The Effects of Melt on Impact Craters on Icy Satellites and on the Dynamics of Io's Interior

Total Page:16

File Type:pdf, Size:1020Kb

The Effects of Melt on Impact Craters on Icy Satellites and on the Dynamics of Io's Interior The Effects of Melt on Impact Craters on Icy Satellites and on the Dynamics of Io's Interior Item Type text; Electronic Dissertation Authors Elder, Catherine Margaret Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 26/09/2021 19:33:28 Link to Item http://hdl.handle.net/10150/556825 THE EFFECTS OF MELT ON IMPACT CRATERS ON ICY SATELLITES AND ON THE DYNAMICS OF IO’S INTERIOR by Catherine Margaret Elder A Dissertation Submitted to the Faculty of the DEPARTMENT OF PLANETARY SCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2015 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the disser- tation prepared by Catherine Margaret Elder, titled The effects of melt on impact craters on icy satellites and on the dynamics of Io’s interior and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. Date: 7 April 2015 Adam Showman Date: 7 April 2015 Shane Byrne Date: 7 April 2015 Isamu Matsuyama Date: 7 April 2015 Alfred McEwen Date: 7 April 2015 Randy Richardson Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direc- tion and recommend that it be accepted as fulfilling the dissertation requirement. Date: 7 April 2015 Dissertation Director: Adam Showman 3 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: Catherine Margaret Elder 4 ACKNOWLEDGEMENTS First, I thank my advisor, Adam Showman, for all his help and career advice over the years. Adam is always excited about science with an enthusiasm that few professors have, so meeting with him to discuss my research was always fun. In addition to Adam, I would like to thank Shane Byrne and Christopher Hamilton for mentoring and helping me navigate the search for a postdoc position. Thanks to Randy Richardson for always being the person on my committee to step back and ask what I need to do next to continue making progress. And thanks to Alfred McEwen and Isamu Matsuyama for providing many useful suggestions and helping me see the implications of my research in a broader context. I would also like to thank my other co-authors. Most recently, Paul Tackley, who taught me how to use his mantle convection code and helped me interpret the results. Thanks to Jay Melosh and Veronica Bray who were my first advisors when I started graduate school. Veronica in particular worked closely with me on the project and encouraged me to develop career skills such as writing proposals and reviewing papers. My path to LPL started at Cornell where I was welcomed into the planetary science community by the faculty and the graduate students. The graduate students treated me as a peer and gave me a glimpse into what grad school would be like. They are still some of the people I most look forward to seeing at conferences. Among the faculty, I would especially like to thank Jim Bell for helping me select classes, summer internships, and ultimately a grad school. He also led the first geology trip I ever attended where I saw an impact crater and volcanoes for the first time. Also thanks to all my physics buddies at Cornell who made problem sets a lot more fun and do-able. While in grad school, I have been lucky enough to have the support of many friends near and far. I thank them all for their support and making life more fun. In particular, I would like to thank the LPL grad students who were here at the same time as me for their advice, camaraderie, and friendship. Finally, I would like to thank my family: my sister, Jean, for her friendship and support, and my parents. I am very thankful that my parents believed me when I was nine years old and told them that I wanted to be an astronomer when I grew up. They bought me a telescope even though light pollution in Boston is terrible, gave me astronomy books, and took me to ‘Astronomy day’ at the Boston Museum of Science every year. And Casey, who I met early in grad school and who has been my main source of moral support and encouragement since then. I am so happy that whether I have a good day or a bad day, I always get to go home to Casey and the cats. 5 DEDICATION To my parents, who always encouraged my interest in astronomy. 6 TABLE OF CONTENTS LISTOFFIGURES ................................ 9 LISTOFTABLES ................................. 11 ABSTRACT .................................... 12 CHAPTER1 Introduction ........................... 14 1.1 Planetaryheatloss ............................ 14 1.1.1 Mantleconvection. 15 1.1.2 MarsandtheMoon........................ 16 1.1.3 Earth ............................... 17 1.1.4 Venus ............................... 17 1.1.5 Io.................................. 18 1.2 Surface processes as a window to the interior . .... 19 1.2.1 Surface expression of mantle convection . 20 1.2.2 Crater morphology as a probe of the subsurface . 21 1.3 Mapofthedissertation. 23 CHAPTER 2 The theoretical plausibility of central pit crater formation via meltdrainage .................................. 24 2.1 Introduction................................ 24 2.2 Meltvolume................................ 25 2.3 Fracturevolumeestimate. 28 2.4 Meltdrainage ............................... 31 2.4.1 Fracturedistribution . 32 2.4.2 Drainage through plane parallel fractures . 33 2.5 Results................................... 41 2.6 Discussion ................................. 46 2.6.1 Differences between rock and ice . 46 2.6.2 Limitationsandassumptions. 47 2.6.3 The role of viscous dissipation . 50 2.6.4 Mars................................ 51 2.6.5 Othericysatellites . 51 2.7 Conclusions ................................ 54 7 TABLE OF CONTENTS – Continued CHAPTER 3 Melt migration in Io’s convecting mantle . .... 56 3.1 Introduction................................ 56 3.2 Themodel................................. 61 3.2.1 Meltsegregation . .. .. 61 3.2.2 Convective scaling laws . 65 3.2.3 Melt segregation and convection . 71 3.3 Results................................... 72 3.4 Discussion ................................. 80 3.4.1 ComparisontoEarth . 80 3.4.2 Comparisontoobservations . 83 3.5 Conclusions ................................ 84 CHAPTER 4 Convection in Io’s partially molten mantle . ..... 86 4.1 Introduction................................ 86 4.2 Model ................................... 90 4.2.1 Rheology ............................. 92 4.2.2 Composition............................ 93 4.2.3 Meltinganderuption . 93 4.2.4 Tidalheating ........................... 96 4.3 Results................................... 97 4.3.1 Statisticalsteadystatebehavior . 97 4.3.2 Tidal heating distribution . 105 4.3.3 Eruptionparameterization . 106 4.3.4 Influence of reference viscosity . 108 4.3.5 Influence of permeability . 109 4.3.6 Heatingrate............................ 110 4.4 Discussion ................................. 112 4.5 Conclusion................................. 118 CHAPTER 5 Comparison of the one-dimensional model and the two- dimensional numerical simulations . 120 5.1 Directcomparison............................. 120 5.2 Convective scaling laws . 122 5.3 Meltmigrationmodel. 126 5.4 SummaryofComparison . 128 CHAPTER 6 Conclusions and Future Work . 130 6.1 Centralpitcraterformation . 130 6.2 DynamicsofIo’smantle . 132 8 TABLE OF CONTENTS – Continued 6.2.1 Melt generation and migration in an upwelling column of man- tleonIo.............................. 133 6.2.2 Mantle convection in Io’s partially molten mantle . .... 134 6.2.3 Comparison of results to observations . 135 REFERENCES................................... 137 9 LIST OF FIGURES 2.1 Isiscentralpitcrater . 24 2.2 Asketchofcentralpitcraterformation . 26 2.3 Widthsofimpactgeneratedfractures . 34 2.4 Asketch ofmelt drainagethroughfractures . 36 2.5 Dependence of drainage velocity on fracture width . ...... 38 2.6 Solidification dependence on initial temperature . ....... 44 2.7 Fractured, melted, drained and observed pit volumes . ...... 45 2.8 Volume of melt able to drain on different bodies . 46 2.9 Volumeofslushabletodrain . 47 2.10 Volume of melt able to drain on different icy satellites . ........ 52 2.11 Volume of melt generated on different icy satellites . ....... 52 3.1 AsketchofIo’smantle . .. .. 60 3.2 Radialprofilesforthenominalcase . 74 3.3 Radial profiles for 25% eruption efficiency . 80 3.4 The effect
Recommended publications
  • A Possible Albian Impact Crater at Murshid, Southern Oman
    GeoArabia, Vol. 7, No. 4, 2002 Gulf PetroLink, Bahrain A possible Albian impact crater at Murshid, southern Oman Bruce Levell1, Pascal Richard2 and Folco Hoogendijk2, Petroleum Development Oman ABSTRACT During interpretation of a 3-D seismic survey in southern Oman a solitary, 2.5-km-wide circular basin with a central peak and raised rim was identified in the subsurface 35 km west of the Marmul oil field. The feature is the only one of its kind in the area. The basinal structure is probably of Late Cretaceous (Albian) age and the regional geology strongly suggests that it is neither a volcanic crater nor related to salt-dome tectonics or salt dissolution. It possibly represents a crater formed by a terrestrial impact event and has been named the Murshid crater. This report does not constitute a detailed investigation of the possible impact crater but rather records the 3-D seismic observations and the drilling that has taken place near the structure so far. INTRODUCTION During interpretation of a newly acquired 3-D seismic survey for oil exploration in southern Oman, a solitary 2.5-km-diameter circular basinal feature was identified as a possible impact structure and was named the Murshid crater. It lies 35 km west of the Marmul oil field in the South Oman Salt Basin (Figure 1). The center of the structure is at latitude 18º10’59"N, longitude 54º55’08”E, and it is buried at a depth of approximately 380 m below mean sea level (680 m below the ground surface). The authors are petroleum geologists who felt that the Murshid basinal structure needed reporting to the wider scientific community.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • A Study About the Temporal Constraints on the Martian Yardangs’ Development in Medusae Fossae Formation
    remote sensing Article A Study about the Temporal Constraints on the Martian Yardangs’ Development in Medusae Fossae Formation Jia Liu 1,2 , Zongyu Yue 1,3,*, Kaichang Di 1,3 , Sheng Gou 1,4 and Shengli Niu 4 1 State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (J.L.); [email protected] (K.D.); [email protected] (S.G.) 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 CAS Center for Excellence in Comparative Planetology, Hefei 230026, China 4 State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-64889553 Abstract: The age of Mars yardangs is significant in studying their development and the evolution of paleoclimate conditions. For planetary surface or landforms, a common method for dating is based on the frequency and size distribution of all the superposed craters after they are formed. However, there is usually a long duration for the yardangs’ formation, and they will alter the superposed craters, making it impossible to give a reliable dating result with the method. An indirect method by analyzing the ages of the superposed layered ejecta was devised in the research. First, the layered ejecta that are superposed on and not altered by the yardangs are identified and mapped. Then, the ages of the layered ejecta are derived according to the crater frequency and size distribution on them. These ages indicate that the yardangs ceased development by these times, and the ages are valuable for studying the evolution of the yardangs.
    [Show full text]
  • Pre-Mission Insights on the Interior of Mars Suzanne E
    Pre-mission InSights on the Interior of Mars Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, Ulrich Christensen, Véronique Dehant, Mélanie Drilleau, William Folkner, Nobuaki Fuji, et al. To cite this version: Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, et al.. Pre-mission InSights on the Interior of Mars. Space Science Reviews, Springer Verlag, 2019, 215 (1), pp.1-72. 10.1007/s11214-018-0563-9. hal-01990798 HAL Id: hal-01990798 https://hal.archives-ouvertes.fr/hal-01990798 Submitted on 23 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: https://oatao.univ-toulouse.fr/21690 Official URL : https://doi.org/10.1007/s11214-018-0563-9 To cite this version : Smrekar, Suzanne E. and Lognonné, Philippe and Spohn, Tilman ,... [et al.]. Pre-mission InSights on the Interior of Mars. (2019) Space Science Reviews, 215 (1).
    [Show full text]
  • Water on the Moon, III. Volatiles & Activity
    Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere).
    [Show full text]
  • 5648 Village of Warsaw Vlge SWIS Code - 564801
    NYS - Real Property System Cross Reference Report - 2021 - Current Year File RPS345/V04/L001 County of Wyoming Parcel Address Sequence Town of Warsaw - 5648 Village of Warsaw Vlge SWIS Code - 564801 Location School Res Pr O R T Parcel Id Name Nbr Name Dist Land Av Total Av Pct Cl C S S C 648.1-9999-131.600/1004 NYS Electric & Gas Corp 564801 0309831 0 882 6 648.1-9999-131.600/1014 NYS Electric & Gas Corp 564801 062572 0 882 6 85.16-1-8 Town Of Warsaw Allen St 564801 61006100 0 653 8 A 85.12-1-30.1 Buzz & Val Properties Inc Allen St 564801 2560028100 0 449 1 A 85.12-1-37 Gott, Donald James Estate. Allen St 564801 1440014400 0 340 1 A 85.12-1-27 Williams, Richard A. 6 Allen St 564801 960034000 0 210 1 A 85.12-2-50 Purdy, Larry L. 21 Allen St 564801 870075000 0 210 1 A 85.12-2-49 Mayer, Cory 25 Allen St 564801 1240055300 0 210 1 A 85.12-2-48 Schneider, Daryl A. 29 Allen St 564801 1710051700 0 210 1 A 85.12-2-47 Skidmore, Benjamine J. 37 Allen St 564801 1320055600 0 210 1 A 85.12-2-46 Vickers, II, Kevin M. 41 Allen St 564801 1240060700 0 220 1 A 85.12-2-45 Hampton, Charlotte 45 Allen St 564801 1240060600 0 210 1 A 85.12-2-44 Bernard, Marjorie A. 49 Allen St 564801 1160049500 50 210 1 A 85.12-3-20 Berkemeier, Jeremy B.
    [Show full text]
  • Edited by Thomas W. Henry and Bruce R. Wardlaw U.S. Geological
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Pacific Enewetak Atoll Crater Exploration (PEACE) Program Enewetak Atoll, Republic of the Marshall Islands Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of OAK and KOA craters edited by Thomas W. Henry and Bruce R. Wardlaw U.S. Geological Survey Open File Report 86-555 Prepared in cooperation with the Defense Nuclear Agency This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. 1987 CLAY A sedimentologic term for a rock or mineral fragment or a detrital particle of any composition smaller than a very fine silt grain, having a diameter less than 1/256 mm (4 microns, or 0.00026 in., or 8 phi units). COBBLE A sedimentologic term for a rock fragment or detrital particle larger than a pebble and smaller than a boulder, having a diameter in the range of 64 to 256 mm (2.5 to 10 in., or -6 to -8 phi units). CONSOLIDATION Gradual or slow reduction in volume and increase in density of a material mass in response to increased loads or compressive stress; e.g., the adjustment of a saturated material involving the squeezing of water from pore spaces. COMPACTION Any process by which a material mass loses pore space and achieves a higher density, thereby increasing the bearing capacity, reducing the tendency to settle or deform under load, and increasing the general stability of the material mass (soil). CRATER A typically bowl-shaped or saucer-shaped pit or depression, generally of considerable size and with steep inner slopes, formed on a terrestrial or planetary surface or in the ground by the explosive release of chemical or kinetic energy; e.g., an impact crater or an explosion crater.
    [Show full text]
  • Ecological Implications of Climate Change on the Greater Yellowstone Ecosystem
    SPECIAL ISSUE Ecological Implications of Climate Change on the Greater Yellowstone Ecosystem Revisiting Climate Change Predictions from 1992 How Wetlands & Snowpack Help Us Understand a Changing Climate Water in the Balance Fear is Not the Answer he latest comprehensive review of changes to the global climate system states: “Warming of the climate systems is unequivocal, and since the 1950s many of the observed changes are unprecedented from decades to millennia” (from the 5th International Panel on Climate Change report, 2013). Knowing this is true does not necessarily help us Tunderstand how these changes are affecting Yellowstone National Park and the surrounding area. It is much more difficult to accurately predict the effects of climate change in a specific location than it is to describe changes to global averages that are happening “somewhere” on the planet. It is even harder to go out on a limb and say how complex natural systems, with all of their fuzzy feedback mechanisms, might react to a changing climate. Yet that is exactly the kind of information we need to help us deal with the uncertainty we are facing in what NPS Director Jon Jarvis has called “the greatest threat we have to the integrity of our natural resources.” How afraid should we be? Twenty-three years ago, in the very first issue ofYellowstone Science, Bill Romme and Monica Turner stuck their necks out, before climate change was a popular topic, and predicted three future climate scenarios and the changes that might happen to fire frequency and vegetation. For this special issue on climate change, they graciously offered to revisit their original thoughts, updating them with the benefit of better science and the knowledge they have gained since 1992 through vigorous study in Yellowstone.
    [Show full text]
  • Studies of the Chesapeake Bay Impact Structure— Introduction and Discussion
    Studies of the Chesapeake Bay Impact Structure— Introduction and Discussion By J. Wright Horton, Jr., David S. Powars, and Gregory S. Gohn Chapter A of Studies of the Chesapeake Bay Impact Structure— The USGS-NASA Langley Corehole, Hampton, Virginia, and Related Coreholes and Geophysical Surveys Edited by J. Wright Horton, Jr., David S. Powars, and Gregory S. Gohn Prepared in cooperation with the Hampton Roads Planning District Commission, Virginia Department of Environmental Quality, and National Aeronautics and Space Administration Langley Research Center Professional Paper 1688 U.S. Department of the Interior U.S. Geological Survey iii Contents Abstract . .A1 Introduction . 1 Previous Work . 3 The Chesapeake Bay Impact Structure . 5 Form and Structure . 5 Character of the Target . 7 Land Surface Features . 7 The USGS-NASA Langley Core . 9 Significant Results . 11 Crystalline Basement Rocks . 11 Impact-Modified and Impact-Generated Sediments . 11 Postimpact Sediments . 13 Water Depths—Impact and Postimpact . 14 Dating the Impact Event . 14 Structural Interpretation of Seismic Data . 15 Interpretation of Audio-Magnetotelluric (AMT) Soundings . 15 Hydrologic Effects and Water-Resources Implications . 16 Conceptual Model . 16 Acknowledgments . 18 References Cited . 18 Appendix A1. Abstracts of Research on the Chesapeake Bay Impact Structure, 2001–2003 . 24 Figures A1. Regional map showing the location of the Chesapeake Bay impact structure, the USGS-NASA Langley corehole at Hampton, Va., and some other coreholes in southeastern Virginia . A2 A2. Map of southeastern Virginia showing locations of recently completed coreholes and geophysical surveys in relation to the Chesapeake Bay impact structure . .4 A3. Satellite image of Chesapeake Bay showing location of the buried impact structure and nearby Mesozoic to Cenozoic tectonic features.
    [Show full text]
  • The Scientific Context for Exploration of the Moon
    Committee on the Scientific Context for Exploration of the Moon Space Studies Board Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This study is based on work supported by the Contract NASW-010001 between the National Academy of Sciences and the National Aeronautics and Space Administration. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the agency that provided support for the project. International Standard Book Number-13: 978-0-309-10919-2 International Standard Book Number-10: 0-309-10919-1 Cover: Design by Penny E. Margolskee. All images courtesy of the National Aeronautics and Space Administration. Copies of this report are available free of charge from: Space Studies Board National Research Council 500 Fifth Street, N.W. Washington, DC 20001 Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap. edu. Copyright 2007 by the National Academy of Sciences. All rights reserved.
    [Show full text]
  • 2019 Annual Report 11/1/18 to 10/31/2019
    2019 Annual Report 11/1/18 to 10/31/2019 Crater Community Hospice serves families in Chesterfield, Dinwiddie, Greensville, Prince George, Sussex, Surry, and Charles City, Petersburg, Colonial Heights, Hopewell and Emporia. YOUR Community hospice since 1995 A non-profit 501(c)3 You are OUR community, we are YOUR Hospice! YOU are a Part... YOU are part of our story. YOU are part of the story of each of our patients and families. YOU make a difference in so many ways, whether through massage therapy, grief support groups, veterans’ pinning ceremonies, or support of our thrift shop and events to name a few. Thank YOU for your kind and caring support of Crater Community Hospice. Every family’s journey with hospice is different. And we are here, every single day, to respond to the unique needs of every family, in that moment and for their whole journey. Thanks to YOU, we are proud to have provided support, care, love and help to over 7,500 patients and their families. Your support ensures that from the very first call to our office and through our range of services we are here at every stage in their journey. Thank YOU for your help and compassion! We could not do it without YOU! Crater Community Hospice team at the Progress Index’s Best of the Best Award Ceremony. Cora Harvey Armstrong performs at the benefit concert at Gillfield Baptist Church. Bob Huffman, Board Member, pins a veteran at a Veteran’s Day ceremony at Dunlop House. From Our CEO: Board of Directors We are so honored to be 2018-2019 recognized by our community as CHAIR Best of the Best in several JoAnn Glazier categories again in 2019 along VICE CHAIR with many other businesses that Rita Grammer Baldwin support our mission.
    [Show full text]
  • Yellowstone Science
    SPECIAL ISSUE Ecological Implications of Climate Change on the Greater Yellowstone Ecosystem Revisiting Climate Change Predictions from 1992 How Wetlands & Snowpack Help Us Understand a Changing Climate Water in the Balance Fear is Not the Answer he latest comprehensive review of changes to the global climate system states: “Warming of the climate systems is unequivocal, and since the 1950s many of the observed changes are unprecedented from decades to millennia” (from the 5th International Panel on Climate Change report, 2013). Knowing this is true does not necessarily help us Tunderstand how these changes are affecting Yellowstone National Park and the surrounding area. It is much more difficult to accurately predict the effects of climate change in a specific location than it is to describe changes to global averages that are happening “somewhere” on the planet. It is even harder to go out on a limb and say how complex natural systems, with all of their fuzzy feedback mechanisms, might react to a changing climate. Yet that is exactly the kind of information we need to help us deal with the uncertainty we are facing in what NPS Director Jon Jarvis has called “the greatest threat we have to the integrity of our natural resources.” How afraid should we be? Twenty-three years ago, in the very first issue ofYellowstone Science, Bill Romme and Monica Turner stuck their necks out, before climate change was a popular topic, and predicted three future climate scenarios and the changes that might happen to fire frequency and vegetation. For this special issue on climate change, they graciously offered to revisit their original thoughts, updating them with the benefit of better science and the knowledge they have gained since 1992 through vigorous study in Yellowstone.
    [Show full text]