural, Institutional and industrial water supply; Physical, chemical and biological characteristics and sources of water, Pollutants in water and its effects, Estimation of water demand; Drinking water Standards, Water Treatment Plants, Water distribution networks. What is Purified Water? Understand the interaction between ground water and surface water. Why water supply engineering lecture note on water utilities around the engineer in irrigation department of engineers analyze our end of environmental engineer and. -
Design Considerations and Applications for Wetland Treatment of High-Nitrate Waters
Baker, L.A. 1998. Design considerations and applications for wetland treatment of high-nitrate waters. Water Science Technology 38: 389-395. DESIGN CONSIDERATIONS AND APPLICATIONS FOR WETLAND TREATMENT OF HIGH-NITRATE WATERS L.A. Baker* *Department of Civil and Environmental Engineering, Arizona State University, Tempe, AZ 85287-5306, USA. ABSTRACT Nitrate contamination is a serious problem worldwide. By providing an ample supply of carbon and an anaerobic environment, wetlands are an valuable low technology for treating nitrate-contaminated waters with low organic carbon concentrations. Denitrification is apparently limited by the C:N ratio, with ratios > 5:1 resulting in >90% nitrate removal efficiencies. The denitrification rate constant, VNO3, varies in direct proportion to carbon supply. Several novel or emerging applications of wetlands include renovation of nitrate-contaminated aquifers (a pump-and-treat strategy), denitrification of nitrified sewage effluents, and treatment of irrigation return flows. Treatment of dual sources is also discussed. In arid regions with limited supplies of high quality water, nitrate treatment wetlands may play a significant role in the development of water resources. KEYWORDS Constructed wetlands, denitrification, nitrate, recharge, irrigation, groundwater. INTRODUCTION Constructed wetlands have gained wide acceptance as a practical means for treating wastewater, particularly for small towns in located in rural areas where land is inexpensive. In the United States, most treatment wetlands receive secondary effluent (most often from lagoons) that is fairly poorly treated (average 5-day BOD = 39 mg/L; Knight et al., 1992). This paper examines the potential for using wetlands to treat water that is contaminated with nitrate but otherwise of high quality. -
Curriculum Vitae
YEH, Harry H. 1 CURRICULUM VITAE HARRY H. YEH School of Civil & Construction Engineering Phone: (541) 737-8057 220 Owen Hall FAX: (541) 737-3052 Oregon State University e-mail: [email protected] Corvallis, OR 97331-3212 Born: February 11, 1950 Citizenship: U.S.A. ACADEMIC RANK: The Miles Lowell and Margaret Watt Edwards Distinguished Chair in Engineering DEGREES A.B., Economics, Keio Gijuku University, Japan, 1972 B.S., Agricultural Engineering, Washington State University, 1975 M.S., Engineering, Washington State University, 1977 Ph.D., Civil Engineering, University of California, Berkeley, 1983 ACADEMIC POSITIONS Assistant Professor, Department of Civil Engineering, University of Washington, Seattle, WA, 1983- 1989 Adjunct Assistant Professor, Department of Applied Mathematics, University of Washington, Seattle, WA, 1988-1989 Visiting Associate Professor, Department of Civil Engineering, Stanford University, Stanford, CA, 1990-1991 Visiting Associate Professor, Department of Civil Engineering, Cornell University, Ithaca, NY, 1991 Adjunct Associate Professor, Department of Applied Mathematics, University of Washington, Seattle, WA, 1989-1994 Associate Professor, Department of Civil Engineering, University of Washington, Seattle, WA, 1989- 1994 Visiting Professor, Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan, 1997 Visiting Professor, Department of Civil Engineering, University of Tokyo, Tokyo, Japan, 1999 Adjunct Professor, Department of Applied Mathematics, University of Washington, Seattle, WA, 1995-2002 Professor, Department of Civil & Environmental Engineering, University of Washington, Seattle, WA, 1995-2002 Professor, Department of Civil, Construction, and Environmental Engineering, Oregon State University, Corvallis, OR, 2003-2007. Affiliate Professor, Department of Civil & Environmental Engineering, University of Washington, Seattle, WA, 2003-present. Professor, School of Civil & Construction Engineering, Oregon State University, Corvallis, OR, 2007-present. -
Purification of Boston Sewage
Water-Supply and Irrigation Paper No. 185 Series L, Quality of Water, 15 DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIRECTOR INVESTIGATIONS ON THE PURIFICATION OF BOSTON SEWAGE Made at the Sanitary Research Laboratory and Sewage Experiment Station of the Massachusetts Institute of Technology WITH A HISTORY OF THE SEWAGE-DISPOSAL PROBLEM BY C.-E. A. WINSLOW AND EARLE B. PHELPS WASHINGTON GOVERNMENT PRINTING OFFICE 1906 CONTENTS. Page, Introduction, by William T. Sedgwick.............. ...................... 5 History of the sewage-disposal problem..................................... 9 Nature of the problem................................................ 9 Composition of sewages............................................... 13 Disposal of sewages by dilution in lakes, rivers, and the sea............. 16 Disposal of sewages by broad irrigation or sewage farming .............. 24 Treatment of sewages by chemical precipitation........................ 29 Purification of sewages by intermittent nitration through sand.......... 35 Treatment of sewages in the septic tank ............................... 42 Purification of sewages by the contact process in beds of coarse material.. 53 Purification of sewages by a continuous trickling process over coarse material........................................................... 75 Recent tendencies in sewage-disposal practice in England, Germany, and the United States..................... ............................... 88 Experiments on the purification of Boston sewage, -
HAZARDOUS WASTE PROCESSING in the Chemical Engineering Curriculum
(.3.... 5 1111113._c_u_r_r_i_c_u_l_u_m__________ ) HAZARDOUS WASTE PROCESSING In the Chemical Engineering Curriculum DIANNE DORLAND, DoRAB N. BARIA University of Minnesota, Duluth • Duluth, MN 55812 s our nation's tolerance for pollution in general has decreased, the use of chemical engineering skills in Dianne Dorland is Associate Professor of chemi waste management has steadily increased. This is cal engineering at University of Minnesota, Duluth. A She received her BS and MS from the South Da particularly true where pollution prevention at the source has kota School of Mines and Technology and her PhD been emphasized over "end of the pipe" treatment. Second from the West Virginia University (1985). She cur rently teaches the Hazardous Waste Processing ary wastewater treatment will continue to be the principal Engineering course sequence for chemical engi public health shield for our sewer discharges, but tertiary neers, and her research interests include industrial wastewater treatment is frequently mandated for an indus wastewater treatment and hazardous waste man agement. trial facility and is becoming more common for wastewater treatment in publicly owned treatment works (POTWs). Dorab N. Baria is Professor of chemical engi neering at the University of Minnesota, Duluth. He Wastewater treatment, or sanitary engineering, has tradi received his PhD in chemical engineering from tionally been part of civil engineering, and more recently of Northwestem Universtiy in 1971. He subsequently worked for the U.S. Atomic Energy Commission the relatively new field of environmental engineering. Sani at the Ames Laboratory, Iowa State University, as tary engineers have satisfactorily designed and operated a research fellow for fifteen months and then was a chemical engineering faculty member at the wastewater and sewage treatment plants without ever having University of North Dakota until 1985, when he taken courses in chemical kinetics and reactor design, chemi joined the UMD faculty. -
2014 Call ASABE at (800) 371-2723 Or E-Mail [email protected]
from the President Showing the World Who We Are, What We Do n my previous Resource col- critically important in meeting this challenge. The targeted umn, I addressed how ASABE’s audience should recognize our relevance and competence in reconfiguration, for more effi- working to solve the grand challenges that the world is facing. Icient alignment of our technical Whether we apply our expertise in agriculture to address food, divisions, will enable the growth water, and energy issues, or we conduct fundamental research and marketing of our profession and in biological engineering to develop new products and our Society. The value of our pro- processes, we must ensure that our efforts are recognized and fession can only be communicated understood. Engineers are usually not effective marketers, so by marketing ourselves to the public we need marketing expertise to help us. The message needs to and to policymakers. In particular, be: who we are, what we do, and how we are vital. the reconfiguration treats agricul- An effective marketing effort is critical to the future of tural engineering and biological our profession and ASABE. Retaining current members and engineering as common threads attracting new ones is also a high priority, and we do not have throughout ASABE, showing how both of these engineering time to waste. With potential members having many options fields benefit the people of the world by providing nutritious to choose from, we need to provide the compelling value food, clean water, abundant energy, and a healthy environment. they seek in joining ASABE. Watch for the marketing deliv- Our goal is to market these efforts—and thereby gain our pro- erables—and help promote how you and ASABE benefit the fession’s rightful place in the global arena. -
Pathogens and Biosolids SCHOOL of PLANT and ENVIRONMENTAL SCIENCES, VIRGINIA TECH
Pathogens and Biosolids SCHOOL OF PLANT AND ENVIRONMENTAL SCIENCES, VIRGINIA TECH By: Michael Badzmierowski and Dr. Gregory Evanylo Pathogens are disease-causing microorganisms that include bacteria, viruses, protozoa, and helminths (parasitic worms). Pathogens can present a public health hazard if they are transferred to food crops grown on land to which biosolids are applied; contained in runoff to surface waters or in leachate to groundwater from land application sites; or transported away from the site by vectors such as insects, rodents, and birds. For this reason, federal and state regulations specify pathogen and vector attraction reduction requirements that must be met by biosolids applied to land. Lists of pathogens that can be found in untreated sewage sludge and the diseases or symptoms that they can cause have been extensively documented (U.S. EPA, 1995; U.S. EPA, 2003; Compost Science & Utilization, 2005; Sidhu and Toze. 2009). In 1993, the U.S. EPA implemented regulations entitled “The Standards for the Use or Disposal of Sewage Sludge” (U.S. EPA, 1993). These regulations, promulgated as 40 CFR (Title 40, Code of Federal Regulations), Part 503 Biosolids Rule (Part 503 Rule), were established to protect public health and the environment from adverse effects of pollutants and pathogens in biosolids. The 503 Rule specifies minimum federal regulations for pathogen and vector attraction reduction requirements that must be met by biosolids applied to land. Currently, the only pathogens regulated are fecal coliform, Salmonella spp., enteric viruses, and helminths. This group of pathogens are known as indicator microorganisms, as they can indicate the presence of a larger set of pathogens. -
Escondido Union High School District Agricultural Engineering 1
Escondido Union High School District Agricultural Engineering 1 (Revision to Agriculture Mechanics) EUHSD Board Approval Date: 6/20/17 1 The EUHSD Agricultural Engineering 1 curriculum document identifies what students should be able to know by grade level in a comprehensive standards-based course of study. The curriculum document is updated annually based on student academic achievement data, research and best practices, and input from stakeholders. The EUHSD curriculum document contains the following documents and/or information: A. Course Description B. Course Guidelines/Requirements - graduation credit information, transcript information, adopted materials, adopted technology, assessment outline C. Instructional Materials References D. Scope and Sequence Map with Essential Standards outlined by Unit E. References to key essential design and implementation documents A comprehensive course of study and/or program is designed so that all students have access to the rigorous curriculum necessary to graduate high school demonstrating college and career readiness skills. Student-Centered learning provides opportunity for collaboration, communication, and a robust learning environment and provides opportunities for all students to meet the goals of the district’s Instructional Focus at the time of this writing: “All students communicate their thinking, ideas and understanding by effectively using oral, written and/or non- verbal expression.” A key design consideration in the transition to the new California State Standards is a focus on changes to pedagogy. The English Language Arts instructional shifts guide classroom teaching and learning and the foundation of curriculum and instructional design. Key considerations of the ELA Instructional shifts can be found by visiting the following URL: http://www.corestandards.org/other-resources/key-shifts-in-english-language-arts/ The curriculum document is aligned to the California Model Career Technical Education Standards and reflects learning outcomes from both the anchor and pathway standards.