Weertman, Lliboutry and the Development of Sliding Theory

Total Page:16

File Type:pdf, Size:1020Kb

Weertman, Lliboutry and the Development of Sliding Theory Journal of Glaciology, Vol. 56, No. 200, 2010 965 Weertman, Lliboutry and the development of sliding theory A.C. FOWLER MACSI, Department of Mathematics and Statistics, University of Limerick, Limerick, Republic of Ireland E-mail: [email protected] ABSTRACT. This paper reviews the seminal contributions (and tussles) of Weertman and Lliboutry to the theory of glacier sliding in the 1950s and 1960s, and summarizes later developments up to the present day. THE SLIDING LAW WEERTMAN: REGELATION AND ENHANCED CREEP Solid ice, in the form of glaciers and ice sheets, flows on In an early book on the dynamics of glaciers, Koechlin long timescales, due to solid-state creep processes, and the (1944) discusses the flow of a glacier, together with the resulting rheology is usually described in terms of a necessary boundary condition at the base. This he takes to generalized Newtonian fluid. Most commonly, this takes be that the stress exerted on the bed roughness elements the form of Glen’s law, although other variants are possible. should be equal to the strength of ice, and thus his basal The formulation of a viscous glacier flow in this way condition is that the shear stress is constant.* The first leads to an elliptic partial differential equation for the flow paper in the subject which properly addresses the physics is velocity, which requires the posing of boundary data at that of Hans Weertman (1957b). In a mere six pages he both the upper (free) surface and the base, or bed, of the enunciates the basics of the phenomena which are still glacier. Mostly, viscous liquids are thought to obey a no- considered to explain the mechanism of sliding. That slip boundary condition at a solid boundary, on the glaciers slide at their base was well known (e.g. McCall, intuitive notion that the fluid molecules effectively ‘adhere’ 1952; Ward, 1955); Weertman’s contribution was to to the boundary, but there is no intrinsic reason why this explicitly describe the physics of the process. This he should be so, and indeed the veracity of the condition was does by quantifying two processes: regelation and a subject of controversy in the 19th century (Goldstein, ‘enhanced creep’. 1938). A generalization, called the Navier slip condition, Regelation, otherwise known as pressure melting, is the allows a nonzero slip velocity proportional to stress, and it process whereby ice can move past obstacles without is thought that such a condition is necessary to alleviate an deformation; as (temperate) ice approaches the upstream unphysical singularity (discontinuous velocity) which face of an obstacle, the pressure is higher, and therefore would otherwise occur in the motion of a contact line (because of the Clapeyron effect) the melting temperature is where a two-fluid interface intersects a wall (Dussan and lower than that far away. The ice therefore melts, forming a Davis, 1974). layer of water with a thickness of the order of microns It has long been understood that glaciers also slip at the (Nye, 1967), and squirts round the obstacle to where the bed, and the resulting boundary condition for the flow pressure is lower, where it refreezes, as the melting which relates basal velocity, u, to basal stress, , has come temperature is now higher. Because of the higher tempera- to be known as the sliding law, and it is the efforts that ture in the lee of the obstacle, there is a compensating heat have been put into its determination that form the subject flow back through the obstacle, and it is this which delivers of this paper. An issue which needs immediate clarification the latent heat necessary to melt the ice. Weertman’s model is what is meant by the basal stress. The quantity refers to of the bed is that of an array of cubical obstacles of side a the shear stress in the ice near the bed (on the scale of the separated by a distance l. Weertman’s choice of notation ice depth, di) but far from the bed (on the scale, l, of the differs from that used here. Thus the parameter bed roughness). In the language of matched asymptotic a expansions, the basal shear stress is the limiting value at the ¼ ð2Þ l bed of the outer solution in an asymptotic expansion in the small parameter represents the aspect ratio of the bed roughness, and provides a second such parameter in addition to .If is l ¼ 1 ð1Þ the basal shear stress, as discussed above, then, since the di lubricated bed between the obstacles offers no resistance, (Fowler 1981). each obstacle bears a stress of =32, which causes a 2 difference of temperature of ÁTa ¼ C=3 across the { obstacles, where C is the slope of the Clapeyron curve. kÁT Equating the heat flow through the obstacle, a a2,to a *This almost uncited book is worth a look. He appears to discuss 2 the latent heat flux, iLuRa , where k is thermal conductivity deformation of subglacial till (p. 68, see also p. 152), and also refers to various formerly surging glaciers in the European Alps apart from (of both ice and rock), i is ice density, L is latent heat and uR Vernagtferner, such as Oberer Grindelwaldgletscher, Aletschgletscher and is the sliding velocity due to regelation alone, he derives the Rhonegletscher. The discussion on basal friction is on pp. 98f. regelative sliding law { The factor 3 occurs in Weertman’s discussion, because he divides the ¼ 2 ð Þ excess normal stress by 3 to find the excess longitudinal stress. RrauR, 3 966 Fowler: Weertman, Lliboutry and the development of sliding theory where the regelative roughness coefficient, uV, for a given a are comparable. Equating these two determines the controlling obstacle size as 3iL Rr ¼ , ð4Þ ð À Þ= 1=2 kC n 1 2 Rr à ¼ ð Þ Â 3 À3 a 2 , 11 is a material constant. Using values i = 0.9 10 kg m , Rv  5 À1 À1 À1 À1 L = 3.3 10 Jkg , k =2Wm K , C = 0.0074 K bar = and now selecting only this obstacle size, we find  À7 À1 0.74 10 KPa , we find Weertman’s law in the form À À  3 2 ¼ :  16 2 : ð Þ =ð þ Þ Rr 2 10 bar m a 0 63 10 Pa m s 5 ¼ 2Ru2 n 1 , ð12Þ To give some idea, a driving stress of 1 bar over obstacles of where elevation 1 m and asperity ¼ 0:2 provides a regelative 1=ðnþ1Þ velocity of little more than a centimetre a year! Only very RvRr R ¼ : ð13Þ small obstacles or very smooth beds can support a signifi- 4 cant regelative sliding velocity. (Weertman omitted the factor 4 because he took u ¼ u ¼ Next, Weertman considers the effect of differing sizes of R u , whereas Equation (13) assumes u ¼ u þ u .) With asperities, but his argument (to this reader) is somewhat V R V n ¼ 3 and the values in Equations (5) and (9), we have mysterious. A possible paraphrase is the following. If we À = = À = = suppose that an array of obstacles of asymptotically different R 15:1 bar m 1 2 a1 2 ¼ 0:85  1010 Pa m 1 2 s1 2: ð14Þ sizes, a a ÁÁÁ (but with the same aspect ratio, ) are 1 2 Taking ¼ 1 bar ¼ 105 Pa, ¼ 0:2, we find a sliding superimposed, then we can suppose that the effects of the À velocity of 1.4 m a 1. Given the crudeness of the model, small-scale roughness act effectively as a surface drag to this gives a laudable estimate of the sliding velocity. the flow past the largest-scale roughness. With a fairly Particularly, the choice of is rather arbitrary, and since obvious notation, ¼ 2R u a þ , ¼ 2R u a þ , r R 1 2 2 r R 2 3 the sliding velocity is inversely proportional to its fourth etc., and thus X power, higher sliding velocities are easily obtained. For 2 À1 ¼ RruR ai: ð6Þ example, a sliding velocity of 44 m a is obtained with a i choice of ¼ 0:1. Consequently the largest obstacles control the rate of sliding, Weertman’s heuristic argument can be slightly tightened which for reasonable sizes will then be negligible. in the following way. Considering the flow past obstacles of Weertman next considers the viscous creep of ice past an size a, it seems reasonable (because the regelative velocity is obstacle. The differential stress past an obstacle is =22, a plug flow) to consider the velocity to be the sum of uR and = uV, thus while the strain rate is uV a, where uV is the creep- controlled sliding velocity. Assuming Glen’s law in the form T T n n ¼ þ ð Þ "_ ¼ B , where "_ is the strain rate and B and n are contants, u 2 2 a, 15 Rra Rv this suggests the viscous sliding law which implicitly defines the stress, Tðu, aÞ, past this size of 1=n 2 uV ¼ Rv , ð7Þ obstacle. Then the total stress is, following our previous a superposition argument, where the viscous roughness coefficient is X ¼ Tðu, aiÞ: ð16Þ ¼ 2 : ð Þ i Rv 1=n 8 B We define dimensionless partial stress, velocity and obstacle Weertman used a version of Glen’s law with n ¼ 4:2, but if size as we take Cuffey and Paterson’s (2010) recommended value of ð þ Þ= À À À n 1 2 B ¼ 2:4  10 24 Pa 3 s 1 with n ¼ 3, then we have T ¼ , u ¼ U, a ¼ aÃA; ð17Þ 2R :  8 1=3 ¼ : 1=3: ð Þ Rv 1 49 10 Pa s 4 7 bar a 9 then is defined by Repeating our earlier estimate for ¼ 0:2 and a ¼ 1m, 5 U ¼ þ nA, ð18Þ we find that a shear stress of 1 bar (10 Pa) produces a A viscous sliding velocity of 150 m aÀ1, but now (with and the sliding law is constant ) the sliding velocity decreases as obstacle size X is reduced.
Recommended publications
  • Proceedings of the Lyon Spring School On
    26/9/2017- page #1 Proceedings of the Lyon Spring School on advances in Systems and Synthetic Biology March 13th - 17th, 2017 IN MEMORIAM RENE´ THOMAS (1928 – 2017) Edited by Patrick Amar, Franc¸ois Kep´ es,` Vic Norris 26/9/2017- page #2 26/9/2017- page #3 Hommage a` Rene´ Thomas Rene´ Thomas est dec´ ed´ e´ le 9/01/2017 au soir. Nous avions et´ e´ prevenus´ a` la fin du Col- loque de Luminy, par sa fille Isabelle, qu’il avait et´ e´ mis sous oxygene` a` son domicile et que ses enfants etaient´ tous rassembles´ dans sa demeure de Rhode St Genese,` ce qui nous avait beaucoup emu,´ tant il representait´ pour beaucoup d’entre nous : selon les cas, un modele,` un inspirateur, un directeur de these,` un grand frere,` un ami (de 40 ans dans mon cas, sans ombrage, que du bonheur...). Nous avons et´ e´ accueilli dans la piece` ou` reposait son cercueil par une projection magnifique de la Dibona, son aiguille pref´ er´ ee´ du massif de la Meije, dans l’Oisans, vue sous son profil le plus majestueux et tentateur. Les hommages se sont succed´ es,´ avec des pleurs et des rires, et des sentiments tres` forts comme il avait su en susciter chez tous ses parents et amis. Sa belle fille Franc¸oise Nyssen m’a demande´ d’ecrire´ un livre sur lui, je vous en livre la premiere` page et un poeme` ecrit´ a` chaud (ou plutotˆ a` froid, a` grand froid...) a` l‘annonce de son dec´ es.` Rene´ Thomas, un bon genie´ du doute et de la creation´ Y rodeˆ le saint de la genese...` C’est ainsi que m’avait et´ e´ decrit,´ de fac¸on allechante´ et com- plice, l’antre de Rene.´ Le saint etait´ un joyeux genie´ sautillant, emerveill´ e´ permanent du monde et de ses decouvertes.´ Gen´ eticien´ astronome, il aurait plu a` son idole Christophe, car il avait des facettes du savant Cosinus et des faceties´ dignes du Sapeur.
    [Show full text]
  • A Review of the Current State and Recent Changes of the Andean Cryosphere
    feart-08-00099 June 20, 2020 Time: 19:44 # 1 REVIEW published: 23 June 2020 doi: 10.3389/feart.2020.00099 A Review of the Current State and Recent Changes of the Andean Cryosphere M. H. Masiokas1*, A. Rabatel2, A. Rivera3,4, L. Ruiz1, P. Pitte1, J. L. Ceballos5, G. Barcaza6, A. Soruco7, F. Bown8, E. Berthier9, I. Dussaillant9 and S. MacDonell10 1 Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT CONICET Mendoza, Mendoza, Argentina, 2 Univ. Grenoble Alpes, CNRS, IRD, Grenoble-INP, Institut des Géosciences de l’Environnement, Grenoble, France, 3 Departamento de Geografía, Universidad de Chile, Santiago, Chile, 4 Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia, Chile, 5 Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Bogotá, Colombia, 6 Instituto de Geografía, Pontificia Universidad Católica de Chile, Santiago, Chile, 7 Facultad de Ciencias Geológicas, Universidad Mayor de San Andrés, La Paz, Bolivia, 8 Tambo Austral Geoscience Consultants, Valdivia, Chile, 9 LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France, 10 Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile The Andes Cordillera contains the most diverse cryosphere on Earth, including extensive areas covered by seasonal snow, numerous tropical and extratropical glaciers, and many mountain permafrost landforms. Here, we review some recent advances in the study of the main components of the cryosphere in the Andes, and discuss the Edited by: changes observed in the seasonal snow and permanent ice masses of this region Bryan G. Mark, The Ohio State University, over the past decades. The open access and increasing availability of remote sensing United States products has produced a substantial improvement in our understanding of the current Reviewed by: state and recent changes of the Andean cryosphere, allowing an unprecedented detail Tom Holt, Aberystwyth University, in their identification and monitoring at local and regional scales.
    [Show full text]
  • Classification of Debris-Covered Glaciers and Rock Glaciers in the Andes of Central Chile
    Geomorphology 241 (2015) 98–121 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Invited review Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile Jason R. Janke a,⁎, Antonio C. Bellisario a, Francisco A. Ferrando b,1 a Metropolitan State University of Denver, Department of Earth and Atmospheric Sciences, CB 22 Denver, CO, USA b Departamento de Geografía, Facultad de Arquitectura y Urbanismo, Universidad de Chile, Santiago, Chile article info abstract Article history: In the Dry Andes of Chile (17 to 35° S), debris-covered glaciers and rock glaciers are differentiated from true Received 16 January 2015 glaciers based on the percentage of surface debris cover, thickness of surface debris, and ice content. Internal Received in revised form 19 March 2015 ice is preserved by an insulating cover of thick debris, which acts as a storage reservoir to release water during Accepted 23 March 2015 the summer and early fall. These landforms are more numerous than glaciers in the central Andes; however, Available online 16 April 2015 the existing legislation only recognizes uncovered or semicovered glaciers as a water resource. Glaciers, Keywords: debris-covered glaciers, and rock glaciers are being altered or removed by mining operations to extract valuable Debris-covered glaciers minerals from the mountains. In addition, agricultural expansion and population growth in this region have Rock glaciers placed additional demands on water resources. In a warmer climate, as glaciers recede and seasonal water Chile availability becomes condensed over the course of a snowmelt season, rock glaciers and debris-covered glaciers Water resources contribute a larger component of base flow to rivers and streams.
    [Show full text]
  • The Origin of Penite)Jts
    THE ORIGIN OF P EN IT ENTS 33 1 THE ORIGIN OF PENITE)JTS By LOUIS LLIBOUTRY (University of Chile) ABSTRA CT. Penitents are obsen·cd on all the snow fields and glaciers of thc Santiago .-\nde. bctween 4000 and 5200 m . They a re caused by the prolonged action of the sun in a dry and cold atmosphere. The sublimation of the snow or ice allows the crests to maintain their tenlpe rature helm,- 0° C., while in the spaces or passages betWeen the penitents, where radiation is concentrated and removal of water vapour not so easy . melting takes place. This hypothesis is justified by a brief study of the climate of the high Cordillera of Santiago ; this study has been attempted for the first time with thc help of meteorological info rmation obtained from La C umbre (3837 m .). The first stage of the penitents is a form of "micropenitent," sinlilar to that observed at the end of the wint er below 3500 m. These micropenitents frequentlv come from crusted snow which has cracked. The compact ice penitents are directl y formed from ice, as is prO\·ed by the existence of ice micropenitents. SO ~ lMAIRE. Les penitents s'obsen-ent sur tous les champs de neige et glaciers des Andes d e Santiago entre 4000 et 5200 m. IIs sont dus a l'action prolongee du soleil dans une atmosphere seche et froide. La su blimation de la neige DU de la g lace permet au x Cfetes de se majntenir en dessous de 0 ° , tandis que dans lc ~ couloirs entre penitents, Oll les radiations se concentrent et d 'ou la vapeur s 'e limine plus diffi cilement, la fusion fai t son appari tion.
    [Show full text]
  • Control of Glaciological Problems Set by The
    J ournal o/Glacio{olfY, Vol. 18, No. 79,1977 GLACIOLOGICAL PROBLEMS SET BY THE CONTROL OF DANGEROUS LAKES IN CORDILLERA BLANCA, PERU. I. HISTORICAL FAILURES OF MORAINIC DAMS, THEIR CAUSES AND PREVENTION By LOUIS LLIBOUTRY, (Laboratoire de Glaciologie du CNRS, Grenoble, France) BENJAMiN MORALES ARNAO, (Instituto de Geologia y Mineria, Lima, Peru) ANDRE P AUTRE, (G eoconseil, La Celle-St-Cloud, France) and BERNARD SCHNEIDER (Coyne et Bellier, Paris, France) ABSTRACT. The retreat of glaciers since 1927 in Cordillera Blanca has produced dangerous lakes a t the front of many glaciers. All the known data, most of them unpublished , are reviewed. The known aluviones are listed, and those of Chavin, Quebrada Los Cedros and Artesoncocha described in full. In these three cases a breach in the front mo ra ine came from big ice falls into the lake. The protective d evices made on the outlets are described, as well as the effects of the big earthquake on 3 I M ay 1970. In the case of Laguna Paran, which keeps its level thanks to infiltrations, the fluctuations of the discharge of the springs as related to the level of the lake from 1955 to 1969 are reported. The projects for lowering the level of Laguna Paran and for emptying Safuna Alta a re described. The latter partially emptied in fact by piping a fter the earth­ quake, allowing a final solution. REsu ME. Problemes glaciologiques souleves par le cOlltrole de lacs dallgereux dalls la Cordillera Blanca, Perou. f. Ruptures historiques de barrages morailliques, leur causes et leur prevelltioll.
    [Show full text]
  • HOMBRE DE HIELO La Desconocida Historia De Louis Lliboutry, El Padre De La Glaciología Moderna Que Comenzó Explorando
    8 DE JULIO DE 2018 DOMINGON° 2.690 Hay-on-Wye: HAITÍ EL PEQUEÑO Una noche GRAN FESTIVAL en el extraño POR DESCUBRIR hotel vudú EN GALES El lado menos conocido de LOS CABOS, EN MÉXICO Al rescate del HOMBRE DE HIELO La desconocida historia de Louis Lliboutry, el padre de la glaciología moderna que comenzó explorando lliboutry las montañas de Chile en los años 50 amilia F archivo ESTE EJEMPLAR ES GRATUITO Y CIRCULA SOLO PARA LOS SUSCRIPTORES DE EL MERCURIO. PROHIBIDA SU VENTA. EL EXPLORADOR de HIELO Entre 1951 y 1956 el físico y alpinista francés Louis Lliboutry exploró las montañas de los Andes centrales y patagónicos para realizar los primeros mapas y estudios de los glaciares que había en Chile. Ese trabajo sentaría las bases de la glaciología moderna. Un reciente libro permite rescatar su historia y poner en valor una figura que, hasta ahora, permanecía en el olvido. POR Sebastián Montalva Wainer. or qué esta figura se perdió en el tiempo? Si uno le pregunta a “¿Pcualquier persona de esta facultad quién es Louis Lliboutry, yo diría que el 95 por ciento va a decir que no sabe”. Quien habla es Patricio Aceituno, Decano de la Facultad de Ciencias Físicas y Matemáticas de la Universidad Chile y miembro desde 1968 de esta casa de estu- OBRA. En 1955, dios. Es una mañana de marzo y Lliboutry publicó Nieves Aceituno está sentado en su oficina y Glaciares de Chile, la en el histórico edificio de la calle obra fundamental para Beaucheff, en Santiago. Frente a él, estudiar los glaciares de el periodista y escritor francés Marc nuestro país.
    [Show full text]
  • Hace 62 Años Que Louis Lliboutry Publicó Nieves
    Los glaciares de Chile central, a seis décadas de los trabajos de Louis Lliboutry Andrés Rivera / Laboratorio de Glaciología, Centro de Estudios Científicos, CECs, Valdivia, Chile. Departamento de Geografía, Universidad de Chile. Nieves Alta Cordillera Central donde hizo unas 10 expediciones En las huellas de Lliboutry ace 62 años que Louis Lliboutry publicó H y glaciares de Chile. Fundamentos de glaciología, ligeras de 5 a 10 días». El fruto de su trabajo tiene plena texto insigne que sigue siendo un tratado imprescindi- validez teórica y práctica, conteniendo además un exce- ble en habla castellana para todos aquellos interesados lente registro del estado de los glaciares de los Andes, en en glaciología teórica y la exploración de los Andes. Este particular de Chile a mediados del siglo XX. Es precisa- texto surgió al alero de la Universidad de Chile, donde mente el objetivo de este capítulo comparar estos registros Lliboutry trabajó por varios años estudiando glaciares a históricos con imágenes y datos modernos, con el fin de partir de antecedentes históricos, mapas, fotografías y, se- verificar los cambios acaecidos y valorar la contribución gún sus propias palabras, «un conocimiento directo de la del sabio francés a la glaciología de Chile y el mundo. Trabajos del CECs en la cuenca alta del río Olivares. Instalación de cámara fotográfica con transmisión en línea apuntando a los glaciares Olivares y Alfa. 250 | A mediados del siglo XX la cordillera de los Andes de Chile central (Figura 1) «era poco conocida fuera de los círculos andinísticos», lo que no ha cambiado sus- tancialmente en nuestros días.
    [Show full text]
  • Pioneers of the Paine: a Supplement
    EVELIO ECHEVARRIA Pioneers of the Paine: A Supplement In the 1992 volume of this Journal Sir Edward Peck made avaluable contribution to the exploratory and climbing history of the Paine massif in southern Chile. 1 These brief notes are offered as a complement to that article. The name Paine originated in Argentina and is therefore not local. The Cerros Paine are a range of lesser hills located in southern Argentina and the name, in the original Tehuelche language, meant 'blue' or 'light blue'. Argentine armymen, hunting for fleeing Indians, somehow decided that the Chilean rock and ice massif bore a resemblance to the lower hillocks of their country and gave it the same mime. 2 This probably happened around 1880. The border controversy between Chile and Argentina that began around 1885 was solved when both nations agreed that their common bor­ derline should run over the highest summits that form the continental water­ shed. Between 1896 and 1910 comisiones de limites (boundary commissions) were specially created to establish exactly where this boundary would run. Their work represented the first attempt to map the Andes running from parallel 22° to 55° S. The Chilean commission was headed by the remarkable mathematician/ engineer Luis Riso Patron, who can justly be called the main mountain explorer in South America. He led the mapping of the entire length of the Chilean Andes from southern Peru to Cape Horn. In the course of their task, the members of the commission climbed many peaks, baptised even more and placed iron landmarks on the international border passes.
    [Show full text]
  • Communiqué De Presse
    Communiqué de presse Grenoble, le 29 novembre 2017 UGA Éditions présente Louis Lliboutry, le Champollion des glaces Le 4 décembre prochain, dans le cadre d’une conférence de lancement organisée à l’Institut des géosciences de l’environnement (IGE – CNRS/Grenoble INP/IRD/UGA) dans la salle portant le nom de Louis Lliboutry, UGA Éditions présentera son premier titre de médiation scientifique : Louis Lliboutry, le Champollion des glaces de Marc Turrel. Un récit richement illustré qui retrace le parcours hors-norme de ce glaciologue grenoblois, également professeur d'université, qui a été, avec Claude Lorius1 « le fondateur de la glaciologie française de la montagne et des pôles ». C’est au Chili, en 1951, que Louis Lliboutry fait ses premiers pas d’explorateur, de cartographe et de glaciologue. Au cours de son séjour, il fait partie de l’expédition française dirigée par Lionel Terray, parti en Argentine en 1952 pour gravir le Fitz Roy. Il étudie et cartographie pour la première fois les grands glaciers des Andes et de Patagonie et grâce à ses recherches, il améliore considérablement la cartographie de ces vastes régions. À son retour de Santiago, il décide de créer le Laboratoire de Glaciologie alpine du CNRS (actuel IGE) en 1958 dans les locaux de l'Ancien Evêché de Grenoble. Il conçoit avec son équipe d'ingénieurs et de techniciens des appareils de forage et de carottage, permettant ainsi le développement des plus importantes recherches scientifiques sur les glaciers des Alpes et, par la suite, en Antarctique avec la participation de Claude Lorius. Il est également à l’origine du Centre de recherches en glaciologie à la faculté de philosophie et d’éducation de l’université du Chili, premier institut de glaciologie d’Amérique du Sud.
    [Show full text]
  • Dossiers De Laboratoires En Sciences De L'univers
    Dossiers de laboratoires en sciences de l'univers Répertoire numérique 20111087/1 - 20111087/449 Etienne WINTENBERGER Première édition électronique Archives nationales (France) Pierrefitte-sur-Seine 2012 1 https://www.siv.archives-nationales.culture.gouv.fr/siv/IR/FRAN_IR_050771 Cet instrument de recherche a été rédigé avec un logiciel de traitement de texte. Ce document est écrit en ilestenfrançais.. Conforme à la norme ISAD(G) et aux règles d'application de la DTD EAD (version 2002) aux Archives nationales, il a reçu le visa du Service interministériel des Archives de France le ..... 2 Archives nationales (France) INTRODUCTION Référence 20111087/1 - 20111087/449 Niveau de description dossier Intitulé Dossiers de laboratoires en sciences de l'Univers Date(s) extrême(s) 1946-2008 Nom du producteur • Institut national d'astronomie et de géophysique (INAG) • Département scientifique Terre - Océan - Atmosphère - Espace (TOAE) • Institut national des sciences de l'Univers (INSU) • Département scientifique sciences de l'Univers (SDU) • Département scientifique mathématiques, informatique, physique, planète et Univers (MIPPU) • Département scientifique mathématiques, physique, planète et Univers (MPPU) Importance matérielle et support 150 DIMAB soit 50 mètres linéaires Conditions d'accès Soumises aux règles de communicabilité des archives publiques définies par les articles L213-1 et L213-2 du Code du Patrimoine modifié par la loi n° 2008-696 du 15 juillet 2008. Conditions d'utilisation Reproduction selon le règlement de la salle de lecture.
    [Show full text]
  • ANALYSIS of a 870 M DEEP TEMPERATURE PROFILE at DOME C
    Annals of Glaciology 3 1982 © International Glaciological Society ANALYSIS OF A 870 m DEEP TEMPERATURE PROFILE AT DOME C by Catherine Ritz, Louis Lliboutry and Claude Rado (Laboratoire de Glaciologie et Geophysique de I'Environnement, 2 rue Tres-Cloltres, 38031 Grenoble Cedex, France) ABSTRACT (Robin 1955), The French 870 m deep temperature profile gives w = wsz/H us temperature differences with an accuracy of aw/ az = w u(x,z)/(HU) (Budd and others 1970), 0.01 deg (to obtain such an accuracy, the sensors s must be applied against the walls of the bore hole). w = w u( x,z)z/(HU) (Budd and others 1973) . The error on the vertical gradient T' cannot be less­ s ened by weighted running means. Thus, only a mean value of its derivative T" can be reached. In the very cold upper layers, u u(x) only, Data have been analysed by assuming a two­ whence a2 u/ axaz = - a2w/ az2 = 0, and dimensional flow over a plane horizontal bedrock. As a first step, the steady state at an ice divide has w = ws(z - hI/rH - h) (1) been calculated by solving the complete set of equa­ tions. The vertical strain-rate is a constant over two-thirds of the ice sheet. It appears that, (Dansgaard and Johnsen 1969, Hammer and others 1978). at Dome C, sliding and no-sliding solutions are plausible, as well as cyclic oscillations between The parameter h in expression (1) has been esti­ them. Next, the temperature response of the ice sheet mated by Lliboutry (1979), assuming u» w and a bottom to an impulse for the surface temperature has been below freezing point.
    [Show full text]
  • Hielos Continentales Web.Pdf (2.288Mb)
    Hielos continentales Hielos continentales Aproximación a la bibliografía argentina Guillermo Stamponi Stamponi, Guillermo Hielos continental : aproximación a la bibliografía argentina / Guillermo Stamponi. - 1a ed. - Ciudad Autónoma de Buenos Aires : Fundación Universidad de Belgrano, 2015. Libro digital, PDF Archivo Digital: descarga y online ISBN 978-950-697-083-3 1. Política Exterior. 2. Argentina. I. Título. CDD 327.1 Fundación Universidad de Belgrano Presidente: Dr. Avelino Porto Editor Responsable: Ignacio Tomé Colección Sur Hielos continentales. Aproximación a la bibliografía argentina 1º Edición digital, Ciudad Autónoma de Buenos Aires, septiembre de 2015 © 2015 Fundación Universidad de Belgrano © 2015 Fundación Editorial de Belgrano © 2015 Guillermo Stamponi ISBN 978-950-697-083-3 [digital] 978-950-697-085-7 [impreso] Editorial de Belgrano Zabala 1837 C1426DQG Ciudad Autónoma de Buenos Aires, Argentina Email: [email protected] Facebook/Universidad.de.Belgrano Twitter: @ubeduar Web: www.ub.edu.ar Teléfono: [54 11] 4788 5400 Miembro de: Red de Editoriales de Universidades Privadas Queda hecho el depósito que establece la Ley 11723. No se permite la reproducción total o parcial de este libro, ni su almacenamiento en un sistema informático, ni su transmisión en cualquier forma o por cualquier medio electrónico, mecánico, fotocopia u otros métodos, sin el permiso previo del editor. Diseño editorial: Santángelo Diseño Guillermo Stamponi es Doctor en Relaciones Internacionales, graduado en la Facultad de Ciencias Sociales de la Universidad del Salvador. Obtuvo el diploma de Especialista en Ceremonial en el Centro de Estudios de Relaciones Internacionales y Ceremonial (1990). Aprobó el Curso de Especialización en Protocolo Diplomático, Oficial y Ceremonial en las Relaciones Públicas en el Centro Argentino de Estudios de Ceremonial (1993) y el Módulo Europeo Jean Monnet.
    [Show full text]