The Yavapai-Mazatzal Boundary: a Long-Lived Tectonic Element in the Lithosphere of Southwestern North America

Total Page:16

File Type:pdf, Size:1020Kb

The Yavapai-Mazatzal Boundary: a Long-Lived Tectonic Element in the Lithosphere of Southwestern North America The Yavapai-Mazatzal boundary: A long-lived tectonic element in the lithosphere of southwestern North America M.B. Magnani† Department of Earth Science, Rice University, Houston, Texas, USA K.C. Miller Department of Geological Sciences, University of Texas, El Paso, Texas, USA A. Levander Department of Earth Science, Rice University, Houston, Texas, USA K. Karlstrom Department of Earth and Planetary Sciences, New Mexico University, Albuquerque, New Mexico, USA ABSTRACT bivergent orogen that we also suggest is a the nature of the Yavapai-Mazatzal boundary Paleoproterozoic zone of weakness that has and no explanation for its transitional character. A seismic refl ection profi le crossing the subsequently acted as a conduit for magmas Likewise the signifi cance of major tectonic linea- Jemez lineament in north-central New and a locus of tectonism. ments in today’s lithosphere has been controver- Mexico images oppositely dipping zones of sial. The Jemez lineament, originally defi ned as refl ections that converge in the deep crust. Keywords: inherited features, low angle an alignment of Tertiary–Quaternary volcanic We interpret these data as a Paleoprotero- boundary, transition zone, deep seismic pro- centers (Mayo, 1958), is a northeast-trending, zoic bivergent orogen, centered on the Jemez fi le, bivergent orogen. ~100-km-wide zone characterized by active uplift lineament, that formed during original (Wisniewski and Pazzaglia, 2002), low seismic Proterozoic crustal assembly by collision of INTRODUCTION velocity in the mantle (Dueker et al., 2001), and Mazatzal island arcs with Yavapai proto– repeated reactivation (Aldrich, 1986). Its south- orth American continent at ca. 1.68 1.65 Ga. A widely accepted model for growth of the ern edge also coincides approximately with the The two major sets of refl ections within the southwestern United States emphasizes Protero- southern edge of a 300-km-wide transition zone Yavapai-Mazatzal transition boundary dip zoic southward accretion of juvenile lithosphere between the Yavapai (1.8–1.7 Ga) and Mazatzal at 15° 20°, and we interpret them as part of a to the North American continent between 1.8 (1.7–1.6 Ga) Proterozoic provinces (Karlstrom south-dipping thrust system and as a north- and 1.6 Ga (Hamilton, 1981; Bowring and Karl- and Humphreys, 1998). This paper presents new dipping crustal-scale duplex that formed syn- strom, 1990). This model has subsequently been deep-crustal seismic refl ection results across the chronously with the thrust system. The upper challenged by evidence for pre 1.8 Ga crust Jemez lineament of New Mexico. On the basis crust shows structures recording a succession south of the Wyoming craton (Hawkins et al., of seismic and geologic data, we argue that the of tectonic and magmatic events from the 1996; Hill and Bickford, 2001), suggesting that Jemez lineament represents both a Paleoprotero- Paleoproterozoic to the Holocene. Notable recycling of previously accreted crust could have zoic suture zone and a long-lived intracontinental among these structures is a system of nappes been a prominent process in the early stages of tectonic and magmatic boundary. that formed during development of the biver- the tectonic history of the southwestern United The 170-km-long seismic refl ection line gent orogen. Elements of the nappe system States. Whereas locations with evidence for pre (Fig. 1) was acquired in 1999 as part of the are exposed in Rocky Mountain uplifts and 1.8 Ga inheritance are found either proximal to National Science Foundation Continental have been dated as having formed at 1.68 Ga, Archean terranes (Hill and Bickford, 2001) or Dynamics Program within the Rocky Moun- at depths of 10 km and at temperatures in the Mojave province (Hawkins et al., 1996), tains Project (CD-ROM; CD-ROM Working of >500 °C. We also see continuous bright no evidence for an inherited component is found Group, 2002). The profi le, recorded with a refl ections in the upper part of the middle in either the Mazatzal province or most of the 1001-channel system and Vibroseis sources crust that we associate with basaltic sills that Yavapai province. This circumstance suggests (CDP [common depth point] interval = 12.5 m; postdate accretion. The data show that the that, at least in these provinces, the accretionary source interval = 100 m; 8–60 Hz sweep), Yavapai-Mazatzal suture is low angle (~20°), model remains the most plausible option. extends north-south just east of the Rocky an observation that explains why the bound- The assembly boundaries, i.e., the sutures Mountain Front Range faults, following the ary between the provinces has previously between accreted island arcs and oceanic frag- eastern edge of the outcrops of Proterozoic been so hard to defi ne in the surface geology. ments within these provinces, have always been rocks in the Sangre de Cristo Mountains, and The Jemez lineament overlies the root of this diffi cult to identify. In spite of the large number extends south of Las Vegas onto the Great Plains of studies carried out in the southwestern United east of the Pedernal Hills (Fig. 1). The poststack †E-mail: [email protected]. States, there is no agreement on the location and depth-migrated seismic image (Fig. 2), although GSA Bulletin; September/October 2004; v. 116; no. 7/8; p. 000–000; doi: 10.1130/B25414.1; 3 fi gures. For permission to copy, contact [email protected] © 2004 Geological Society of America 2 America Bulletin, Geological Societyof 108˚0’0"W 107˚0’0"W 106˚0’0"W 105˚0’0"W 104˚0’0"W 37˚0’0"N Volcanic rocks (Quaternary, I I Miocene and Oligocene) I INCE I ROV Denver I I I Rio Grande rift sediment APAI P I YAV I Mts TZAL I I I I APAI-MAZAION I Phanerozoic rocks undivided I YAV I I TRANSIT I I I I I 1.4 Ga plutons nde I I I I Arch I 1.7 - 1.65 Ga plutons I I Sierra Gra I Albuquerque I VINCE 13000 1.67 - 1.65 Ga Mazatzal crust TZAL PRO MAZA 1.69 Ga 36˚0’0"N 12000 I Hondo + Vadito Groups km I 10000 I 0 100 200 I Sangre de Cristo I I pre ~ 1.7 Ga Yavapai crust I 9000 I I Santa T I etal. MAGNANI Z I Fe 8000 I JEME I LINEAMEN I I I Las Vegas I I I I Volcanic vents I I I 6000 I LINEAMENT I I I I JEMEZ I I I I I I 10000 I 5000 I I September/October I Seismic reflection profile I I 11000 I I I I I 4000 with CDP points I 12000 I I I 3000 I II Sandia Mts I I Miocene normal fault I I I I 35˚0’0"N Albuquerque I I 2000 I I I I I I I I Paleoproterozoic thrust I 1000 I 2004 I Pennsylvanian strata ManzanoI Mts zero isopach I Pedernal I I Hills Jemez Lineament I MORENCI I I 050100 Km Laramide reverse fault LINEAMENT I and monoclines 107˚0’0"W 106˚0’0"W 105˚0’0"W 104˚0’0"W Figure 1. Simplifi ed geologic map of the northern New Mexico showing basement rocks, Tertiary–Quaternary volcanic centers and Rio Grande rift sediments. CD-ROM seis- mic line is shown with CDP numbers (thick solid line). OVF—Ocate volcanic fi eld; JMVF—Jemez Mountains volcanic fi eld, MTVF—Mount Taylor volcanic fi eld. THE YAVAPAI-MAZATZAL BOUNDARY complicated, can be interpreted on the basis of laterally continuous event (identifi ed as A in refl ectors at 10–12 km depth (C) that form an present knowledge of the evolution of south- Fig. 2) separates almost undeformed sedimen- arch in the section over a length of >100 km. western North America developed from surface tary rocks from folded and faulted basement The apex of the arch is beneath Las Vegas, New mapping, geochemistry, and geochronology. structure. Depth to basement in the north is 2 km Mexico. To the south, between CDP 1250 and The striking features of the profi le are (1) (1.2 s). This refl ection shallows over the Sierra CDP 2250 are three south-dipping refl ections the prominent undeformed refl ection at the Grande uplift near Las Vegas, New Mexico, and (E) traceable at depths of 2 to 10 km. base of the Paleozoic sedimentary rocks north in the south appears only intermittently at the At depths of >8 km, the differences between of the Jemez lineament and the absence of this shallowest resolvable depths (~300 m). the northern and the southern part of the pro- refl ection to the south, (2) simple, bright, sub- Immediately beneath the sedimentary cover fi le are even more remarkable. In the northern horizontal refl ections in the upper and middle in the north is a group of undulating coherent section the bright refl ectors (C in Fig. 2) at crust, (3) the change in the dip of refl ectivity refl ections (B1 in Fig. 2) extending to ~8 km 12–15 km overprint a southward-dipping 8-km- north and south of the Jemez lineament in the depth that, upon close examination, are seen to thick band of refl ectors (D1) that extends from middle crust, and (4) the absence of signifi cant be made up of a number of short refl ection seg- 9 km depth at the northern edge of the profi le, Moho refl ectivity. These features are described ments. The undulating refl ectors disappear into to ~33 km depth near CDP 11000, a distance of below from shallowest to deepest and are then a featureless region south of CMP 10500.
Recommended publications
  • Capulin Volcano National Monument, New Mexico
    GeologicGeologic Resource Resourcess Inventory Inventory Scoping Scoping Summary Summary Capulin Glacier VolcanoBay National National Park, Monument Alaska New Mexico Geologic Resources Division Geologic Resources Division PreparedNational Park by Katie Service KellerLynn National Park Service August US Department 31, 2011 of the Interior U.S. Department of the Interior The Geologic Resources Inventory (GRI) Program, administered by the Geologic Resources Division, provides each of 270 identified natural area National Park System units with a geologic scoping meeting, a scoping summary, a digital geologic map, and a geologic resources inventory report. Geologic scoping meetings generate an evaluation of the adequacy of existing geologic maps for resource management, provide an opportunity to discuss park-specific geologic management issues and, if possible, include a site visit with local experts. The purpose of these meetings is to identify geologic mapping coverage and needs, distinctive geologic features and processes, resource management issues, and potential monitoring and research needs. The National Park Service (NPS) Geologic Resources Division held a GRI scoping meeting for Capulin Volcano National Monument on May 10, 2011, at the headquarters/visitor center, which is located 48 km (30 mi) east of Raton, New Mexico. Participants at the meeting included NPS employees from the national monument, Geologic Resources Division, Bent’s Old Fort National Historic Site, Sand Creek Massacre National Historic Site, and the Southern Plains Network; and cooperators from Colorado State University and the New Mexico Bureau of Geology and Mineral Resources (see table 1, p. 15). Superintendent Peter Armato welcomed the group and expressed his support of the Geologic Resources Inventory. Although Armato had only been at the national monument for a month, he was thrilled to be in a “geologic park.” Armato’s many academic degrees are in geologic disciplines.
    [Show full text]
  • Seismic Investigation of the Yavapai-Mazatzal Transition Zone and the Jemez Lineament in Northeastern New Mexico
    Seismic Investigation of the Yavapai-Mazatzal Transition Zone and the Jemez Lineament in Northeastern New Mexico Maria Beatrice Magnani and Alan Levander Department of Earth Science, Rice University, Houston, Texas Kate C. Miller and Tefera Eshete Department of Geological Sciences, University of Texas at El Paso, El Paso, Texas Karl E. Karlstrom Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico A new seismic reflection profile of the Precambrian lithosphere under the Jemez Lineament (JL) (northeastern New Mexico, USA) shows impressive reflectivity throughout the crust. The upper crust is characterized by a 2 km thick undeformed Paleozoic and Mesozoic sedimen- tary sequence above the Precambrian basement. At a depth of 5–8 km, undulating reflec- tions image a Proterozoic nappe cropping out in the nearby Rincon Range. To the south the upper crust is seismically transparent except for south dipping reflections at 2–10 km depth. The middle-lower crust, from 10–45 km depth, shows oppositely dipping reflections that converge in the deep crust (35–37 km) roughly at the center of the profile. To the north the reflectivity dips southward at 25° to a depth of 33 km before fading in the lower crust. In the southern part of the profile a crustal-scale duplex structure extends horizontally for more than 60 km. We interpret the oppositely dipping reflections as the elements of a doubly ver- gent suture zone that resulted from the accretion of the Mazatzal island arc to the southern margin of the Yavapai proto-craton at ~1.65–1.68 Ga.
    [Show full text]
  • Facts and Hypotheses Regarding the Miocene–Holocene Jemez Lineament, New Mexico, Arizona and Colorado Fraser Goff and Shari A
    New Mexico Geological Society Downloaded from: https://nmgs.nmt.edu/publications/guidebooks/72 Facts and hypotheses regarding the Miocene–Holocene Jemez Lineament, New Mexico, Arizona and Colorado Fraser Goff and Shari A. Kelley, 2021, pp. 101-116 in: Geology of the Mount Taylor area, Frey, Bonnie A.; Kelley, Shari A.; Zeigler, Kate E.; McLemore, Virginia T.; Goff, Fraser; Ulmer-Scholle, Dana S., New Mexico Geological Society 72nd Annual Fall Field Conference Guidebook, 310 p. This is one of many related papers that were included in the 2021 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, Color Plates, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Quaternary Fault and Fold Database of the United States
    Jump to Navigation Quaternary Fault and Fold Database of the United States As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the interactive fault map. Jemez-San Ysidro fault, Jemez section (Class A) No. 2029a Last Review Date: 2016-06-26 Compiled in cooperation with the New Mexico Bureau of Geology & Mineral Resources citation for this record: Jochems, A.P., Kelson, K.I., and Personius, S.F., compilers, 2016, Fault number 2029a, Jemez-San Ysidro fault, Jemez section, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:23 PM. Synopsis General: The Jemez-San Ysidro fault is a steeply east-dipping normal fault that, in part, forms the active western margin of the Rio Grande rift south of the Valles caldera. The fault is divided into sections on the basis of a 45° change in fault strike at the latitude of Cañones and evidence for young (Holocene) rupture along its southern section. The northern, northeast-striking section of the fault (Jemez section) is aligned with northeast-striking faults within the collapsed center of the Valles caldera and the Embudo fault, and is coincident with the Jemez Lineament. The Embudo fault, and is coincident with the Jemez Lineament. The central fault (San Ysidro section) merges with the southern fault (Calabacillas section) about 7 km south of the town of San Ysidro.
    [Show full text]
  • B2158 Pt 15 Text Copy
    Previous section Volume contents The Fate of the Colorado Plateau—A View from the Mantle By Felix E. Mutschler,1 Edwin E. Larson,2 and David L. Gaskill3 CONTENTS Abstract ........................................................................................................................... 204 Passive Hot Spots Bordering the Colorado Plateau ........................................................ 204 Great Falls Tectonic Zone (GFTZ) ......................................................................... 206 Colorado Mineral Belt (COMB) ............................................................................. 211 Northern Rio Grande Rift (NRGR)......................................................................... 215 Great Basin Regional Gravity Low (GBRGL)........................................................ 215 Southern Basin And Range Province (SBR)........................................................... 217 Scenario for the Evolution of Continental Passive Hot Spots......................................... 218 Summary and Conclusions.............................................................................................. 219 Acknowledgments........................................................................................................... 219 References Cited ............................................................................................................. 219 FIGURES 1–3. Maps of the Western United States showing: 1. Relation of Colorado Plateau to geophysical provinces..............................
    [Show full text]
  • Space-Time Patterns of Late Cretaceous to Present Magmatism in New Mexico--Comparison with Andean Volcanism and Potential for Fu
    NEW MEXICO BUREAU OF GEOLOGY & MINERAL RESOURCES, BULLETIN 160, 2004 13 Space­time patterns of Late Cretaceous to present magmatism in New Mexico—comparison with Andean volcanism and potential for future volcanism New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, NM 87801Charles E. Chapin, Maureen Wilks, and William C. McIntosh Abstract Space­time plots of more than 3000 K­Ar and 40Ar/39Ar radioisotopic ages of Late Cretaceous and Cenozoic volcanic and plutonic rocks are used to evaluate the evolution of magmatism in New Mexico. Several tectonomagmatic subdivisions can be seen in the data. These are: (1) Late Cretaceous to middle Eocene (75–45 Ma) magmatism occurred along and to the south of the northeast­trending Santa Rita lineament which marked the southern boundary of the well­known Laramide magma gap; (2) following the major decrease in Farallon–North America convergence at about 45 Ma, andesitic volcanism engulfed the southwestern quarter of New Mexico to form the intermediate­composition basal one­half to two­thirds of the Mogollon–Datil volcanic field and spread eastward into the Sierra Blanca field; (3) at 37–36 Ma, the ignimbrite “flare­up” began from Trans­Pecos Texas to central Colorado concurrently with a change in mafic volcanism and the first signs of regional extension; (4) the maximum areal extent of magmatism occurred in the Oligocene as activity spread along the nas­ cent Rio Grande rift and in a minor way into the four corners of the state; (5) magmatism waned
    [Show full text]
  • NMBGMR OFR 541: a Geologic Study of Capulin Volcano National
    A Geologic Study of the Capulin Volcano National Monument and surrounding areas, Union and Colfax Counties, New Mexico by William O. Sayre and Michael H. Ort New Mexico Bureau of Geology and Mineral Resources, New Mexico Tech Socorro, New Mexico 87801 Open-file Report 541 August, 2011 A geologic study of Capulin Volcano National Monument and surrounding areas Final Report Cooperative Agreement CA7029-2-0017 December 4, 1999 Submitted to: Capulin Volcano National Monument P. O. Box 80 Capulin, New Mexico 88414 Submitted by: William O. Sayre, Ph.D., P.G. College of Santa Fe 1600 St. Michael’s Drive Santa Fe, New Mexico 87505-7634 and Michael H. Ort, Ph.D. Department of Geology PO Box 4099 Northern Arizona University Flagstaff, Arizona 86011 Table of Contents Executive Summary ........................................................................................................ 2 Introduction ..................................................................................................................... 2 Body of Report .............................................................................................................. 17 Discussion and Conclusions ......................................................................................... 22 Recommendations for Future Work .............................................................................. 64 References .................................................................................................................... 65 Appendices…………………………………………………………………………………….
    [Show full text]
  • Rio Grande Rift--Problems and Perspectives W
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/35 Rio Grande rift--Problems and perspectives W. Scott Baldridge, Kenneth H. Olsen, and Jonathan F. Callender, 1984, pp. 1-12 in: Rio Grande Rift (Northern New Mexico), Baldridge, W. S.; Dickerson, P. W.; Riecker, R. E.; Zidek, J.; [eds.], New Mexico Geological Society 35th Annual Fall Field Conference Guidebook, 379 p. This is one of many related papers that were included in the 1984 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Upper Mantle Tomographic Vp and Vs Images of the Rocky Mountains in Wyoming, Colorado and New Mexico: Evidence for a Thick Heterogeneous Chemical Lithosphere
    Upper Mantle Tomographic Vp and Vs Images of the Rocky Mountains in Wyoming, Colorado and New Mexico: Evidence for a Thick Heterogeneous Chemical Lithosphere Huaiyu Yuan and Ken Dueker Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming Upper mantle tomographic P- and S-wave images from the CD-ROM teleseis- mic deployment reveal two major lithospheric anomalies across two primary structural boundaries in the southern Rocky Mountains: a ~200 km deep high ve- locity north-dipping "Cheyenne slab" beneath the Archean-Proterozoic Cheyenne belt, and a 100 km deep low velocity "Jemez body" beneath the Proterozoic- Proterozoic Jemez suture. The Cheyenne slab is most likely a slab fragment ac- creted against the Archean Wyoming mantle keel during the Proterozoic arc col- lision processes. If this interpretation is correct, then the ancient slab’s thermal signature has been diffused away and non-thermal explanations for the slab’s iso- tropic high velocity signature are required. Tomographic modeling of possible chemical and anisotropic velocity variations associated with the slab shows that our isotropic velocity images can be explained via non-thermal models. In addi- tion, the de-correlation of the P- and S-velocity images and the CD-ROM shear wave splitting modeling [Fox and Sheehan, this volume] are consistent with a dipping slab. The Jemez body plausibly results from the combination of low- solidus materials in the suture lithosphere and the late Cenozoic regional thermal heating of the lithosphere. The 100 km deep lithospheric laying [Zurek and Dueker, this volume] and the uniform shear wave splitting measurements support our contention that the Jemez body is a lithospheric anomaly.
    [Show full text]
  • Tectonic Model for the Proterozoic Growth of North America
    Tectonic model for the Proterozoic growth of North America Steven J. Whitmeyer* Department of Geology and Environmental Science, James Madison University, Harrisonburg, Virginia 22807, USA Karl E. Karlstrom* Department of Earth and Planetary Science, University of New Mexico, Albuquerque, New Mexico 87131, USA ABSTRACT ary provinces are composed of numerous 10 attempts to reconstruct the cycle of superconti- to 100 km scale terranes or blocks, separated nent forma tion and fragmentation in the Pre- This paper presents a plate-scale model by shear zones, some of which had compound cambrian. North America offers among the most for the Precambrian growth and evolution histories as terrane sutures and later crustal- complete geologic, geophysical, and iso topic of the North American continent. The core assembly structures. Major northeast-trend- data sets of any continent and so is an impor- of the North American continent (Canadian ing provinces are the Yavapai province (1.80– tant case study for continental evolution. It was shield) came together in the Paleoproterozoic 1.70 Ga), welded to North America during the also centrally located in the Precambrian super- (2.0–1.8 Ga) by plate collisions of Archean 1.71–1.68 Ga Yavapai orogeny; the Mazatzal continents of Nuna (1.8–1.6 Ga) and Rodinia continents (Slave with Rae-Hearne, then province (1.70–1.65 Ga), added during the (1.1–0.9 Ga); therefore, improved understanding Rae-Hearne with Superior) as well as smaller 1.65–1.60 Ga Mazatzal orogeny; the Granite- of the evolution of North America needs to be Archean continental fragments (Wyoming, Rhyolite province (1.50–1.30 Ga), added dur- directly linked with studies of past superconti- Medicine Hat, Sask, Marshfi eld, Nain cra- ing the 1.45–1.30 Ga tectonic event associated nent reconstructions (e.g., Li et al., 2007).
    [Show full text]
  • Revised Location for the Yavapai-Mazatzal Crustal Province Boundary in New Mexico: Hf Isotopic Data from Proterozoic Rocks of the Nacimiento Mountains T
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/66 Revised location for the Yavapai-Mazatzal crustal province boundary in New Mexico: Hf isotopic data from Proterozoic rocks of the Nacimiento Mountains T. A. Grambling, M. Holland, K. E. Karlstromn, G. E. Gehrels, and M. Pecha, 2015, pp. 175-184 in: Guidebook 66 - Geology of the Las Vegas Area, Lindline, Jennifer; Petronis, Michael; Zebrowski, Joseph, New Mexico Geological Society 66th Annual Fall Field Conference Guidebook, 312 p. This is one of many related papers that were included in the 2015 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.
    [Show full text]
  • Map Mf-1465-B
    MACHETTE AND PERSONIUS--MAP OF QUATERNARY AND PLIOCENE SCALE 1:250,000 MAP MF-1465-B FAULTS IN THE EASTERN PART OF THE AZTEC 1° X 2° (INCLUDES PAMPHLET) QUADRANGLE AND THE VVESTERN PART OF THE RATON 1° X 2° QUADRANGLE, NORTHERN NEW MEXICO BAREA OF MAP DEPARTMENT OF THE INTERIOR MISCELLANEOUS FIELD STUDIES U.S. GEOLOGICAL SURVEY MAP MF-1465-B PAMPHLET MAP OF QUATERNARY AND PLIOCENE FAULTS IN THE EASTERN PART OF THE AZTEC 1° x "}!J QUADRANGLE AND THE'WESTERN PART OF THE RATON 1° x 1!J QUADRANGLE,, NORTHERN NEW MEXICO By Michael N. Machette and Stephen F. Personius 1984 INTRODUCTION This map is the second of a series being compiled measurements are probably accurate to within 10 · at a scale of 1:250,000 for the Rio Grande rift in New percent of the actual surface offset, whereas the Mexico, western Texas, and southeastern Arizona (see second type of data usually reflects the range of index map). It shows known and inferred faults in the values that are common along a fault, for exat:nple 5- Taos 'Plateau and adjacent regions along which move­ 20 m of surface offset. ment has taken place, during the Quaternary or the Only faults that displace, or are suspected to Pliocene. The Taos Plateau, as defined by Upson displace, Pliocene or younger materials are shown on . (1939), occupies the eastern part of the Aztec 1° x 2° this map. Many more young faults may be present · quadrangle and the western part of the Raton 1° x 2° than are shown here.
    [Show full text]