Crustal Structure of Continental Australia; Intra-Crustal Seismic Isostasy and Crustal Composition: a Review Alexey Goncharov Australian Geological Survey Organisation, Australia E-mail:
[email protected] SUMMARY INTRODUCTION The Australian continent including its offshore continental The recent deep crustal studies in Australia are margins contains geological provinces varying in age from characterised by common use of refraction/wide-angle Archaean to modern. It can be subdivided to several mega- reflection seismic techniques, dense observations on elements (Fig. 1) on the basis of different regional gravity refraction/wide-angle profiles and accurate seismic wave and magnetic signatures. The western part of the continent field analysis prior to seismic modelling. In constraining (to the west of Tasman Fold Belt and North Queensland in gravity models, more emphasis has been placed on Fig. 1) is underlain by Precambrian basement; while accurate velocity information and less emphasis on basement in the eastern part is Phanerozoic. The formation of seismic reflection data. This paper reviews the state of Australia's continental margins within the plate tectonics knowledge of Australia's deep crustal structure including concept is attributed to extensional processes which took its continental margins. It emphasises most recent results place prior to separation of Australia, Antarctica and Greater and advances in interpretation and processing methods India at 155-45 Ma. used at the Australian Geological Survey Organisation (AGSO). Since the mid-1990's scientists at AGSO have approached deep crustal studies with the following principles: The Moho depth variation in Australia shows little if any correlation with the boundaries of crustal mega- · common use of refraction/wide-angle reflection seismic elements.