Pure and Applied Geophysics: Book Review Index 1985–2018

Total Page:16

File Type:pdf, Size:1020Kb

Pure and Applied Geophysics: Book Review Index 1985–2018 Pure and Applied Geophysics: Book Review Index 1985–2018 A Abrupt Climatic Change, eds. W. H. Berger and L. D. Labeyrie, Reidel, 1987; in: Pure Appl. Geophys. 130 (1989): 146–147. Acoustic and Elastic Wave Fields in Geophysics, vol.1, by A. A. Kaufman and A. L. Levshin, (Methods in Geochemistry and Geophysics, vol 32), Elsevier Science, 2000; in: Pure Appl. Geophys. 158 (2001): 1089–1091. Acoustic and Elastic Wave Fields in Geophysics, vol.2, by A. A. Kaufman, A. L. Levshin, and K. L. Larner, (Methods in Geochemistry and Geophysics, vol 37), Elsevier Science, 2002; in: Pure Appl. Geophys. 161 (2004): 935. Acoustics of Layered Media I: Plane and Quasi-Plane Waves, by L. M. Brekhovshikh and O. A. Godin, Springer Verlag, 1990; in: Pure Appl. Geophys. 135 (1991): 646. Acquiring Better Seismic Data, by W. C. Pritchett, Chapman and Hall, 1990; in: Pure Appl. Geophys. 135 (1991): 145–146. Active Tectonics, ed. Geophysics Study Committee, Geophysics Resaerch Forum, National Academy Press, Washington, D. C., 1986; in: Pure Appl. Geophys. 125 (1987): 864–866. Active Tectonics and Seismic Potential of Alaska, eds. J. T. Freymueller, P. J. Haeussler, R. L. Wesson, and G. Ekström, Geophysical Monograph, Vol. 179, American Geophysical Union, 2008; in: Pure Appl. Geophys. 167 (2010): 363–364. Adaptive Optics for Astronomy, eds. D. M. Allouin and J.-M. Mariotti, Kluwer Academic Press, 1994; in: Pure Appl. Geophys. 149 (1997): 438–439. Advanced Ocean Modelling: Using Open-Source Software, by J. Kämpf, Springer, 2010; in: Pure Appl. Geophys. 168 (2011): 1893–1894. Advanced Space Plasma Physics, by R. A. Treumann and W. Baumjohann, Imperial College Press, 1997; in: Pure Appl. Geophys. 156 (1999): 746–748. Advances in Earthquake Prediction: Research and Risk Mitigation, by Ragnar Stefansson, Springer/Praxis, 2011; in: Pure Appl. Geophys. 170 (2013): 723–724. Advances in Seismic Event Location, eds. Clifford H. Thurber and Nitzan Rabinowitz, Modern Approaches in Geophysics, vol. 18, Kluwer Academic Publishers, 2000; in: Pure Appl. Geophys. 160 (2003): 1362–1363. Advances in Transport Phenomena 2010, Liqiu Wang (ed.), Springer, 2011; in: Pure Appl. Geophys. 169 (2012), 1321–1323. Advances in Turbulence VI, eds. S. Garvrilakis, L. Machiels and P. A. Monkewitz, Kluwer Academic Publishers, 1996; in: Pure Appl. Geophys. 152 (1998): 635–640. Advances in Turbulence: VII, ed. U. Frisch, Fluid Mechanics and Its Applications, Kluwer Academic Publishers, 1998; in: Pure Appl. Geophys. 157 (2000): 1590–1595. Advances in Turbulence. Proceedings of the First European Turbulence Conference. Lyon, France, 1–4 July, 1986, eds. G. Comte-Bellot and J. Mathieu, Springer Verlag, 1987; in: Pure Appl. Geophys. 130 (1989): 140–141. Advances in Wave Turbulence Eds. V. Shrira and S. Nazarenko, World Scientific Series on Nonlinear Science, Series A, vol. 83, Series Editor Leon O. Chua, World Scientific, 2013; in: Pure Appl. Geophys. 171 (2014), 2093–2094. Aeronomy of the Middle Atmosphere, by G. Brasseur and S. Solomon, Reidel, 1986; in: Pure Appl. Geophys. 126 (1988): 169–170. Aerosol Effects on Climate, ed. S. G. Jennings, The University of Arizona Press, 1993; in: Pure Appl. Geophys. 140 (1993): 552–553. Aerosol–Cloud–Climate Interactions, ed. P. V. Hobbs, Academic Press, 1993; in: Pure Appl. Geophys. 142 (1994): 409–411. After the Earthquakes: Elastic Rebound on an Urban Planet, by S. E. Hough and R. G. Bilham, Oxford University Press, 2006; in: Pure Appl. Geophys. 167 (2010): 365–366. Air Composition and Chemistry, by Peter Brimblecombe, Cambridge University Press, 1986; in: Pure Appl. Geophys. 125 (1987): 847–878. Alan Douglas: ‘‘Forensic Seismology and nuclear test bans’’ Cambridge University Press, 2013; in: Pure Appl. Geophys. 171 (2014), 1571–1572. Analysis and Mathematical Physics by Shaun Bullett, Tom Fearn, and Frank Smith, LTCC Advanced Mathematics Series, vol. 6, World Scientific Publishing Europe Ltd., 201; in: Pure Appl. Geophys. 174 (2017): 4273–4275. Analysis of Geophysical Potential Fields: A Digital Signal Processing Approach, by P. S. Naidu and M. P. Mathew, Advances in Exploration Geophysics, vol. 5, Elsevier, 1998; in: Pure Appl. Geophys. 157 (2000): 1575–1578. Analysis of Geological Structures, by N. J. Price and J. W. Cosgrove, Cambridge University Press, 1990; in: Pure Appl. Geophys. 136 (1991): 163–165. Analysis of Observed Chaotic Data, by H. D. I. Abarbanel, Springer-Verlag, 1996; in: Pure Appl. Geophys. 154 (1999): 200–201. Analytical Fluid Dynamics, by G. Emanuel, CRC Press, 1994; in: Pure Appl. Geophys. 146 (1996): 402–403. Analytical Mechanics, by L. N. Hand and J. D. Finch, Cambridge University Press, 1998; in: Pure Appl. Geophys. 157 (2000): 1587–1590. Anamolous Atmospheric Flows and Blocking, eds. R. Benzi, B. Saltzman and A. C. Wiim-Nielsen, Academic Press, 1986; in: Pure Appl. Geophys. 126 (1988): 171–172. Anatomy of Seismograms, by O. Kulhánek, Elsevier, 1990; in: Pure Appl. Geophys. 135 (1991): 500–501. Ancient Sedimentary Environments and their Sub-Surface Diagnosis, ed. Richard C. Selley, Chapman and Hall, 1985; in: Pure Appl. Geophys. 124 (1986): 1111–1112. An Introduction to Lagrangian Mechanics by Alain J. Brizard 2nd Edition, World Scientific, 2015; in Pure Appl. Geophys. 172 (2015): 2951-2953. Anisotropy in Geoelectromagnetism, by J. G. Negi and P. D. Saraf, Elsevier, 1989; in: Pure Appl. Geophys. 134 (1990): 488–489. Annual Review of Astronomy and Astrophysics, eds. G. Burbidge, D. Layzer and A. Sandage, Annual Reviews Inc., 1993; in: Pure Appl. Geophys. 144 (1995): 183–185. Annual Review of Astronomy and Astrophysics, vol. 32, eds. G. Burbidge, D. Layzer and A. Sandage, Annual Reviews, Inc., 1994; in: Pure Appl. Geophys. 149 (1997): 435–436. Annual Review of Earth and Planetary Sciences, vol. 14, eds. G. W. Wetherill, A. L. Albee and F. G. Stehli, Annual Reviews, Inc., 1986; in: Pure Appl. Geophys. 125 (1987): 694–696. Annual Review of Earth and Planetary Sciences, vol. 15, eds. G. W. Wetherill, A. L. Albee and F. G. Stehli, Annual Reviews, Inc., 1987; in: Pure Appl. Geophys. 127 (1988): 744–746. Annual Review of Earth and Planetary Sciences, vol. 16, eds. G. W. Wetherill, A. L. Albee and F. G. Stehli, Annual Reviews, Inc., 1988; in: Pure Appl. Geophys. 130 (1989): 761–763. Annual Review of Earth and Planetary Sciences, vol. 17, eds. G. W. Wetherill, A. L. Albee and F. G. Stehli, Annual Reviews, Inc., 1989; in: Pure Appl. Geophys. 133 (1990): 393–394. Annual Review of Earth and Planetary Sciences, vol. 18, eds. G. W. Wetherill, A. L. Albee and F. G. Stehli, Annual Reviews, Inc., 1990; in: Pure Appl. Geophys. 136 (1991): 355–356. Annual Review of Earth and Planetary Sciences, vol. 19, eds. G. W. Wetherill, A. L. Albee and K. C. Burke, Annual Reviews, Inc., 1991; in: Pure Appl. Geophys. 137 (1992): 163–165. Annual Review of Earth and Planetary Sciences, vol. 20, eds. G. W. Wetherill, A. L. Albee and K. C. Burke, Annual Reviews, Inc., 1992; in: Pure Appl. Geophys. 140 (1993): 749–751. Annual Review of Earth and Planetary Sciences, vol. 21, eds. G. W. Wetherill, A. L. Albee and K. C. Burke, Annual Reviews, Inc., 1993; in: Pure Appl. Geophys. 142 (1994): 411–412. Annual Review of Earth and Planetary Sciences, vol. 22, eds. G. W. Wetherill, A. L. Albee and K. C. Burke, Annual Reviews Inc., 1994; in: Pure Appl. Geophys. 156 (1999): 744–746. Annual Review of Earth and Planetary Sciences, vol. 23, eds. G. W. Wetherill, A. L. Albee and K. C. Burke, Annual Reviews, Inc., 1995; in: Pure Appl. Geophys. 149 (1997): 432–435. Annual Review of Earth and Planetary Sciences, vol. 24, eds. G. Wetherill, A. L. Albee and K. C. Burke, Annual Reviews, Inc., 1996; in: Pure Appl. Geophys. 151 (1998): 209–212. Annual Review of Earth and Planetary Sciences, vol. 27, eds. R. Jeanloz, A. L. Albee and K. C. Burke, Annual Reviews, Inc., 1999; in: Pure Appl. Geophys. 158 (2001): 1840–1841. Annual Review of Earth and Planetary Sciences, vol. 28, eds. R. Jeanloz, A. L. Albee and K. C. Burke, Annual Reviews, Inc., 2000; in: Pure Appl. Geophys. 159 (2002): 2808–2810. Antartic Earth Sciences, eds. R. L. Olivier, P. R. James and J. B. Jago, Cambridge University Press, 1984; in: Pure Appl. Geophys. 123 (1985): 489–490. Apocalypse: Earthquakes, Archaeology, and the Wrath of God, by Amos Nur, with Dawn Burgess, Princeton University Press, 2008; in: Pure Appl. Geophys. 167 (2010): 1287. Applied Analysis of the Navier-Stokes Equations, by C. R. Doering and J. D. Gibbon, Cambridge University Press, 1995; in: Pure Appl. Geophys. 152 (1998): 621–622. Applied Chemical and Isotopic Groundwater Hydrology, by E. Mazor, Halsted Press, a division of John Wiley & Sons, 1991; in: Pure Appl. Geophys. 152 (1998): 189–191. Applied Geomechanics in Drilling, by V. S. Voitenko, A. A. Balkema, 1995; in: Pure Appl. Geophys. 152 (1998): 188–189. Applied Geophysics in Hydrogeological and Engineering Practice, eds. W. E. Kelly and S. Mares, Elsevier, 1993; in: Pure Appl. Geophys. 141 (1993): 193–195. Applied Geophysics, by W. M. Telford, L. P. Geldart, and R. E. Sheriff, Cambridge University Press, 1990; in: Pure Appl. Geophys. 136 (1991): 162–163. Applied Geothermica for Petroleum Engineers, by I. M. Kutasov, Developments in Pertroleum Science, vol. 48, Elsevier, 1999; in: Pure Appl. Geophys. 158 (2001): 1831–1833. Applied Geothermics, eds. M. J. Economides and P. O. Ungemach, John Wiley and Sons, 1987; in: Pure Appl. Geophys. 126 (1988): 160–161. Applied Groundwater Modeling: Simulation of Flow and Advective Transport, by M. P. Anderson and W. W. Woessner, Academic Press, 1992; in: Pure Appl. Geophys. 149 (1997): 634–635. Applied Mathematics for Earth Scientists, by T. Rikitake, R. Sato and Y. Hagiwara, Terra Scientific Publishing Company/D. Reidel Publishing Company, 1987; in: Pure Appl. Geophys. 130 (1989): 132–134.
Recommended publications
  • Geophysics 210 September 2008
    Geophysics 210 September 2008 Geophysics 210 - Physics of the Earth A1: What is geophysics Geophysics: Application of physics to understand the structure and working of the Earth. Geophysics can be divided into exploration geophysics and geodynamics. Exploration geophysics is the process of imaging what is inside the Earth. Direct sampling in the Earth with drilling can only reach depths around 10 km so indirect methods are needed. Often used to describe commercial exploration, but includes investigations to depths of the mantle and core. All geophysical methods can be divided into active and passive techniques. In an active technique, it is necessary to generate a signal (e.g. in seismic studies sound waves are generated with an explosion or an earthquake). In a passive technique a naturally occurring signal is detected (e.g. the pull of gravity of a buried object). Geodynamics is the study of how the Earth works, and considers questions such as: -what drives plate motion? -what triggers earthquakes? -how is the Earth’s magnetic field generated? -how do continent-continent collisions build mountains? This field depends heavily on information derived from geophysical imaging. Advances in computer power now allow simulations of these processes in ever increasing detail and realism. A2 : Basic structure of the Earth • Radially symmetric to first order. • Crust – mainly silicate minerals, enriched in lighter elements (Na, Al) • Mantle – silicate minerals with more heavy elements (Fe and Mg) magnesium. Divided into upper and lower mantle (dashed line) • Outer core - liquid iron that convects rapidly. • Inner core – Lump of solid iron roughly the size of the moon • Crust and mantle are defined in terms of their distinct chemical compositions.
    [Show full text]
  • Ten Years of Marine CSEM for Hydrocarbon Exploration
    GEOPHYSICS, VOL.75, NO. 5 ͑SEPTEMBER-OCTOBER 2010͒; P.75A67–75A81, 15 FIGS. 10.1190/1.3483451 Ten years of marine CSEM for hydrocarbon exploration Steven Constable1 years of the first survey three contracting companies had been ABSTRACT formed for the express purpose of providing commercial marine CSEM services to the exploration industry. Now, almost 10 years af- Marine controlled-source electromagnetic ͑CSEM͒ sur- ter the Girassol survey, marine CSEM is a broadly used, if not main- veying has been in commercial use for predrill reservoir ap- stream, geophysical technology, with over 500 surveys reportedly praisal and hydrocarbon exploration for 10 years.Although a having been carried out and several custom-built survey vessels in recent decrease has occurred in the number of surveys and operation. The 75th anniversary of GEOPHYSICS and the 10th anni- publications associated with this technique, the method has versary of commercial marine CSEM seem to constitute an appro- become firmly established as an important geophysical tool priate occasion to review the marine CSEM method: where we have in the offshore environment. This is a consequence of two im- been, where we are today, and where we might be going. portant aspects associated with the physics of the method: The aim of this paper is to provide a technical review, which is ac- First, it is sensitive to high electrical resistivity, which, al- cessible to the nonexpert, of the marine CSEM method. However, to though not an unambiguous indicator of hydrocarbons, is an illustrate some of the important issues, original calculations have important property of economically viable reservoirs.
    [Show full text]
  • Modeling for Inversion in Exploration Geophysics A
    MODELING FOR INVERSION IN EXPLORATION GEOPHYSICS A Dissertation Presented to The Academic Faculty By Mathias Louboutin In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of CSE in the College of Computing Georgia Institute of Technology February 2020 Copyright c Mathias Louboutin 2020 MODELING FOR INVERSION IN EXPLORATION GEOPHYSICS Approved by: Dr. Felix J. Herrmann, Advisor School Computational Science and Engineering Dr. Tobin Isaac Georgia Institute of Technology School of Computer Science Georgia Institute of Technology Dr. Umit Catalyurek School Computational Science and Dr. Zhigang Peng Engineering School of Earth and Atmospheric Georgia Institute of Technology Sciences Georgia Institute of Technology Dr. Edmond Chow School Computational Science and Date Approved: March 1, 2020 Engineering Georgia Institute of Technology ACKNOWLEDGEMENTS Before anything else, I would like to thank my supervisor Dr Felix J. Herrmann for giv- ing me the opportunity to work with him. Thanks to his leadership I had the opportunity to work and scientifically challenging problems in a collaborative and motivating atmosphere. I would also like to thank Professor Gerard Gorman at Imperial college. And large part of my research was kick-started by a visit at Imperial College and Dr. Gorman’s support and guidance made me achieve my research objective. I would like to thank Professor Umit Catalyurek, Professor Edmond Chow, Professor Tobin Isaac and Professor Zhigang Peng for agreeing to be on my Ph.D. committee at Georgia Tech, for reviewing my thesis, for making time for my proposal and defense and for your valuable input on my work. I would also like to thank my former Ph.D.
    [Show full text]
  • Results of the Application of Seismic- Reflection And
    RESULTS OF THE APPLICATION OF SEISMIC- REFLECTION AND ELECTROMAGNETIC TECHNIQUES FOR NEAR-SURFACE HYDROGEOLOGIC AND ENVIRONMENTAL INVESTIGATIONS AT FORT BRAGG, NORTH CAROLINA ByM.T. Meyer and Jason M. Fine U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 97-4042 Prepared for the Department of the Army Fort Bragg, North Carolina Raleigh, North Carolina 1997 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services 3916 Sunset Ridge Road Box 25286 Raleigh, NC 27607 Denver Federal Center Denver, CO 80225-0286 CONTENTS Page Abstract.................................................................................. 1 Introduction.............................................................................. 2 Background ....................................................................... 3 Purpose and scope ................................................................. 3 Physiographic and geologic settings .................................................. 4 Acknowledgments .............................................................. 6 Surface-geophysical methods ............................................................... 7 Shallow seismic reflection
    [Show full text]
  • An Introduction to Geophysical Exploration, 3E
    An Introduction to Geophysical Exploration Philip Kearey Department of Earth Sciences University of Bristol Michael Brooks Ty Newydd, City Near Cowbridge Vale of Glamorgan Ian Hill Department of Geology University of Leicester THIRD EDITION AN INTRODUCTION TO GEOPHYSICAL EXPLORATION An Introduction to Geophysical Exploration Philip Kearey Department of Earth Sciences University of Bristol Michael Brooks Ty Newydd, City Near Cowbridge Vale of Glamorgan Ian Hill Department of Geology University of Leicester THIRD EDITION © 2002 by The right of the Authors to be distributors Blackwell Science Ltd identified as the Authors of this Work Marston Book Services Ltd Editorial Offices: has been asserted in accordance PO Box 269 Osney Mead, Oxford OX2 0EL with the Copyright, Designs and Abingdon, Oxon OX14 4YN 25 John Street, London WC1N 2BS Patents Act 1988. (Orders: Tel: 01235 465500 23 Ainslie Place, Edinburgh EH3 6AJ Fax: 01235 465555) 350 Main Street, Malden All rights reserved. No part of MA 02148-5018, USA this publication may be reproduced, The Americas 54 University Street, Carlton stored in a retrieval system, or Blackwell Publishing Victoria 3053,Australia transmitted, in any form or by any c/o AIDC 10, rue Casimir Delavigne means, electronic, mechanical, PO Box 20 75006 Paris, France photocopying, recording or otherwise, 50 Winter Sport Lane except as permitted by the UK Williston,VT 05495-0020 Other Editorial Offices: Copyright, Designs and Patents Act (Orders: Tel: 800 216 2522 Blackwell Wissenschafts-Verlag GmbH 1988, without the prior
    [Show full text]
  • Proceedings of the Lyon Spring School On
    26/9/2017- page #1 Proceedings of the Lyon Spring School on advances in Systems and Synthetic Biology March 13th - 17th, 2017 IN MEMORIAM RENE´ THOMAS (1928 – 2017) Edited by Patrick Amar, Franc¸ois Kep´ es,` Vic Norris 26/9/2017- page #2 26/9/2017- page #3 Hommage a` Rene´ Thomas Rene´ Thomas est dec´ ed´ e´ le 9/01/2017 au soir. Nous avions et´ e´ prevenus´ a` la fin du Col- loque de Luminy, par sa fille Isabelle, qu’il avait et´ e´ mis sous oxygene` a` son domicile et que ses enfants etaient´ tous rassembles´ dans sa demeure de Rhode St Genese,` ce qui nous avait beaucoup emu,´ tant il representait´ pour beaucoup d’entre nous : selon les cas, un modele,` un inspirateur, un directeur de these,` un grand frere,` un ami (de 40 ans dans mon cas, sans ombrage, que du bonheur...). Nous avons et´ e´ accueilli dans la piece` ou` reposait son cercueil par une projection magnifique de la Dibona, son aiguille pref´ er´ ee´ du massif de la Meije, dans l’Oisans, vue sous son profil le plus majestueux et tentateur. Les hommages se sont succed´ es,´ avec des pleurs et des rires, et des sentiments tres` forts comme il avait su en susciter chez tous ses parents et amis. Sa belle fille Franc¸oise Nyssen m’a demande´ d’ecrire´ un livre sur lui, je vous en livre la premiere` page et un poeme` ecrit´ a` chaud (ou plutotˆ a` froid, a` grand froid...) a` l‘annonce de son dec´ es.` Rene´ Thomas, un bon genie´ du doute et de la creation´ Y rodeˆ le saint de la genese...` C’est ainsi que m’avait et´ e´ decrit,´ de fac¸on allechante´ et com- plice, l’antre de Rene.´ Le saint etait´ un joyeux genie´ sautillant, emerveill´ e´ permanent du monde et de ses decouvertes.´ Gen´ eticien´ astronome, il aurait plu a` son idole Christophe, car il avait des facettes du savant Cosinus et des faceties´ dignes du Sapeur.
    [Show full text]
  • Bore Hole Ebook, Epub
    BORE HOLE PDF, EPUB, EBOOK Joe Mellen,Mike Jay | 192 pages | 25 Nov 2015 | Strange Attractor Press | 9781907222399 | English | Devizes, United Kingdom Bore Hole PDF Book Drillers may sink a borehole using a drilling rig or a hand-operated rig. Search Reset. Another unexpected discovery was a large quantity of hydrogen gas. Accessed 21 Oct. A borehole may be constructed for many different purposes, including the extraction of water , other liquids such as petroleum or gases such as natural gas , as part of a geotechnical investigation , environmental site assessment , mineral exploration , temperature measurement, as a pilot hole for installing piers or underground utilities, for geothermal installations, or for underground storage of unwanted substances, e. Forces Effective stress Pore water pressure Lateral earth pressure Overburden pressure Preconsolidation pressure. Cancel Report. Closed Admin asked 1 year ago. Help Learn to edit Community portal Recent changes Upload file. Is Singular 'They' a Better Choice? Keep scrolling for more. Or something like that. We're gonna stop you right there Literally How to use a word that literally drives some pe Diameter mm Diameter mm Diameter in millimeters mm of the equipment. Drilling for boreholes was time-consuming and long. Whereas 'coronary' is no so much Put It in the 'Frunk' You can never have too much storage. We truly appreciate your support. Fiberscope 0 out of 5. Are we missing a good definition for bore-hole? Gold 0 out of 5. Share your knowledge. We keep your identity private, so you alone decide when to contact each vendor. Oil and natural gas wells are completed in a similar, albeit usually more complex, manner.
    [Show full text]
  • The Future of Onshore Seismic
    VOL. 15, NO. 2 – 2018 GEOSCIENCE & TECHNOLOGY EXPLAINED geoexpro.com GEOTOURISM TECHNOLOGY EXPLAINED Aspen: Rocky Mountain High The Future of Onshore Seismic EXPLORATION Awaiting Discovery? The US Atlantic Margin GEOEDUCATION Resources Boosted by Billions GEOPHYSICS A Simple Guide to Depth Conversion Get Ready for the 2018 Egypt West Med License Round Unlock this frontier region with GeoStreamer seismic data for detailed subsurface information Benefit from true broadband depth imaging covering an area of more than 80 000 sq. km over the Herodotus/West Egypt Shelf. In partnership with: Meet our Egypt experts at EAGE in Copenhagen from 11–14 June 2018. Contact us for more information: [email protected] Ministry of Petroleum Ministry andof Petroleum Mineral Resources and Mineral Resources A Clearer Image | www.pgs.com/DataLibrary Previous issues: www.geoexpro.com Contents Vol. 15 No. 2 This edition of GEO ExPro focuses on North America; integrating geoscience for GEOSCIENCE & TECHNOLOGY EXPLAINED exploration; and reserves and resources. i 5 Editorial Egorov The underexplored US 6 Regional Update Atlantic margin may soon be open to exploration. 8 Licensing Update 10 A Minute to Read 14 Cover Story: Technology Explained: f Darts and Drones – The A simple guide to the parameters Future of Onshore Seismic involved in depth conversion. 18 Exploration: Awaiting Discovery? The US Atlantic Margin Earthworks Earthworks Reservoir 22 Industry Issues: Mind the Gaps v 24 GEO Physics: A Simple Guide Lasse Amundsen to Depth Conversion It is one of the oldest exploration areas in the world, but there is still plenty of potential in Central Europe. 26 Hot Spot: Renewed Excitement in Deepwater Gabon 28 Seismic Foldout: Exploring Papua New Guinea Y and Malvinas Become an expert at Finite 34 Exploration: Czeching it Out: Difference Modeling.
    [Show full text]
  • Applied Earth Sciences Natural Resources from the Earth, Ranging from Engineers Know Where Those Resources Can Be Found Raw Materials to Energy
    complement your academic studies, you will have the opportunity to work intensively with TU Delft’s partners in industry. For example, TU Delft is a participant in ISAPP (Integrated System Approach Petroleum Production), a large collaborative project involving TU Delft, Shell and TNO established for the purpose of boosting oil production by improving the flow of oil and water in oil reservoirs, and CATO, a consortium doing research on the collection, transport and storage of CO2. Managing the Earth’s resources for today and tomorrow Programme tracks • Petroleum Engineering and Geosciences covers both the technologies involved in extracting petroleum from the Earth, and the tools for assessing hydrocarbon reservoirs to gain an MSc Programme understanding of their potential. The track is divided into two specialisations: Petroleum Engineering covers all upstream Applied Earth aspects from reservoir description and drilling techniques to field management and project Sciences economics. Reservoir Geology covers the use of modern measurement and computational methods to obtain a quantitative understanding of hydrocarbon reservoirs. • Applied Geophysics is a joint degree track offered collaboratively by TU Delft, ETH Zürich and RWTH Aachen University. It trains students in geophysical aspects of environmental and engineering studies and in the exploration, exploitation and management of hydrocarbon and geothermal energy. Disciplines covered include acoustic and electromagnetic wave theory, seismic data acquisition, imaging and interpretation, borehole logging, rock-fluid interaction and petroleum geology. Everything we build and use on the surface of our • Resource Engineering covers the extraction of planet comes from the Earth. Applied Earth Sciences natural resources from the Earth, ranging from engineers know where those resources can be found raw materials to energy.
    [Show full text]
  • OIL and NATURAL GAS Within the General Field of the Earth Sciences
    118 EXPLORATION GEOPHYSICS - OIL AND NATURAL GAS Last year the Canadian Association of Physicists prepared a comprehensive review on the status and future of physics in Canada for the Science Secretariat of the Privy Council. The subject was treated in twelve parts, one of which related to the “Physics of the Earth” under the convenorship of Professor R. D. Russell, University of British Columbia. Professor Russell invited the C.S.E.G. Executive to submit a brief on the significance of geophysics from the viewpoint of society members. The report below was undertaken by the CSEG. Research Committee CompriS. ing the following members: Mr. C. H. Achesan, Chairman Mr. Hinds Agnew Mr. R. Jerry Brad Mr. R. Clawson Mr. E. T. Cook Mr. G. F. Coote Mr. R. J. Copeland Dr. J. A. Mair Mr. P. J. Savage INTRODUCTION Within the general field of the earth sciences, lies the subfield of “Ex- ploration Geophysics.” This study concerns itself with the application of the tools and methods of physics to explore the first few miles of the earth’s crust. It attempts to identify rock types and delineate their gross structure. The ability to do this has proved to be invaluable in the exploration for oil and gas, and in the mining and construction industries. It is an essential field of endeavour for the development of Canada’s natural resources. As it makes use of the tools and methods of physics, students trained in this discipline are essential to its further development. The research carried out by government and universities has been, and will prove to be, a valuable asset to exploration geophysics, the most recent examples being provided by advances in Communication Theory and Laser Research.
    [Show full text]
  • SPLOS/313* Meeting of States Parties
    United Nations Convention on the Law of the Sea SPLOS/313* Meeting of States Parties Distr.: General 16 March 2017 Original: English Twenty-seventh Meeting New York, 12-16 June 2017 Item 14 of the provisional agenda** Curricula vitae of candidates nominated by States parties for election to the Commission on the Limits of the Continental Shelf Note by the Secretary-General 1. The Secretary-General has the honour to submit the curricula vitae of the candidates nominated by States Parties for the election of 21 members of the Commission on the Limits of the Continental Shelf for a five-year term beginning on 16 June 2017 (see annex). The names and nationalities of the candidates are as follows: Al-Azri, Adnan Rashid Nasser (Oman) Al-Shehri, Mohammed Saleh (Saudi Arabia) Awosika, Lawrence Folajimi (Nigeria) Campos, Aldino (Portugal) Clarke, Wanda-Lee De Landro (Trinidad and Tobago) Glumov, Ivan F. (Russian Federation) Heinesen, Martin Vang (Denmark) Kalngui, Emmanuel (Cameroon) Lyu, Wenzheng (China) Madon, Mazlan bin (Malaysia) Mahanjane, Estevão Stefane (Mozambique) Marques, Jair Alberto Ribas (Brazil) Mazurowski, Marcin (Poland) Mosher, David Cole (Canada) Moreira, Domingos de Carvalho Viana (Angola) Njuguna, Simon (Kenya) Park, Yong Ahn (Republic of Korea) Paterlini, Carlos Marcelo (Argentina) Raharimananirina, Clodette (Madagascar) Yamazaki, Toshitsugu (Japan) Yãnez Carrizo, Gonzalo Alejandro (Chile) 2. Information concerning the procedure for the election is contained in document SPLOS/311. * Reissued for technical reasons on 28 July 2017. ** SPLOS/L.78. 17-04500* (E) 310717 *1704500* SPLOS/313 Annex Curricula vitae of candidates* Adnan Rashid Nasser Al-Azri (Oman) Personal Data Profession: Oceanographer (Biogeochemistry) Year of Birth: 1967 Languages: Arabic, English, French (basic) Occupational Objectives The nature of my work as an academic and the involvement in national and international organizations have given me a rich experience in combining science, administration, strategic planning and consultancy.
    [Show full text]
  • A Review of the Current State and Recent Changes of the Andean Cryosphere
    feart-08-00099 June 20, 2020 Time: 19:44 # 1 REVIEW published: 23 June 2020 doi: 10.3389/feart.2020.00099 A Review of the Current State and Recent Changes of the Andean Cryosphere M. H. Masiokas1*, A. Rabatel2, A. Rivera3,4, L. Ruiz1, P. Pitte1, J. L. Ceballos5, G. Barcaza6, A. Soruco7, F. Bown8, E. Berthier9, I. Dussaillant9 and S. MacDonell10 1 Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT CONICET Mendoza, Mendoza, Argentina, 2 Univ. Grenoble Alpes, CNRS, IRD, Grenoble-INP, Institut des Géosciences de l’Environnement, Grenoble, France, 3 Departamento de Geografía, Universidad de Chile, Santiago, Chile, 4 Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia, Chile, 5 Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Bogotá, Colombia, 6 Instituto de Geografía, Pontificia Universidad Católica de Chile, Santiago, Chile, 7 Facultad de Ciencias Geológicas, Universidad Mayor de San Andrés, La Paz, Bolivia, 8 Tambo Austral Geoscience Consultants, Valdivia, Chile, 9 LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France, 10 Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile The Andes Cordillera contains the most diverse cryosphere on Earth, including extensive areas covered by seasonal snow, numerous tropical and extratropical glaciers, and many mountain permafrost landforms. Here, we review some recent advances in the study of the main components of the cryosphere in the Andes, and discuss the Edited by: changes observed in the seasonal snow and permanent ice masses of this region Bryan G. Mark, The Ohio State University, over the past decades. The open access and increasing availability of remote sensing United States products has produced a substantial improvement in our understanding of the current Reviewed by: state and recent changes of the Andean cryosphere, allowing an unprecedented detail Tom Holt, Aberystwyth University, in their identification and monitoring at local and regional scales.
    [Show full text]