Article Geochemistry 3 Volume 7, Number 1 Geophysics XX Month 2006 GeosystemsG XXXXXX, doi:10.1029/2005GC001002 G ISSN: 1525-2027 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society 1 Long-term volumetric eruption rates and magma budgets 2 Scott M. White 3 Department of Geological Sciences, University of South Carolina, 700 Sumter Street, Columbia, South Carolina 29208, 4 USA (
[email protected]) 5 Joy A. Crisp 6 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA 7 (
[email protected]) 8 Frank J. Spera 9 Department of Earth Science, University of California, Santa Barbara, Santa Barbara, California 93106, USA 10 (
[email protected]) 11 [1] A global compilation of 170 time-averaged volumetric volcanic output rates (Qe) is evaluated in terms 12 of composition and petrotectonic setting to advance the understanding of long-term rates of magma 13 generation and eruption on Earth. Repose periods between successive eruptions at a given site and 4 14 intrusive:extrusive ratios were compiled for selected volcanic centers where long-term (>10 years) data 15 were available. More silicic compositions, rhyolites and andesites, have a more limited range of eruption À1 3 16 rates than basalts. Even when high Qe values contributed by flood basalts (9 ± 2 Â 10 km /yr) are 17 removed, there is a trend in decreasing average Qe with lava composition from basaltic eruptions (2.6 ± À2 3 À3 3 À3 3 18 1.0 Â 10 km /yr) to andesites (2.3 ± 0.8 Â 10 km /yr) and rhyolites (4.0 ± 1.4 Â 10 km /yr).