The Role of JAK/STAT Molecular Pathway in Vascular Remodeling Associated with Pulmonary Hypertension
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mutation Analysis in Myeloproliferative Neoplasms AHS - M2101
Corporate Medical Policy Mutation Analysis in Myeloproliferative Neoplasms AHS - M2101 File Name: mutation_analysis_in_myeloproliferative_neoplasms Origination: 1/1/2019 Last CAP review: 8/2021 Next CAP review: 8/2022 Last Review: 8/2021 Description of Procedure or Service Myeloproliferative neoplasms (MPN) are a heterogeneous group of clonal disorders characterized by overproduction of one or more differentiated myeloid lineages (Grinfeld, Nangalia, & Green, 2017). These include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The majority of MPN result from somatic mutations in the 3 driver genes, JAK2, CALR, and MPL, which represent major diagnostic criteria in combination with hematologic and morphological abnormalities (Rumi & Cazzola, 2017). Related Policies: BCR-ABL 1 Testing for Chronic Myeloid Leukemia AHS-M2027 ***Note: This Medical Policy is complex and technical. For questions concerning the technical language and/or specific clinical indications for its use, please consult your physician. Policy BCBSNC will provide coverage for mutation analysis in myeloproliferative neoplasms when it is determined to be medically necessary because the medical criteria and guidelines shown below are met. Benefits Application This medical policy relates only to the services or supplies described herein. Please refer to the Member's Benefit Booklet for availability of benefits. Member's benefits may vary according to benefit design; therefore member benefit language should be reviewed before applying the terms of this medical policy. When Mutation Analysis in Myeloproliferative Neoplasms is covered 1. JAK2, CALR or MPL mutation testing is considered medically necessary for the diagnosis of patients presenting with clinical, laboratory, or pathological findings suggesting classic forms of myeloproliferative neoplasms (MPN), that is, polycythemia vera (PV), essential thrombocythemia (ET), or primary myelofibrosis (PMF) when ordered by a hematology and/or oncology specialist in the following situations: A. -
Promoter Janus Kinase 3 Proximal Characterization and Analysis Of
The Journal of Immunology Characterization and Analysis of the Proximal Janus Kinase 3 Promoter1 Martin Aringer,2*† Sigrun R. Hofmann,2* David M. Frucht,* Min Chen,* Michael Centola,* Akio Morinobu,* Roberta Visconti,* Daniel L. Kastner,* Josef S. Smolen,† and John J. O’Shea3* Janus kinase 3 (Jak3) is a nonreceptor tyrosine kinase essential for signaling via cytokine receptors that comprise the common ␥-chain (␥c), i.e., the receptors for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Jak3 is preferentially expressed in hemopoietic cells and is up-regulated upon cell differentiation and activation. Despite the importance of Jak3 in lymphoid development and immune function, the mechanisms that govern its expression have not been defined. To gain insight into this issue, we set out to characterize the Jak3 promoter. The 5-untranslated region of the Jak3 gene is interrupted by a 3515-bp intron. Upstream of this intron and the transcription initiation site, we identified an ϳ1-kb segment that exhibited lymphoid-specific promoter activity and was responsive to TCR signals. Truncation of this fragment revealed that core promoter activity resided in a 267-bp fragment that contains putative Sp-1, AP-1, Ets, Stat, and other binding sites. Mutation of the AP-1 sites significantly diminished, whereas mutation of the Ets sites abolished, the inducibility of the promoter construct. Chromatin immunoprecipitation assays showed that histone acetylation correlates with mRNA expression and that Ets-1/2 binds this region. Thus, transcription factors that bind these sites, especially Ets family members, are likely to be important regulators of Jak3 expression. -
942.Full.Pdf
Original Article Opposite Effect of JAK2 on Insulin-Dependent Activation of Mitogen-Activated Protein Kinases and Akt in Muscle Cells Possible Target to Ameliorate Insulin Resistance Ana C.P. Thirone, Lellean JeBailey, Philip J. Bilan, and Amira Klip Many cytokines increase their receptor affinity for Janus kinases (JAKs). Activated JAK binds to signal transducers and activators of transcription, insulin receptor substrates olypeptides such as erythropoietin, prolactin, (IRSs), and Shc. Intriguingly, insulin acting through its leptin, angiotensin, growth hormone, most inter- own receptor kinase also activates JAK2. However, the leukins, and interferon-␥ bind to receptors that impact of such activation on insulin action remains un- Plack intrinsic kinase activity, recruiting and acti- known. To determine the contribution of JAK2 to insulin vating cytoplasmic tyrosine kinases of the Janus family signaling, we transfected L6 myotubes with siRNA against (JAK) consisting of JAK1, JAK2, JAK3, and Tyk2 (1–3). JAK2 (siJAK2), reducing JAK2 protein expression by 75%. Activated JAK phosphorylates tyrosine residues within Insulin-dependent phosphorylation of IRS1/2 and Shc was not affected by siJAK2, but insulin-induced phosphoryla- itself and the associated receptor forming high-affinity tion of the mitogen-activated protein kinases (MAPKs) binding sites for a variety of signaling proteins containing Src homology 2 and other phosphotyrosine-binding do- extracellular signal–related kinase, p38, and Jun NH2- terminal kinase and their respective upstream kinases mains, including signal transducers and activators of tran- MKK1/2, MKK3/6, and MKK4/7 was significantly lowered scription, insulin receptor substrates (IRSs), and the when JAK2 was depleted, correlating with a significant adaptor protein Shc (1–4). -
JAK-Inhibitors for the Treatment of Rheumatoid Arthritis: a Focus on the Present and an Outlook on the Future
biomolecules Review JAK-Inhibitors for the Treatment of Rheumatoid Arthritis: A Focus on the Present and an Outlook on the Future 1, 2, , 3 1,4 Jacopo Angelini y , Rossella Talotta * y , Rossana Roncato , Giulia Fornasier , Giorgia Barbiero 1, Lisa Dal Cin 1, Serena Brancati 1 and Francesco Scaglione 5 1 Postgraduate School of Clinical Pharmacology and Toxicology, University of Milan, 20133 Milan, Italy; [email protected] (J.A.); [email protected] (G.F.); [email protected] (G.B.); [email protected] (L.D.C.); [email protected] (S.B.) 2 Department of Clinical and Experimental Medicine, Rheumatology Unit, AOU “Gaetano Martino”, University of Messina, 98100 Messina, Italy 3 Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Pordenone, 33081 Aviano, Italy; [email protected] 4 Pharmacy Unit, IRCCS-Burlo Garofolo di Trieste, 34137 Trieste, Italy 5 Head of Clinical Pharmacology and Toxicology Unit, Grande Ospedale Metropolitano Niguarda, Department of Oncology and Onco-Hematology, Director of Postgraduate School of Clinical Pharmacology and Toxicology, University of Milan, 20162 Milan, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-090-2111; Fax: +39-090-293-5162 Co-first authors. y Received: 16 May 2020; Accepted: 1 July 2020; Published: 5 July 2020 Abstract: Janus kinase inhibitors (JAKi) belong to a new class of oral targeted disease-modifying drugs which have recently revolutionized the therapeutic panorama of rheumatoid arthritis (RA) and other immune-mediated diseases, placing alongside or even replacing conventional and biological drugs. -
Supplementary Materials
Supplementary Suppl. Figure 1: MAPK signalling pathway of A: NCI-H2502, B: NCI-H2452, C: MSTO-211H and D: MRC-5. Suppl. Figure 2: Cell cycle pathway of A: NCI-H2502, B: NCI-H2452, C: MSTO-211H and D: MRC- 5. Suppl. Figure 3: Cancer pathways of A: NCI-H2502, B: NCI-H2452, C: MSTO-211H and D: MRC-5. Suppl. Figure 4: Phosphorylation level of A: ARAF, B: EPHA1, C: EPHA2, D: EPHA7 in all cell lines. For each cell line, phosphorylation levels are depicted before (Medium) and after cisplatin treatment (Cis). Suppl. Figure 5: Phosphorylation Level of A: KIT, B: PTPN11, C: PIK3R1, D: PTPN6 in all cell lines. For each cell line, phosphorylation levels are depicted before (Medium) and after cisplatin treatment (Cis). Suppl. Figure 6: Phosphorylation Level of A: KDR, B: EFS, C: AKT1, D: PTK2B/FAK2 in all cell lines. For each cell line, phosphorylation levels are depicted before (Medium) and after cisplatin treatment (Cis). Suppl. Figure 7: Scoreplots and volcanoplots of PTK upstream kinase analysis: A: Scoreplot of PTK- Upstream kinase analysis for NCI-H2052 cells. B: Volcanoplot of PTK-Upstream kinase analysis for NCI-H2052 cells. C: Scoreplot of PTK-Upstream kinase analysis for NCI-H2452 cells. D: Volcanoplot of PTK-Upstream kinase analysis for NCI-H2452 cells. E: Scoreplot of PTK-Upstream kinase analysis for MSTO-211H cells. F: Volcanoplot of PTK-Upstream kinase analysis for MSTO- 211H cells. G: Scoreplot of PTK-Upstream kinase analysis for MRC-5cells. H: Volcanoplot of PTK- Upstream kinase analysis for MRC-5 cells. Suppl. Figure 8: Scoreplots and volcanoplots of STK upstream kinase analysis: A: Scoreplot of STK- Upstream kinase analysis for NCI-H2052 cells. -
Biomarker Testing in Non- Small Cell Lung Cancer (NSCLC)
The biopharma business of Merck KGaA, Darmstadt, Germany operates as EMD Serono in the U.S. and Canada. Biomarker testing in non- small cell lung cancer (NSCLC) Copyright © 2020 EMD Serono, Inc. All rights reserved. US/TEP/1119/0018(1) Lung cancer in the US: Incidence, mortality, and survival Lung cancer is the second most common cancer diagnosed annually and the leading cause of mortality in the US.2 228,820 20.5% 57% Estimated newly 5-year Advanced or 1 survival rate1 metastatic at diagnosed cases in 2020 diagnosis1 5.8% 5-year relative 80-85% 2 135,720 survival with NSCLC distant disease1 Estimated deaths in 20201 2 NSCLC, non-small cell lung cancer; US, United States. 1. National Institutes of Health (NIH), National Cancer Institute. Cancer Stat Facts: Lung and Bronchus Cancer website. www.seer.cancer.gov/statfacts/html/lungb.html. Accessed May 20, 2020. 2. American Cancer Society. What is Lung Cancer? website. https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/what-is-non-small-cell-lung-cancer.html. Accessed May 20, 2020. NSCLC is both histologically and genetically diverse 1-3 NSCLC distribution by histology Prevalence of genetic alterations in NSCLC4 PTEN 10% DDR2 3% OTHER 25% PIK3CA 12% LARGE CELL CARCINOMA 10% FGFR1 20% SQUAMOUS CELL CARCINOMA 25% Oncogenic drivers in adenocarcinoma Other or ADENOCARCINOMA HER2 1.9% 40% KRAS 25.5% wild type RET 0.7% 55% NTRK1 1.7% ROS1 1.7% Oncogenic drivers in 0% 20% 40% 60% RIT1 2.2% squamous cell carcinoma Adenocarcinoma DDR2 2.9% Squamous cell carcinoma NRG1 3.2% Large cell carcinoma -
Kinase Inhibitors: an Introduction
David Peters Baran Group Meeting Kinase Inhibitors: An Introduction 2/2/19 INTRODUCTION SIGNAL TRANSDUCTION KINASES ARE IMPORTANT IN HUMAN BIOLOGY/DISEASE: The process describing how a signal (chemical/physical) is transmitted through a - Kinases are a superfamily of proteins (5th largest in humans) cell ultimately resulting in a cellular response - 518 genes and 106 pseudogenes - Diverse in size, subunit structure, and cellular location RECEPTOR TRANSDUCERS EFFECTORS - ~260 residues make up their conserved catalytic core - dysregulation of kinases occurs in many diseases (cancer, inflamatory, degenerative, and autoimmune diseases) - signals can originate inside or outside the cell - 244 of the 518 map to disease loci - signals generally passed through a series of steps (signal transduction pathway) often consisting of multiple enzymes and messengers protein O - pathways open possibility for signal aplification (>1x106) kinase ATP + PROTEIN OH ADP + PROTEIN O P O - Extracellular signals transduced by RTKs, GPCR’s, guanlyl cyclases, or ligand-gated Ion channels O - Phosphorylation is the most prominent covalent modification/signal in KINASES INHIBITORS ARE IMPORTANT IN DISEASE THERAPY/RESEARCH: cellular regulation - currently 51 FDA approved small molecule kinase inhibitors - “converter enzymes” (protein kinases and phosphoprotein phosphorlyases) - 4 FDA approved antibody kinase inhibitors are regulated; conserve ATP/maintain desired target protein state - thousands of known inhibitors spanning the kinome - pathway ends by affecting biomolecule -
Anti-Inflammatory Cytokines Hepatocyte Growth Factor and Interleukin-11 Are Over-Expressed in Polycythemia Vera and Contribute T
Oncogene (2011) 30, 990–1001 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc ORIGINAL ARTICLE Anti-inflammatory cytokines hepatocyte growth factor and interleukin-11 are over-expressed in Polycythemia vera and contribute to the growth of clonal erythroblasts independently of JAK2V617F M Boissinot1,3,4, C Cleyrat1,3, M Vilaine1, Y Jacques1, I Corre1 and S Hermouet1,2 1INSERM UMR 892, Institut de Biologie, Centre Hospitalier Universitaire, Nantes, France and 2Laboratoire d’He´matologie, Institut de Biologie, Centre Hospitalier Universitaire, Nantes, France The V617F activating mutation of janus kinase 2 (JAK2), Keywords: Polycythemia vera; JAK2V617F; hepatocyte a kinase essential for cytokine signalling, characterizes growth factor (HGF); interleukin 11 (IL-11); interleukin Polycythemia vera (PV), one of the myeloproliferative 6 (IL-6); inflammation neoplasms (MPN). However, not all MPNs carry mutations of JAK2, and in JAK2-mutated patients, expression of JAK2V617F does not always result in clone expansion. In the present study, we provide evidence that Introduction inflammation-linked cytokines are required for the growth of JAK2V617F-mutated erythroid progenitors. In a first Myeloproliferative neoplasms (MPNs) constitute a series of experiments, we searched for cytokines over- group of three clonal diseases: Polycythemia vera expressed in PV using cytokine antibody (Ab) arrays, and (PV), essential thrombocythemia (ET) and primary enzyme-linked immunosorbent assays for analyses of myelofibrosis. About half of MPN patients present with serum and bone marrow (BM) plasma, and quantitative activating mutations in the janus kinase 2 (JAK2) gene, reverse transcription–PCRs for analyses of cells purified which encodes for a tyrosine kinase essential for the from PV patients and controls. -
HCC and Cancer Mutated Genes Summarized in the Literature Gene Symbol Gene Name References*
HCC and cancer mutated genes summarized in the literature Gene symbol Gene name References* A2M Alpha-2-macroglobulin (4) ABL1 c-abl oncogene 1, receptor tyrosine kinase (4,5,22) ACBD7 Acyl-Coenzyme A binding domain containing 7 (23) ACTL6A Actin-like 6A (4,5) ACTL6B Actin-like 6B (4) ACVR1B Activin A receptor, type IB (21,22) ACVR2A Activin A receptor, type IIA (4,21) ADAM10 ADAM metallopeptidase domain 10 (5) ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif, 9 (4) ADCY2 Adenylate cyclase 2 (brain) (26) AJUBA Ajuba LIM protein (21) AKAP9 A kinase (PRKA) anchor protein (yotiao) 9 (4) Akt AKT serine/threonine kinase (28) AKT1 v-akt murine thymoma viral oncogene homolog 1 (5,21,22) AKT2 v-akt murine thymoma viral oncogene homolog 2 (4) ALB Albumin (4) ALK Anaplastic lymphoma receptor tyrosine kinase (22) AMPH Amphiphysin (24) ANK3 Ankyrin 3, node of Ranvier (ankyrin G) (4) ANKRD12 Ankyrin repeat domain 12 (4) ANO1 Anoctamin 1, calcium activated chloride channel (4) APC Adenomatous polyposis coli (4,5,21,22,25,28) APOB Apolipoprotein B [including Ag(x) antigen] (4) AR Androgen receptor (5,21-23) ARAP1 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 1 (4) ARHGAP35 Rho GTPase activating protein 35 (21) ARID1A AT rich interactive domain 1A (SWI-like) (4,5,21,22,24,25,27,28) ARID1B AT rich interactive domain 1B (SWI1-like) (4,5,22) ARID2 AT rich interactive domain 2 (ARID, RFX-like) (4,5,22,24,25,27,28) ARID4A AT rich interactive domain 4A (RBP1-like) (28) ARID5B AT rich interactive domain 5B (MRF1-like) (21) ASPM Asp (abnormal -
Supplementary Table 1. in Vitro Side Effect Profiling Study for LDN/OSU-0212320. Neurotransmitter Related Steroids
Supplementary Table 1. In vitro side effect profiling study for LDN/OSU-0212320. Percent Inhibition Receptor 10 µM Neurotransmitter Related Adenosine, Non-selective 7.29% Adrenergic, Alpha 1, Non-selective 24.98% Adrenergic, Alpha 2, Non-selective 27.18% Adrenergic, Beta, Non-selective -20.94% Dopamine Transporter 8.69% Dopamine, D1 (h) 8.48% Dopamine, D2s (h) 4.06% GABA A, Agonist Site -16.15% GABA A, BDZ, alpha 1 site 12.73% GABA-B 13.60% Glutamate, AMPA Site (Ionotropic) 12.06% Glutamate, Kainate Site (Ionotropic) -1.03% Glutamate, NMDA Agonist Site (Ionotropic) 0.12% Glutamate, NMDA, Glycine (Stry-insens Site) 9.84% (Ionotropic) Glycine, Strychnine-sensitive 0.99% Histamine, H1 -5.54% Histamine, H2 16.54% Histamine, H3 4.80% Melatonin, Non-selective -5.54% Muscarinic, M1 (hr) -1.88% Muscarinic, M2 (h) 0.82% Muscarinic, Non-selective, Central 29.04% Muscarinic, Non-selective, Peripheral 0.29% Nicotinic, Neuronal (-BnTx insensitive) 7.85% Norepinephrine Transporter 2.87% Opioid, Non-selective -0.09% Opioid, Orphanin, ORL1 (h) 11.55% Serotonin Transporter -3.02% Serotonin, Non-selective 26.33% Sigma, Non-Selective 10.19% Steroids Estrogen 11.16% 1 Percent Inhibition Receptor 10 µM Testosterone (cytosolic) (h) 12.50% Ion Channels Calcium Channel, Type L (Dihydropyridine Site) 43.18% Calcium Channel, Type N 4.15% Potassium Channel, ATP-Sensitive -4.05% Potassium Channel, Ca2+ Act., VI 17.80% Potassium Channel, I(Kr) (hERG) (h) -6.44% Sodium, Site 2 -0.39% Second Messengers Nitric Oxide, NOS (Neuronal-Binding) -17.09% Prostaglandins Leukotriene, -
The Role of Signaling Pathways in the Development and Treatment of Hepatocellular Carcinoma
Oncogene (2010) 29, 4989–5005 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 www.nature.com/onc REVIEW The role of signaling pathways in the development and treatment of hepatocellular carcinoma S Whittaker1,2, R Marais3 and AX Zhu4 1Dana-Farber Cancer Institute, Boston, MA, USA; 2The Broad Institute, Cambridge, MA, USA; 3Institute of Cancer Research, London, UK and 4Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA Hepatocellular carcinoma (HCC) is a highly prevalent, malignancy in adults (Pons-Renedo and Llovet, 2003). treatment-resistant malignancy with a multifaceted mole- For the vast majority of patients, HCC is a late cular pathogenesis. Current evidence indicates that during complication of chronic liver disease, and as such, is hepatocarcinogenesis, two main pathogenic mechanisms often associated with cirrhosis. The main risk factors for prevail: (1) cirrhosis associated with hepatic regeneration the development of HCC include infection with hepatitis after tissue damage caused by hepatitis infection, toxins B virus (HBV) or hepatitis C virus (HCV). Hepatitis (for example, alcohol or aflatoxin) or metabolic influ- infection is believed to be the main etiologic factor in ences, and (2) mutations occurring in single or multiple 480% of cases (Anzola, 2004). Other risk factors oncogenes or tumor suppressor genes. Both mechanisms include excessive alcohol consumption, nonalcoholic have been linked with alterations in several important steatohepatitis, autoimmune hepatitis, primary biliary cellular signaling pathways. These pathways are of cirrhosis, exposure to environmental carcinogens (parti- interest from a therapeutic perspective, because targeting cularly aflatoxin B) and the presence of various genetic them may help to reverse, delay or prevent tumorigenesis. -
A Closer Look at JAK/STAT Signaling Pathway Emira Bousoik Chapman University
Chapman University Chapman University Digital Commons Pharmacy Faculty Articles and Research School of Pharmacy 7-31-2018 “Do We Know Jack” About JAK? A Closer Look at JAK/STAT Signaling Pathway Emira Bousoik Chapman University Hamidreza Montazeri Aliabadi Chapman University, [email protected] Follow this and additional works at: https://digitalcommons.chapman.edu/pharmacy_articles Part of the Amino Acids, Peptides, and Proteins Commons, Cancer Biology Commons, Cell Anatomy Commons, Cell Biology Commons, Enzymes and Coenzymes Commons, Oncology Commons, and the Other Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Bousoik E, Montazeri Aliabadi H. “Do we know jack” about JAK? A closer look at JAK/STAT signaling pathway. Front. Oncol. 2018;8:287. doi: 10.3389/fonc.2018.00287 This Article is brought to you for free and open access by the School of Pharmacy at Chapman University Digital Commons. It has been accepted for inclusion in Pharmacy Faculty Articles and Research by an authorized administrator of Chapman University Digital Commons. For more information, please contact [email protected]. “Do We Know Jack” About JAK? A Closer Look at JAK/STAT Signaling Pathway Comments This article was originally published in Frontiers in Oncology, volume 8, in 2018. DOI: 10.3389/ fonc.2018.00287 Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License. Copyright The uthora s This article is available at Chapman University Digital Commons: https://digitalcommons.chapman.edu/pharmacy_articles/590