Tectonic Model for the Proterozoic Growth of North America

Total Page:16

File Type:pdf, Size:1020Kb

Tectonic Model for the Proterozoic Growth of North America Tectonic model for the Proterozoic growth of North America Steven J. Whitmeyer* Department of Geology and Environmental Science, James Madison University, Harrisonburg, Virginia 22807, USA Karl E. Karlstrom* Department of Earth and Planetary Science, University of New Mexico, Albuquerque, New Mexico 87131, USA ABSTRACT ary provinces are composed of numerous 10 attempts to reconstruct the cycle of superconti- to 100 km scale terranes or blocks, separated nent forma tion and fragmentation in the Pre- This paper presents a plate-scale model by shear zones, some of which had compound cambrian. North America offers among the most for the Precambrian growth and evolution histories as terrane sutures and later crustal- complete geologic, geophysical, and iso topic of the North American continent. The core assembly structures. Major northeast-trend- data sets of any continent and so is an impor- of the North American continent (Canadian ing provinces are the Yavapai province (1.80– tant case study for continental evolution. It was shield) came together in the Paleoproterozoic 1.70 Ga), welded to North America during the also centrally located in the Precambrian super- (2.0–1.8 Ga) by plate collisions of Archean 1.71–1.68 Ga Yavapai orogeny; the Mazatzal continents of Nuna (1.8–1.6 Ga) and Rodinia continents (Slave with Rae-Hearne, then province (1.70–1.65 Ga), added during the (1.1–0.9 Ga); therefore, improved understanding Rae-Hearne with Superior) as well as smaller 1.65–1.60 Ga Mazatzal orogeny; the Granite- of the evolution of North America needs to be Archean continental fragments (Wyoming, Rhyolite province (1.50–1.30 Ga), added dur- directly linked with studies of past superconti- Medicine Hat, Sask, Marshfi eld, Nain cra- ing the 1.45–1.30 Ga tectonic event associated nent reconstructions (e.g., Li et al., 2007). tons). The resulting Trans-Hudson orogen was with A-type intracratonic magmatism; and The purpose of this paper is to present a visual a collisional belt similar in scale to the mod- the Llano-Grenville province (1.30–1.00 Ga), model for the development of the Precambrian ern Himalayas. It contains mainly reworked added during the 1.30–0.95 Ga broader core of North America (i.e., Laurentia) via a Archean crust, but remnants of juvenile vol- Grenville orogeny. During each episode of series of time-slice maps (Figs. 1–20) and ani- canic belts are preserved between Archean addition of juvenile lithosphere, the transfor- mations (Animations 1 and 21). These visualiza- masses. The thick, buoyant, and composi- mation of juvenile crust into stable continen- tions may be useful both for nongeology audi- tionally depleted mantle lithosphere that now tal lithosphere was facilitated by voluminous ences and for introductory geology teaching as a underlies North America, although domi- granitoid plutonism that stitched new and graphic display of plate tectonic models for con- nantly of Archean age, took its present shape existing orogenic boundaries. Slab roll back tinental growth and the time-integrated record by processes of collisional orogenesis and likely created transient extensional basins (1.70 and preserved in continents. For more advanced has a scale of mantle heterogeneity similar to 1.65 Ga) in which Paleoproterozoic quartzite- audiences, we hope this model will stimulate that exhibited in the overlying crust. rhyolite successions were deposited, then critical debate about the tectonic evolution of In marked contrast, lithosphere of south- thrust imbricated as basins were inverted. North America, resulting plate-scale hetero- ern North America (much of the conti nental The lithospheric collage that formed from geneity, processes that shape and modify con- United States) was built by progressive dominantly juvenile terrane accretion and tinents, and piercing points that can be used to addition of a series of dominantly juvenile stabilization (1.8–1.0 Ga) makes up about match the margins of ancestral North America vol canic arcs and oceanic terranes accreted half of the present-day North American con- (Laurentia) to neighboring continental margins along a long-lived southern (present coordi- tinent. Throughout (and as a result of) this of past supercontinents. We recognize that any nates) plate margin. Early juvenile additions long-lived convergent cycle, mantle litho- model at the scale of a whole continent and over ( Pembine-Wausau, Elves Chasm arcs) formed sphere below the accretionary provinces was 1 b.y. of history is necessarily simplifi ed, based at the same time (1.84–1.82 Ga) the core was more hydrous, fertile, and relatively weak on variable quality data, and limited by the biases assembling. Following fi nal assembly of the compared to mantle lithosphere under the and incomplete knowledge of the authors. Archean and Paleoproterozoic core of North Archean core. America by 1.8 Ga, major accretionary prov- METHODS inces (defi ned mainly by isotopic model ages) Keywords: Proterozoic, Rodinia, Laurentia, were added by arc-continent accretion, analo- continent assembly, North America This compilation of pre-Neoproterozoic tec- gous to present-day convergence between tonic belts in southern Laurentia is based pri- Australia and Indonesia. Also similar to Indo- INTRODUCTION AND SCOPE marily on geologic and geochronologic data nesia, some accreted terranes contain older from exposed Proterozoic outcrops (~10% of continental crustal material [Archean(?) The formation and long-term behavior of Mojavia], but the extent and geometry of continental lithosphere requires a plate-scale, 1If you are viewing the PDF, or if you are read- ing this paper offl ine, please visit http://dx.doi.org/ older crust are not well known. Accretion- time-integrated understanding of crust and 10.1130/GES00055.S1 and http://dx.doi.org/10.1130/ mantle formation and modifi cation events within GES00055.S2 or the full-text article on www. *[email protected]; [email protected] single continents, in association with continued gsajournals.org to view the animations. Geosphere; August 2007; v. 3; no. 4; p. 220–259; doi: 10.1130/GES00055.1; 20 fi gures; 2 animations. 220 For permission to copy, contact [email protected] © 2007 Geological Society of America Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/3/4/220/857342/i1553-040X-3-4-220.pdf by guest on 23 September 2021 Proterozoic growth of North America 2002). Aeromagnetic maps have been used in the matism (Finn and Sims, 2005). Thus, we believe interpretation of basement lithotypes and struc- that the maps show realistic portrayals of the ture, including the western United States (e.g., tectonic grain and nature of heterogeneity, and Lidiak, 1974; Ramberg and Smithson, 1975; perhaps even a crude estimate of the percentage Cordell and Grauch, 1985; Finn et al., 2001; of granitoid plutons versus country rock of the Sims and Stein, 2003; Grauch et al., 2003; Finn subsedimentary basement across the continental and Sims, 2005), Canada (e.g., Pilkington et al., United States. However, nearly all contacts on 2000; Ross et al., 1991), Australia (e.g., Gunn these map reconstructions have some degree of et al., 1997), and elsewhere (e.g., Henkel, 1991). uncertainty, and we have not tried to portray the Aeromagnetic anomalies primarily refl ect variable levels of uncertainty. variations in magnetization properties of Crust of rifted margins tends to be thinned Protero zoic crystalline basement (Grauch et al., and modifi ed during extension, after which 2003). Magnetic intensities refl ect distribution thinned crustal blocks can become incorporated of magnetite and other iron-bearing minerals and overprinted as they are reaccreted to conver- in the crust. Sedimentary strata generally have gent plate margins. Therefore we rely heavily on little magnetic character and are transparent in Nd and Pb isotopic data to indicate an average regional aeromagnetic mapping (Finn and Sims, crustal model age for a given province. When 2005). Large Cenozoic volcanic fi elds can model ages are within 10–100 m.y. of U-Pb Animation 1. Powerpoint sequence of the obscure magnetic patterns in the basement, but crystallization ages, we refer to the terranes as sequential assembly and growth of Lauren- for much of the western United States, Ceno- juvenile. However, when model ages are signifi - tia from ca. 2.0 Ga through ca. 0.535 Ga. zoic volcanics tend to have short-wavelength cantly older than crystallization ages (e.g., for Powerpoint slides follow the order of Fig- anomalies related to known vent areas and portions of the Trans-Hudson orogen, Mojave ures 2–20 in the text. fl ows such that the generally more persistent province, and the pre-Appalachian rifted mar- basement magnetic fabric is still decipherable. gin), the model ages commonly represent a In areas where there are outcrops (e.g., Rocky mixture of sources with different mantle sepa- Mountains), granite and granodiorite plutons ration ages that can be interpreted in different often are characterized by relatively high ampli- ways. (1) They may represent the presence of tude magnetic highs (20–200 nT), and this char- older crustal blocks in the subsurface that were acter has been used to extrapolate the contacts sampled by magmas during later partial melting of plutons into covered areas (Karlstrom et al., in the crust and/or tectonically imbricated with 2004; Finn and Sims, 2005). In the southern younger crust. (2) They may represent detritus Rocky Mountains, long-wavelength (>50 km), from older terranes that become mixed in with high-amplitude (>500 nT above base values) a younger terrane in a proportion to produce a magnetic anomalies commonly correspond to mixed model age. While we attempt to distin- 1.4 Ga plutons (Finn and Sims, 2005). In this guish areas of juvenile crust of a given age from paper, this has been invoked for interpretations areas of reworked older crust (reworked in the of the distribution and large areal extent of gran- sense of 1 and/or 2 above), the mixed model itoid plutons in the mid-continent (Fig.
Recommended publications
  • Tectonic Imbrication and Foredeep Development in the Penokean
    Tectonic Imbrication and Foredeep Development in the Penokean Orogen, East-Central Minnesota An Interpretation Based on Regional Geophysics and the Results of Test-Drilling The Penokean Orogeny in Minnesota and Upper Michigan A Comparison of Structural Geology U.S. GEOLOGICAL SURVEY BULLETIN 1904-C, D AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur­ rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur­ vey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month­ ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of general in­ Books of the U.S.
    [Show full text]
  • Geologic Map of the Central San Juan Caldera Cluster, Southwestern Colorado by Peter W
    Geologic Map of the Central San Juan Caldera Cluster, Southwestern Colorado By Peter W. Lipman Pamphlet to accompany Geologic Investigations Series I–2799 dacite Ceobolla Creek Tuff Nelson Mountain Tuff, rhyolite Rat Creek Tuff, dacite Cebolla Creek Tuff Rat Creek Tuff, rhyolite Wheeler Geologic Monument (Half Moon Pass quadrangle) provides exceptional exposures of three outflow tuff sheets erupted from the San Luis caldera complex. Lowest sheet is Rat Creek Tuff, which is nonwelded throughout but grades upward from light-tan rhyolite (~74% SiO2) into pale brown dacite (~66% SiO2) that contains sparse dark-brown andesitic scoria. Distinctive hornblende-rich middle Cebolla Creek Tuff contains basal surge beds, overlain by vitrophyre of uniform mafic dacite that becomes less welded upward. Uppermost Nelson Mountain Tuff consists of nonwelded to weakly welded, crystal-poor rhyolite, which grades upward to a densely welded caprock of crystal-rich dacite (~68% SiO2). White arrows show contacts between outflow units. 2006 U.S. Department of the Interior U.S. Geological Survey CONTENTS Geologic setting . 1 Volcanism . 1 Structure . 2 Methods of study . 3 Description of map units . 4 Surficial deposits . 4 Glacial deposits . 4 Postcaldera volcanic rocks . 4 Hinsdale Formation . 4 Los Pinos Formation . 5 Oligocene volcanic rocks . 5 Rocks of the Creede Caldera cycle . 5 Creede Formation . 5 Fisher Dacite . 5 Snowshoe Mountain Tuff . 6 Rocks of the San Luis caldera complex . 7 Rocks of the Nelson Mountain caldera cycle . 7 Rocks of the Cebolla Creek caldera cycle . 9 Rocks of the Rat Creek caldera cycle . 10 Lava flows premonitory(?) to San Luis caldera complex . .11 Rocks of the South River caldera cycle .
    [Show full text]
  • Copper King Mine, Silver Crown District, Wyoming (Preliminary Report)
    2012 Copper King Mine, Silver Crown District, Wyoming (Preliminary Report) W. Dan Hausel Independent Geologist, Gilbert, Arizona 11/14/2012 COPPER KING MINE, SILVER CROWN DISTRICT W. Dan Hausel, Independent Geologist Gilbert, Arizona Introduction The Silver Crown district (also known as Hecla) lies 20 miles west of Cheyenne and immediately east of Curt Gowdy State Park along the eastern flank of the Laramie Range. The district is visible on Google Earth (search for ‘Hecla, Cheyenne, WY’) and lies within the boundaries of the Laramie 1:100,000 sheet. This area was initially investigated by Klein (1974) as a thesis project, and also by the Wyoming Geological Survey as a potential target for low-grade, large-tonnage, bulk minable gold and copper (Hausel and Jones, 1982). Nearly all mining and exploration activity in the district centered on the Copper King mine and the Hecla ghost-town with its mill constructed to support mining operations in the area (Figure 1). However, the mill was so poorly designed that rejected tailings often assayed higher than the mill concentrates (Figure 2) (Ferguson, 1965). This has been a common problem with many mines in the West – poorly designed mills. For example, four mills constructed nearby in the Colorado-Wyoming State Line district to extract diamonds, rather than copper and gold from 1979 to 1995, also had recovery problems. The last mill built at the Kelsey Lake mine (40o59’38”N; 105o30’05”W) was not only constructed on a portion of the ore body, but also lost many diamonds. After several months of processing, tailings were checked and the first test sample yielded several diamonds including a 6.2 carat stone.
    [Show full text]
  • Timeline of Natural History
    Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it.
    [Show full text]
  • Assembly, Configuration, and Break-Up History of Rodinia
    Author's personal copy Available online at www.sciencedirect.com Precambrian Research 160 (2008) 179–210 Assembly, configuration, and break-up history of Rodinia: A synthesis Z.X. Li a,g,∗, S.V. Bogdanova b, A.S. Collins c, A. Davidson d, B. De Waele a, R.E. Ernst e,f, I.C.W. Fitzsimons g, R.A. Fuck h, D.P. Gladkochub i, J. Jacobs j, K.E. Karlstrom k, S. Lu l, L.M. Natapov m, V. Pease n, S.A. Pisarevsky a, K. Thrane o, V. Vernikovsky p a Tectonics Special Research Centre, School of Earth and Geographical Sciences, The University of Western Australia, Crawley, WA 6009, Australia b Department of Geology, Lund University, Solvegatan 12, 223 62 Lund, Sweden c Continental Evolution Research Group, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia d Geological Survey of Canada (retired), 601 Booth Street, Ottawa, Canada K1A 0E8 e Ernst Geosciences, 43 Margrave Avenue, Ottawa, Canada K1T 3Y2 f Department of Earth Sciences, Carleton U., Ottawa, Canada K1S 5B6 g Tectonics Special Research Centre, Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia h Universidade de Bras´ılia, 70910-000 Bras´ılia, Brazil i Institute of the Earth’s Crust SB RAS, Lermontova Street, 128, 664033 Irkutsk, Russia j Department of Earth Science, University of Bergen, Allegaten 41, N-5007 Bergen, Norway k Department of Earth and Planetary Sciences, Northrop Hall University of New Mexico, Albuquerque, NM 87131, USA l Tianjin Institute of Geology and Mineral Resources, CGS, No.
    [Show full text]
  • Pathways and Mechanisms of Late Ordovician (Katian) Faunal Migrations of Laurentia and Baltica
    Estonian Journal of Earth Sciences, 2015, 64, 1, 62–67 doi: 10.3176/earth.2015.11 Pathways and mechanisms of Late Ordovician (Katian) faunal migrations of Laurentia and Baltica Adriane R. Lama and Alycia L. Stigalla,b a Department of Geological Sciences, Ohio University, Athens 45701-2979, Ohio, U.S.A. b OHIO Center for Ecology and Evolutionary Studies, Ohio University, 316 Clippinger Laboratories, Athens 45701-2979, Ohio, U.S.A.; [email protected], [email protected] Received 2 July 2014, accepted 9 October 2014 Abstract. Late Ordovician strata within the Cincinnati Basin record a mass faunal migration event during the C4 and C5 depositional sequences. The geographic source region for the invaders and the paleoceanographic conditions that facilitated dispersal into the Cincinnati Basin has previously been poorly understood. Using Parsimony Analysis of Endemicity, biogeographic relationships among Laurentian and Baltic basins were analyzed for each of the C1–C5 depositional sequences to identify dispersal paths. The results support multiple dispersal pathways, including three separate dispersal events between Baltica and Laurentia. Within Laurentia, results support dispersal pathways between areas north of the Transcontinental Arch into the western Midcontinent, between the Upper Mississippi Valley into the Cincinnati Basin, and between the peri-cratonic Scoto-Appalachian Basin and the Cincinnati Basin. These results support the hypothesis that invasive taxa entered the Cincinnati Basin via multiple dispersal pathways and that the equatorial Iapetus current facilitated dispersal of organisms from Baltica to Laurentia. Within Laurentia, surface currents and large storms moving from northeast to southwest likely influenced the dispersal of organisms. Larval states were characterized for the Richmondian invaders, and most invaders were found to have had planktotrophic planktic larvae.
    [Show full text]
  • Tracking the Evolution of the Grenville Foreland Basin
    Krabbendam et al: Detrital zircon and rutile in the Sleat and Torridon groups Tracking the evolution of the Grenvillian Foreland Basin: constraints from sedimentology and detrital zircon and rutile in the Sleat and Torridon groups, Scotland Maarten Krabbendam a, *, Helen Bonsor a, Matthew S.A. Horstwood b, Toby Rivers c a) British Geological Survey, Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, Scotland, UK b) NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth NG12 5GG, UK c) Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, NL Canada A1B 3X5 * Corresponding author. Email: [email protected] Keywords: foreland basin; provenance; detritus; Grenville Orogen; U-Pb geochronology; Neoproterozoic 1 Krabbendam et al: Detrital zircon and rutile in the Sleat and Torridon groups Abstract The Grenville Orogen, although occupying a key position in the Rodinia supercontinent, lacks a clear foreland basin in its type area in eastern Canada. Early Neoproterozoic siliciclastic rocks in northern Scotland, however, are now interpreted as remnants of a proximal Grenvillian foreland basin. Analysis of the sedimentology and detrital zircon and rutile of the Torridon and underlying Sleat groups provide new constraints on the evolution of this basin. Youngest U-Pb detrital zircon grains yield ages of 1070-990 Ma in both groups, consistent with a Grenvillian source. The proportions of older age components vary throughout the stratigraphy. The lower Sleat Group shows a dominant ca. 1750 Ma peak, likely derived from local Rhinnian rocks in Scotland and Ireland uplifted within the Grenville Orogen. In the upper Sleat Group and Torridon Group, detrital zircon peaks at ca.
    [Show full text]
  • Intrusive and Depositional Constraints on the Cretaceous Tectonic History of the Southern Blue Mountains, Eastern Oregon
    THEMED ISSUE: EarthScope IDOR project (Deformation and Magmatic Modification of a Steep Continental Margin, Western Idaho–Eastern Oregon) Intrusive and depositional constraints on the Cretaceous tectonic history of the southern Blue Mountains, eastern Oregon R.M. Gaschnig1,*, A.S. Macho2,*, A. Fayon3, M. Schmitz4, B.D. Ware4,*, J.D. Vervoort5, P. Kelso6, T.A. LaMaskin7, M.J. Kahn2, and B. Tikoff2 1SCHOOL OF EARTH AND ATMOSPHERIC SCIENCES, GEORGIA INSTITUTE OF TECHNOLOGY, 311 FERST DRIVE, ATLANTA, GEORGIA 30332, USA 2DEPARTMENT OF GEOSCIENCE, UNIVERSITY OF WISCONSIN-MADISON, 1215 W DAYTON STREET, MADISON, WISCONSIN 53706, USA 3DEPARTMENT OF EARTH SCIENCES, UNIVERSITY OF MINNESOTA TWIN CITIES, 310 PILLSBURY DRIVE SE, MINNEAPOLIS, MINNESOTA 55455, USA 4DEPARTMENT OF GEOSCIENCES, BOISE STATE UNIVERSITY, 1910 UNIVERSITY DRIVE, BOISE, IDAHO 83725, USA 5SCHOOL OF THE ENVIRONMENT, WASHINGTON STATE UNIVERSITY, PO BOX 64281, PULLMAN, WASHINGTON 99164, USA 6DEPARTMENT OF GEOLOGY AND PHYSICS, LAKE SUPERIOR STATE UNIVERSITY, CRAWFORD HALL OF SCIENCE, SAULT STE. MARIE, MICHIGAN 49783, USA 7DEPARTMENT OF GEOGRAPHY AND GEOLOGY, UNIVERSITY OF NORTH CAROLINA, DELOACH HALL, 601 SOUTH COLLEGE ROAD, WILMINGTON, NORTH CAROLINA 28403, USA ABSTRACT We present an integrated study of the postcollisional (post–Late Jurassic) history of the Blue Mountains province (Oregon and Idaho, USA) using constraints from Cretaceous igneous and sedimentary rocks. The Blue Mountains province consists of the Wallowa and Olds Ferry arcs, separated by forearc accretionary material of the Baker terrane. Four plutons (Lookout Mountain, Pedro Mountain, Amelia, Tureman Ranch) intrude along or near the Connor Creek fault, which separates the Izee and Baker terranes. High-precision U-Pb zircon ages indicate 129.4–123.8 Ma crystallization ages and exhibit a north-northeast–younging trend of the magmatism.
    [Show full text]
  • Paleoproterozoic Mafic and Ultramafic Volcanic Rocks in the South Savo Region, Eastern Finland
    Development of the Paleoproterozoic Svecofennian orogeny: new constraints from the southeastern boundary of the Central Finland Granitoid Complex Edited by Perttu Mikkola, Pentti Hölttä and Asko Käpyaho Geological Survey of Finland, Bulletin 407, 63-84, 2018 PALEOPROTEROZOIC MAFIC AND ULTRAMAFIC VOLCANIC ROCKS IN THE SOUTH SAVO REGION, EASTERN FINLAND by Jukka Kousa, Perttu Mikkola and Hannu Makkonen Kousa, J., Mikkola, P. & Makkonen, H. 2018. Paleoproterozoic mafic and ultramafic volcanic rocks in the South Savo region, eastern Finland. Geological Survey of Finland, Bulletin 407, 63–84, 11 figures and 1 table. Ultramafic and mafic volcanic rocks are present as sporadic interlayers in the Paleo- proterozoic Svecofennian paragneiss units in the South Savo region of eastern Finland. These elongated volcanic bodies display locally well-preserved primary structures, have a maximum thickness of ca. 500 m and a maximum length of several kilometres. Geo- chemically, the ultramafic variants are picrites, whereas the mafic members display EMORB-like chemical compositions. The picrites, in particular, display significant com- positional variation in both major and trace elements (light rare earth and large-ion lithophile elements). These differences may have been caused by differences in their magma source, variable degrees of crustal contamination and post-magmatic altera- tion, as well as crystal accumulation and fractionation processes. The volcanic units are interpreted to represent extensional phase(s) in the development of the sedimentary basin(s) where the protoliths of the paragneisses were deposited. The eruption age of the volcanic units is interpreted to be 1.91–1.90 Ga. Appendix 1 is available at: http://tupa.gtk.fi/julkaisu/liiteaineisto/bt_407_appendix_1.
    [Show full text]
  • Capulin Volcano National Monument, New Mexico
    GeologicGeologic Resource Resourcess Inventory Inventory Scoping Scoping Summary Summary Capulin Glacier VolcanoBay National National Park, Monument Alaska New Mexico Geologic Resources Division Geologic Resources Division PreparedNational Park by Katie Service KellerLynn National Park Service August US Department 31, 2011 of the Interior U.S. Department of the Interior The Geologic Resources Inventory (GRI) Program, administered by the Geologic Resources Division, provides each of 270 identified natural area National Park System units with a geologic scoping meeting, a scoping summary, a digital geologic map, and a geologic resources inventory report. Geologic scoping meetings generate an evaluation of the adequacy of existing geologic maps for resource management, provide an opportunity to discuss park-specific geologic management issues and, if possible, include a site visit with local experts. The purpose of these meetings is to identify geologic mapping coverage and needs, distinctive geologic features and processes, resource management issues, and potential monitoring and research needs. The National Park Service (NPS) Geologic Resources Division held a GRI scoping meeting for Capulin Volcano National Monument on May 10, 2011, at the headquarters/visitor center, which is located 48 km (30 mi) east of Raton, New Mexico. Participants at the meeting included NPS employees from the national monument, Geologic Resources Division, Bent’s Old Fort National Historic Site, Sand Creek Massacre National Historic Site, and the Southern Plains Network; and cooperators from Colorado State University and the New Mexico Bureau of Geology and Mineral Resources (see table 1, p. 15). Superintendent Peter Armato welcomed the group and expressed his support of the Geologic Resources Inventory. Although Armato had only been at the national monument for a month, he was thrilled to be in a “geologic park.” Armato’s many academic degrees are in geologic disciplines.
    [Show full text]
  • Assembling Laurentia—Integrated Theme Sessions on Tectonic Turning Points
    Assembling Laurentia—Integrated Theme Sessions on Tectonic Turning Points Michael L. Williams, Dept. of Geosciences, University of Massachusetts, Amherst, Massachusetts 01003, USA, [email protected]; Dawn A. Kellett, Geological Survey of Canada–Atlantic Division, Natural Resources Canada/Government of Canada, 1 Challenger Drive, Dartmouth, Nova Scotia B2Y 4A2, Canada, [email protected]; Basil Tikoff*, Dept. of Geoscience, University of Wisconsin– Madison, 1215 W. Dayton Street, Madison, Wisconsin 53706, USA, [email protected]; Steven J. Whitmeyer, Dept. of Geology and Environmental Science, James Madison University, 801 Carrier Drive, MSC 6903, Harrisonburg, Virginia 22807, USA, [email protected] The North American continent records the headlined by a Pardee Symposium, which and the broader implications of, these changes, evolution of tectonic processes and tectonic will provide an overview of the tectonic evo- and to widen the scope of investigation environments from the earliest Archean to lution of Laurentia and an introduction to the beyond a particular boundary or regional geo- modern times. The continent hosts a rich concept of key “Turning Points.” Seven logical event to the scale of Laurentia itself. Archean (and possibly Hadean) record, at related topical sessions, under the general The time slices for the topical sessions are as least three great Proterozoic orogenic belts, heading “Assembling Laurentia,” will span follows (with brief explanations from each and a wide range of Phanerozoic tectonic, the GSA meeting.
    [Show full text]
  • Eocene Green River Formation, Western United States
    Synoptic reconstruction of a major ancient lake system: Eocene Green River Formation, western United States M. Elliot Smith* Alan R. Carroll Brad S. Singer Department of Geology and Geophysics, University of Wisconsin, 1215 West Dayton Street, Madison, Wisconsin 53706, USA ABSTRACT Members. Sediment accumulation patterns than being confi ned to a single episode of arid thus refl ect basin-center–focused accumula- climate. Evaporative terminal sinks were Numerous 40Ar/39Ar experiments on sani- tion rates when the basin was underfi lled, initially located in the Greater Green River dine and biotite from 22 ash beds and 3 and supply-limited accumulation when the and Piceance Creek Basins (51.3–48.9 Ma), volcaniclastic sand beds from the Greater basin was balanced fi lled to overfi lled. Sedi- then gradually migrated southward to the Green River, Piceance Creek, and Uinta ment accumulation in the Uinta Basin, at Uinta Basin (47.1–45.2 Ma). This history is Basins of Wyoming, Colorado, and Utah Indian Canyon, Utah, was relatively con- likely related to progressive southward con- constrain ~8 m.y. of the Eocene Epoch. Mul- stant at ~150 mm/k.y. during deposition of struction of the Absaroka Volcanic Prov- tiple analyses were conducted per sample over 5 m.y. of both evaporative and fl uctuat- ince, which constituted a major topographic using laser fusion and incremental heating ing profundal facies, which likely refl ects the and thermal anomaly that contributed to a techniques to differentiate inheritance, 40Ar basin-margin position of the measured sec- regional north to south hydrologic gradient. loss, and 39Ar recoil.
    [Show full text]