5648 Village of Warsaw Vlge SWIS Code - 564801

Total Page:16

File Type:pdf, Size:1020Kb

5648 Village of Warsaw Vlge SWIS Code - 564801 NYS - Real Property System Cross Reference Report - 2021 - Current Year File RPS345/V04/L001 County of Wyoming Parcel Address Sequence Town of Warsaw - 5648 Village of Warsaw Vlge SWIS Code - 564801 Location School Res Pr O R T Parcel Id Name Nbr Name Dist Land Av Total Av Pct Cl C S S C 648.1-9999-131.600/1004 NYS Electric & Gas Corp 564801 0309831 0 882 6 648.1-9999-131.600/1014 NYS Electric & Gas Corp 564801 062572 0 882 6 85.16-1-8 Town Of Warsaw Allen St 564801 61006100 0 653 8 A 85.12-1-30.1 Buzz & Val Properties Inc Allen St 564801 2560028100 0 449 1 A 85.12-1-37 Gott, Donald James Estate. Allen St 564801 1440014400 0 340 1 A 85.12-1-27 Williams, Richard A. 6 Allen St 564801 960034000 0 210 1 A 85.12-2-50 Purdy, Larry L. 21 Allen St 564801 870075000 0 210 1 A 85.12-2-49 Mayer, Cory 25 Allen St 564801 1240055300 0 210 1 A 85.12-2-48 Schneider, Daryl A. 29 Allen St 564801 1710051700 0 210 1 A 85.12-2-47 Skidmore, Benjamine J. 37 Allen St 564801 1320055600 0 210 1 A 85.12-2-46 Vickers, II, Kevin M. 41 Allen St 564801 1240060700 0 220 1 A 85.12-2-45 Hampton, Charlotte 45 Allen St 564801 1240060600 0 210 1 A 85.12-2-44 Bernard, Marjorie A. 49 Allen St 564801 1160049500 50 210 1 A 85.12-3-20 Berkemeier, Jeremy B. 51 Allen St 564801 4430058100 0 430 1 A 85.12-1-40 Montgomery Bldg Sup Inc 100 Allen St 564801 65300244100 0 444 1 A 85.12-3-19.1 Fairview Paper Box Corp 224 Allen St 564801 128500436100 0 710 1 A 85.12-3-38 Djs Realty Limited 224 Allen St 564801 42100259800 0 440 1 A 85.12-3-37.1 Town Of Warsaw 300 Allen St 564801 90200554200 0 651 8 A 85.7-5-27 West Buffalo Street Anthony Pl 564801 37003700 0 311 1 A 73.19-1-30 Wyoming Properties, LLC 11 Bartlett Ave 564801 840051800 0 210 1 B 73.19-1-31 `, Kenneth F. Estate. 15 Bartlett Ave 564801 910045000 0 210 1 B 85.5-1-35 Capwell, Thomas J. Bishop St 564801 3320042100 0 312 1 B 85.5-1-23.12 Statler, Joseph R. Bishop St 564801 72008500 0 312 1 B 73.18-1-12.1 Swiss Valley Farms, LLC Bishop St 564801 137400137400 0 105 1 B 85.5-1-19 Mcguire, Shawn 15 Bishop St 564801 1920072900 0 210 1 B 85.5-1-22 Patnode, James R. 16 Bishop St 564801 1350071800 0 210 1 B 85.5-1-23.11 Gardner, Danille J. 28 Bishop St 564801 1730049900 0 210 1 B 85.5-1-18 Capwell, Thomas J. 33 Bishop St 564801 1270059700 0 210 1 B 85.5-1-34 Sutay, Todd 41 Bishop St 564801 2030071300 0 210 1 B 73.13-1-1 Duschen, Mark E. Black House Rd 564801 1160011600 0 910 1 B 85.6-1-20.2 Salvador, Roberta J. Brad St 564801 400400 0 311 1 B 85.6-1-30 Salvador, Roberta J. Brad St 564801 61006100 0 311 1 B 85.6-1-15.1 Navarra, Timothy G. 17 Brad St 564801 1970069100 0 210 1 B 85.6-1-21.1 Smith, Richard E. Jr. 22 Brad St 564801 1390066100 0 210 1 B 85.6-1-20.1 Green, Amanda G. 26 Brad St 564801 1150072100 0 210 1 B 85.6-1-19 Salvador, Roberta J. 38 Brad St 564801 16600108800 0 210 1 B 85.6-1-17.1 Stack, James E. 41 Brad St 564801 1900066100 0 210 1 B Page Totals Parcels - 37 Land - 894,700 Total - 3,430,103 Page 1 of 68 Date/Time - 6/30/2021 11:38:31 NYS - Real Property System Cross Reference Report - 2021 - Current Year File RPS345/V04/L001 County of Wyoming Parcel Address Sequence Town of Warsaw - 5648 Village of Warsaw Vlge SWIS Code - 564801 Location School Res Pr O R T Parcel Id Name Nbr Name Dist Land Av Total Av Pct Cl C S S C 85.6-1-18 Humphrey, Kim A. 44 Brad St 564801 20000112100 0 210 1 B 85.11-3-3 Doane Services, LLC 11 Brooklyn St 564801 840024000 0 210 1 B 85.11-3-40 Snyder, Daniel R. 12 Brooklyn St 564801 1340066500 0 210 1 B 85.11-3-4 Nevinger, Gregory D. 15 Brooklyn St 564801 990046200 0 210 1 B 85.11-3-39 Benke, Jan 20 Brooklyn St 564801 1520066700 0 210 1 B 85.11-3-8 Blythe Family Trust 23 Brooklyn St 564801 1220089900 0 210 1 B 85.11-3-38 Kruppner, Judith A. 24 Brooklyn St 564801 31800123400 0 411 1 B 85.11-3-37 Stothers, James N. 32 Brooklyn St 564801 1740076200 0 210 1 B 85.11-3-9 OCB Holdings, LLC 33 Brooklyn St 564801 35900138700 0 411 1 B 85.11-3-10 Holmes, Kelsey M. 37 Brooklyn St 564801 17000138000 0 210 1 B 85.11-3-36 Rease, Stephen R. 40 Brooklyn St 564801 1530082300 0 210 1 B 85.11-3-35.2 Treutlein, Scott A. 44 Brooklyn St 564801 18100165600 0 210 1 B 85.11-3-11 Barone, Laurie Ann 45 Brooklyn St 564801 17600101900 0 210 1 B 85.11-3-12 Wilkins, Matthew J. 49 Brooklyn St 564801 13200148900 0 210 1 B 85.11-3-26 LiPuma , Laurie K. 52 Brooklyn St 564801 19200126600 0 210 1 B 85.11-3-14 Burrows, Joshua J. 53 Brooklyn St 564801 1860086100 0 210 1 B 85.11-3-25 Grisewood, Kari 56 Brooklyn St 564801 1260089900 0 210 1 B 85.11-3-19 Higgins, Lynn D. 57 Brooklyn St 564801 1350070500 50 220 1 B 85.11-3-24 Benedict, Patricia H. 60 Brooklyn St 564801 1310077200 0 210 1 B 85.11-3-21 Flaherty, Thomas A. 61 Brooklyn St 564801 1170082000 0 210 1 B 85.11-3-23 Rabbit Knoll Holdings, LLC 64 Brooklyn St 564801 1780080100 0 220 1 B 85.11-3-22 Tatarka, Robert N. Jr. 67 Brooklyn St 564801 1330076300 0 215 1 B 85.11-2-83 Tiede, Donald P. 72-74 Brooklyn St 564801 29000137700 0 411 1 B 85.11-2-82.1 Burton, Joan 78 Brooklyn St 564801 1590098000 0 220 1 B 85.11-2-1 Lennox, Kathleen M. 79 Brooklyn St 564801 1730080400 0 210 1 B 85.11-2-14 Bumbacher, Joan M. 85 Brooklyn St 564801 1210084600 0 210 1 B 85.11-2-16 Munro, Scott J. 86 Brooklyn St 564801 1350075900 0 210 1 B 85.11-2-13 Carpenter, Alvin 93 Brooklyn St 564801 1200081600 0 210 1 B 85.11-2-15 Hopkins, Teresa A. 94 Brooklyn St 564801 1090064400 0 220 1 B 85.11-1-79 Hadfield, Mark 105 Brooklyn St 564801 1190071500 0 220 1 B 85.11-1-28 Fladie, David S. 108 Brooklyn St 564801 1150063100 0 210 1 B 85.11-1-78 Nichols, Roxanne M. 109 Brooklyn St 564801 980068000 0 210 1 B 85.11-1-29 Huntz, Dylan J. 112 Brooklyn St 564801 1380070100 0 210 1 B 85.11-1-77 Hackemer, John J. 113 Brooklyn St 564801 1000055000 0 210 1 B 85.11-1-30 Hale, Mark David 120 Brooklyn St 564801 1380095100 0 210 1 B 85.11-1-76.1 Frazier, James L. 121 Brooklyn St 564801 1360085900 0 210 1 B 85.11-1-31 Ingles, Paul A. 124 Brooklyn St 564801 1380085800 0 210 1 B Page Totals Parcels - 37 Land - 574,100 Total - 3,286,200 Page 2 of 68 Date/Time - 6/30/2021 11:38:31 NYS - Real Property System Cross Reference Report - 2021 - Current Year File RPS345/V04/L001 County of Wyoming Parcel Address Sequence Town of Warsaw - 5648 Village of Warsaw Vlge SWIS Code - 564801 Location School Res Pr O R T Parcel Id Name Nbr Name Dist Land Av Total Av Pct Cl C S S C 85.11-1-75 Redding, Steven L. 125 Brooklyn St 564801 1220079800 0 210 1 B 85.11-1-32 Wolinski, Leonard J. 128 Brooklyn St 564801 1170076000 0 210 1 B 85.11-1-74 Post, Sylvia 129 Brooklyn St 564801 1400062700 0 210 1 B 85.11-1-33 Klein, Audra L. 132 Brooklyn St 564801 1280066000 0 210 1 B 85.11-1-73 Thomson, Jay L. 133 Brooklyn St 564801 1000061600 0 210 1 B 85.11-1-34 Baxter, Susan 140 Brooklyn St 564801 1610083000 0 210 1 B 85.11-1-35.1 Weigley, Carolynn 148 Brooklyn St 564801 13000127600 0 210 1 B 85.11-1-36.2 Donahue, Michael H. 152 Brooklyn St 564801 1230061000 0 210 1 B 85.11-1-37 Veihdeffer, Donna K. Life Use. 156 Brooklyn St 564801 1340081600 0 210 1 B 85.11-1-60 Baker, Gregory S. 157 Brooklyn St 564801 1340070800 0 210 1 B 85.11-1-59 Tarun K/Vipin Ohri Irrevocabe 161 Brooklyn St 564801 22900196100 0 210 1 B 85.11-1-38 Schmidt, Michael J. 164 Brooklyn St 564801 1330080200 0 210 1 B 85.11-1-58 Tarun K/Vipin Ohri Irrevocabe 165 Brooklyn St 564801 38100166100 0 465 1 B 85.11-1-39 Savannah Rose Till, LLC 168 Brooklyn St 564801 1310050000 0 220 1 B 85.11-1-40 Santora, William M.
Recommended publications
  • A Possible Albian Impact Crater at Murshid, Southern Oman
    GeoArabia, Vol. 7, No. 4, 2002 Gulf PetroLink, Bahrain A possible Albian impact crater at Murshid, southern Oman Bruce Levell1, Pascal Richard2 and Folco Hoogendijk2, Petroleum Development Oman ABSTRACT During interpretation of a 3-D seismic survey in southern Oman a solitary, 2.5-km-wide circular basin with a central peak and raised rim was identified in the subsurface 35 km west of the Marmul oil field. The feature is the only one of its kind in the area. The basinal structure is probably of Late Cretaceous (Albian) age and the regional geology strongly suggests that it is neither a volcanic crater nor related to salt-dome tectonics or salt dissolution. It possibly represents a crater formed by a terrestrial impact event and has been named the Murshid crater. This report does not constitute a detailed investigation of the possible impact crater but rather records the 3-D seismic observations and the drilling that has taken place near the structure so far. INTRODUCTION During interpretation of a newly acquired 3-D seismic survey for oil exploration in southern Oman, a solitary 2.5-km-diameter circular basinal feature was identified as a possible impact structure and was named the Murshid crater. It lies 35 km west of the Marmul oil field in the South Oman Salt Basin (Figure 1). The center of the structure is at latitude 18º10’59"N, longitude 54º55’08”E, and it is buried at a depth of approximately 380 m below mean sea level (680 m below the ground surface). The authors are petroleum geologists who felt that the Murshid basinal structure needed reporting to the wider scientific community.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • A Study About the Temporal Constraints on the Martian Yardangs’ Development in Medusae Fossae Formation
    remote sensing Article A Study about the Temporal Constraints on the Martian Yardangs’ Development in Medusae Fossae Formation Jia Liu 1,2 , Zongyu Yue 1,3,*, Kaichang Di 1,3 , Sheng Gou 1,4 and Shengli Niu 4 1 State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (J.L.); [email protected] (K.D.); [email protected] (S.G.) 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 CAS Center for Excellence in Comparative Planetology, Hefei 230026, China 4 State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-64889553 Abstract: The age of Mars yardangs is significant in studying their development and the evolution of paleoclimate conditions. For planetary surface or landforms, a common method for dating is based on the frequency and size distribution of all the superposed craters after they are formed. However, there is usually a long duration for the yardangs’ formation, and they will alter the superposed craters, making it impossible to give a reliable dating result with the method. An indirect method by analyzing the ages of the superposed layered ejecta was devised in the research. First, the layered ejecta that are superposed on and not altered by the yardangs are identified and mapped. Then, the ages of the layered ejecta are derived according to the crater frequency and size distribution on them. These ages indicate that the yardangs ceased development by these times, and the ages are valuable for studying the evolution of the yardangs.
    [Show full text]
  • Pre-Mission Insights on the Interior of Mars Suzanne E
    Pre-mission InSights on the Interior of Mars Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, Ulrich Christensen, Véronique Dehant, Mélanie Drilleau, William Folkner, Nobuaki Fuji, et al. To cite this version: Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, et al.. Pre-mission InSights on the Interior of Mars. Space Science Reviews, Springer Verlag, 2019, 215 (1), pp.1-72. 10.1007/s11214-018-0563-9. hal-01990798 HAL Id: hal-01990798 https://hal.archives-ouvertes.fr/hal-01990798 Submitted on 23 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: https://oatao.univ-toulouse.fr/21690 Official URL : https://doi.org/10.1007/s11214-018-0563-9 To cite this version : Smrekar, Suzanne E. and Lognonné, Philippe and Spohn, Tilman ,... [et al.]. Pre-mission InSights on the Interior of Mars. (2019) Space Science Reviews, 215 (1).
    [Show full text]
  • Water on the Moon, III. Volatiles & Activity
    Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere).
    [Show full text]
  • Edited by Thomas W. Henry and Bruce R. Wardlaw U.S. Geological
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Pacific Enewetak Atoll Crater Exploration (PEACE) Program Enewetak Atoll, Republic of the Marshall Islands Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of OAK and KOA craters edited by Thomas W. Henry and Bruce R. Wardlaw U.S. Geological Survey Open File Report 86-555 Prepared in cooperation with the Defense Nuclear Agency This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. 1987 CLAY A sedimentologic term for a rock or mineral fragment or a detrital particle of any composition smaller than a very fine silt grain, having a diameter less than 1/256 mm (4 microns, or 0.00026 in., or 8 phi units). COBBLE A sedimentologic term for a rock fragment or detrital particle larger than a pebble and smaller than a boulder, having a diameter in the range of 64 to 256 mm (2.5 to 10 in., or -6 to -8 phi units). CONSOLIDATION Gradual or slow reduction in volume and increase in density of a material mass in response to increased loads or compressive stress; e.g., the adjustment of a saturated material involving the squeezing of water from pore spaces. COMPACTION Any process by which a material mass loses pore space and achieves a higher density, thereby increasing the bearing capacity, reducing the tendency to settle or deform under load, and increasing the general stability of the material mass (soil). CRATER A typically bowl-shaped or saucer-shaped pit or depression, generally of considerable size and with steep inner slopes, formed on a terrestrial or planetary surface or in the ground by the explosive release of chemical or kinetic energy; e.g., an impact crater or an explosion crater.
    [Show full text]
  • Ecological Implications of Climate Change on the Greater Yellowstone Ecosystem
    SPECIAL ISSUE Ecological Implications of Climate Change on the Greater Yellowstone Ecosystem Revisiting Climate Change Predictions from 1992 How Wetlands & Snowpack Help Us Understand a Changing Climate Water in the Balance Fear is Not the Answer he latest comprehensive review of changes to the global climate system states: “Warming of the climate systems is unequivocal, and since the 1950s many of the observed changes are unprecedented from decades to millennia” (from the 5th International Panel on Climate Change report, 2013). Knowing this is true does not necessarily help us Tunderstand how these changes are affecting Yellowstone National Park and the surrounding area. It is much more difficult to accurately predict the effects of climate change in a specific location than it is to describe changes to global averages that are happening “somewhere” on the planet. It is even harder to go out on a limb and say how complex natural systems, with all of their fuzzy feedback mechanisms, might react to a changing climate. Yet that is exactly the kind of information we need to help us deal with the uncertainty we are facing in what NPS Director Jon Jarvis has called “the greatest threat we have to the integrity of our natural resources.” How afraid should we be? Twenty-three years ago, in the very first issue ofYellowstone Science, Bill Romme and Monica Turner stuck their necks out, before climate change was a popular topic, and predicted three future climate scenarios and the changes that might happen to fire frequency and vegetation. For this special issue on climate change, they graciously offered to revisit their original thoughts, updating them with the benefit of better science and the knowledge they have gained since 1992 through vigorous study in Yellowstone.
    [Show full text]
  • Studies of the Chesapeake Bay Impact Structure— Introduction and Discussion
    Studies of the Chesapeake Bay Impact Structure— Introduction and Discussion By J. Wright Horton, Jr., David S. Powars, and Gregory S. Gohn Chapter A of Studies of the Chesapeake Bay Impact Structure— The USGS-NASA Langley Corehole, Hampton, Virginia, and Related Coreholes and Geophysical Surveys Edited by J. Wright Horton, Jr., David S. Powars, and Gregory S. Gohn Prepared in cooperation with the Hampton Roads Planning District Commission, Virginia Department of Environmental Quality, and National Aeronautics and Space Administration Langley Research Center Professional Paper 1688 U.S. Department of the Interior U.S. Geological Survey iii Contents Abstract . .A1 Introduction . 1 Previous Work . 3 The Chesapeake Bay Impact Structure . 5 Form and Structure . 5 Character of the Target . 7 Land Surface Features . 7 The USGS-NASA Langley Core . 9 Significant Results . 11 Crystalline Basement Rocks . 11 Impact-Modified and Impact-Generated Sediments . 11 Postimpact Sediments . 13 Water Depths—Impact and Postimpact . 14 Dating the Impact Event . 14 Structural Interpretation of Seismic Data . 15 Interpretation of Audio-Magnetotelluric (AMT) Soundings . 15 Hydrologic Effects and Water-Resources Implications . 16 Conceptual Model . 16 Acknowledgments . 18 References Cited . 18 Appendix A1. Abstracts of Research on the Chesapeake Bay Impact Structure, 2001–2003 . 24 Figures A1. Regional map showing the location of the Chesapeake Bay impact structure, the USGS-NASA Langley corehole at Hampton, Va., and some other coreholes in southeastern Virginia . A2 A2. Map of southeastern Virginia showing locations of recently completed coreholes and geophysical surveys in relation to the Chesapeake Bay impact structure . .4 A3. Satellite image of Chesapeake Bay showing location of the buried impact structure and nearby Mesozoic to Cenozoic tectonic features.
    [Show full text]
  • The Scientific Context for Exploration of the Moon
    Committee on the Scientific Context for Exploration of the Moon Space Studies Board Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This study is based on work supported by the Contract NASW-010001 between the National Academy of Sciences and the National Aeronautics and Space Administration. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the agency that provided support for the project. International Standard Book Number-13: 978-0-309-10919-2 International Standard Book Number-10: 0-309-10919-1 Cover: Design by Penny E. Margolskee. All images courtesy of the National Aeronautics and Space Administration. Copies of this report are available free of charge from: Space Studies Board National Research Council 500 Fifth Street, N.W. Washington, DC 20001 Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap. edu. Copyright 2007 by the National Academy of Sciences. All rights reserved.
    [Show full text]
  • 2019 Annual Report 11/1/18 to 10/31/2019
    2019 Annual Report 11/1/18 to 10/31/2019 Crater Community Hospice serves families in Chesterfield, Dinwiddie, Greensville, Prince George, Sussex, Surry, and Charles City, Petersburg, Colonial Heights, Hopewell and Emporia. YOUR Community hospice since 1995 A non-profit 501(c)3 You are OUR community, we are YOUR Hospice! YOU are a Part... YOU are part of our story. YOU are part of the story of each of our patients and families. YOU make a difference in so many ways, whether through massage therapy, grief support groups, veterans’ pinning ceremonies, or support of our thrift shop and events to name a few. Thank YOU for your kind and caring support of Crater Community Hospice. Every family’s journey with hospice is different. And we are here, every single day, to respond to the unique needs of every family, in that moment and for their whole journey. Thanks to YOU, we are proud to have provided support, care, love and help to over 7,500 patients and their families. Your support ensures that from the very first call to our office and through our range of services we are here at every stage in their journey. Thank YOU for your help and compassion! We could not do it without YOU! Crater Community Hospice team at the Progress Index’s Best of the Best Award Ceremony. Cora Harvey Armstrong performs at the benefit concert at Gillfield Baptist Church. Bob Huffman, Board Member, pins a veteran at a Veteran’s Day ceremony at Dunlop House. From Our CEO: Board of Directors We are so honored to be 2018-2019 recognized by our community as CHAIR Best of the Best in several JoAnn Glazier categories again in 2019 along VICE CHAIR with many other businesses that Rita Grammer Baldwin support our mission.
    [Show full text]
  • Yellowstone Science
    SPECIAL ISSUE Ecological Implications of Climate Change on the Greater Yellowstone Ecosystem Revisiting Climate Change Predictions from 1992 How Wetlands & Snowpack Help Us Understand a Changing Climate Water in the Balance Fear is Not the Answer he latest comprehensive review of changes to the global climate system states: “Warming of the climate systems is unequivocal, and since the 1950s many of the observed changes are unprecedented from decades to millennia” (from the 5th International Panel on Climate Change report, 2013). Knowing this is true does not necessarily help us Tunderstand how these changes are affecting Yellowstone National Park and the surrounding area. It is much more difficult to accurately predict the effects of climate change in a specific location than it is to describe changes to global averages that are happening “somewhere” on the planet. It is even harder to go out on a limb and say how complex natural systems, with all of their fuzzy feedback mechanisms, might react to a changing climate. Yet that is exactly the kind of information we need to help us deal with the uncertainty we are facing in what NPS Director Jon Jarvis has called “the greatest threat we have to the integrity of our natural resources.” How afraid should we be? Twenty-three years ago, in the very first issue ofYellowstone Science, Bill Romme and Monica Turner stuck their necks out, before climate change was a popular topic, and predicted three future climate scenarios and the changes that might happen to fire frequency and vegetation. For this special issue on climate change, they graciously offered to revisit their original thoughts, updating them with the benefit of better science and the knowledge they have gained since 1992 through vigorous study in Yellowstone.
    [Show full text]
  • 太空|TAIKONG 国际空间科学研究所 - 北京 ISSI-BJ Magazine No
    太空|TAIKONG 国际空间科学研究所 - 北京 ISSI-BJ Magazine No. 10 June 2018 LUNAR AND PLANETARY SEISMOLOGY IMPRINT FOREWORD 太空 | TAIKONG In the last few years, during different planetary seismology. Especially ISSI-BJ Magazine meetings, discussions took place on since although the data available possible international cooperation dates back from the Apollo missions on planetary science, especially in the 70s, and there are several Address: No.1 Nanertiao, in the field of lunar seismology. papers reviewing past results on Zhongguancun, Haidian District, These discussions were related lunar seismology, the ISSI-BJ forum, Beijing, China to the possibility of joint scientific however, was rather to focus on the Postcode: 100190 experiments on Chinese lunar prospects of new science and future Phone: +86-10-62582811 Website: www.issibj.ac.cn missions or European space projects. programs, as there is still much It was subsequently suggested that to do in terms of new science. In Authors the scientists who are interested this sense, the proposed topic has in this topic should have closer a very high added value for ISSI- Philippe Lognonné (IPGP, France), Wing Huen Ip (NCU, GIA, Taiwan), contacts to pave the way for future BJ, especially with the success of Yosio Nakamura (UTIG, USA), collaboration when the opportunities Chang’e-3, and even more for the Wang Yanbin (SESS, PKU, China), Mark Wieczorek (LAGRANGE/ arise. With this in mind, the ISSI-BJ future Chinese Lunar/Planetary OCA, France) Executive Director, Prof. Maurizio missions, which may consider having William Bruce Banerdt (JPL/ Falanga, has been invited to visit Prof. such instruments onboard. The ISSI- Caltech, USA), Raphael Garcia Ip Wing Huen at the National Central BJ Science committee members (ISAE/SUPAERO, France), Patrick Gaulme (MPS/MPG, Germany), University, and, subsequently, he have positively recommended the Jan Harms (GSSI, Italy), Heiner visited Prof.
    [Show full text]