Palaeoecology of the Spathian Virgin Formation (Utah, USA) and Its Implications for the Early Triassic Recovery

Total Page:16

File Type:pdf, Size:1020Kb

Palaeoecology of the Spathian Virgin Formation (Utah, USA) and Its Implications for the Early Triassic Recovery Palaeoecology of the Spathian Virgin Formation (Utah, USA) and its implications for the Early Triassic recovery RICHARD HOFMANN, MICHAEL HAUTMANN, MARTIN WASMER, and HUGO BUCHER Hofmann, R., Hautmann, M., Wasmer, M., and Bucher, H. 2013. Palaeoecology of the Spathian Virgin Formation (Utah, USA) and its implications for the Early Triassic recovery. Acta Palaeontologica Polonica 58 (1): 149–173. The Spathian (late Early Triassic) Virgin Formation of south−western Utah (USA) yields a comparatively diverse benthic fauna that flourished ~2 Ma after the end−Permian mass extinction. In this study, we present quantitative palaeoecological data, which are analysed in the context of depositional environments. This integrated approach helps to discriminate between effects of the end−Permian mass extinction event and local environmental factors on alpha diversity and ecological structure of the Virgin Fauna. Shallow subtidal environments yield the highest species richness and lowest dominance val− ues as recorded in two benthic associations, the Eumorphotis ericius Association and the Protogusarella smithi Association, both of which contain 20 benthic species (bivalves, gastropods, brachiopods, echinoderms, and porifers). Tidal inlet deposits yield a low diverse fauna (Piarorhynchella triassica Association) with a very high dominance of filter feeders adapted to high energy conditions. Another comparably low diverse fauna is recorded by the Bakevellia exporrecta Association, which occurs in deposits of the offshore transition zone, most likely reflecting unconsolidated substrates. A single sample contain− ing five bivalve species (Bakevellia costata Assemblage) is recorded from a marginal−marine setting. The Virgin fauna yields a bulk diversity of 30 benthic species (22 genera) of body fossils and 14 ichnogenera and, thus, represents the most di− verse marine bottom fauna known so far from the Early Triassic. Our results suggest that oceanographic conditions during the early Spathian enabled ecosystems to rediversify without major abiotic limitations. However, taxonomical differentia− tion between habitats was still low, indicating a time lag between increasing within−habitat diversity (alpha diversity) and the onset of taxonomical differentiation between habitats (beta diversity). We suggest that taxonomical habitat differentia− tion after mass extinction events starts only when within−habitat competition exceeds a certain threshold, which was not yet reached in the Spathian of the investigated area. This interpretation is an alternative to previous suggestions that the preva− lence of generalistic taxa in the aftermath of mass extinction events reflects protracted environmental stress. The onset of in− creasing beta diversity is a potential criterion for distinguishing two major recovery phases, the first ending with habitat satu− ration and the second ending with the completion of ecosystem differentiation. Key words: Biotic recovery, mass extinction, palaeoecology, diversity, Early Triassic, Spathian, Virgin Formation, USA. Richard Hofmann [[email protected]], Michael Hautmann [[email protected]], Martin Wasmer [[email protected]], and Hugo Bucher [[email protected]], Paläontologisches Institut und Museum, Universität Zürich, Karl Schmid−Strasse 4, CH−8006 Zürich, Switzerland. Received 27 April 2011, accepted 13 December 2011, available online 16 December 2011. Copyright © 2012 R. Hofmann et al. This is an open−access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Introduction An important but largely neglected tool in reconstructing recovery processes is that of quantitative palaeoecological The end−Permian mass extinction is widely accepted as rep− studies. Although the Virgin Formation (or Virgin Limestone resenting the most devastating biotic crisis in the history of Member in most other studies) and related strata of the western metazoan life (Erwin 1993). Besides the study of the causes USA have been studied in various aspects (e.g., Poborski and mechanism of the extinction itself, the ensuing recovery 1954; Schubert and Bottjer 1995; Boyer et al. 2004; Pruss and interval has attracted considerable attention since the early Bottjer 2004; Pruss et al. 2007; McGowan et al. 2009; Pruss 1990s. The paramount questions addressed in post−extinc− and Payne 2009; Mata and Bottjer 2011), very little palaeo− tion research are, in particular, how biota and ecosystems re− ecological community data were presented. The hitherto most spond to large environmental perturbations, how rapidly eco− comprehensive study of the Virgin palaeoecology is that of systems can recover and how evolutionary processes pro− Schubert and Bottjer (1995), which, however, focused on ceed in vacated ecospaces. broad patterns throughout the entire Early Triassic of the west− Acta Palaeontol. Pol. 58 (1): 149–173, 2013 http://dx.doi.org/10.4202/app.2011.0060 150 ACTA PALAEONTOLOGICA POLONICA 58 (1), 2013 ern USA and was based on genus identification only. Al− depositional environments. This integrated approach helps to though their Spathian samples exhibit the highest generic di− distil unequivocal recovery signals from “noise−variation” versity and most advanced trophic structure among all Early merely reflecting the environmental heterogeneity of shal− Triassic faunas analysed, Schubert and Bottjer (1995) still low−marine environments and local environmental stress un− concluded that the entire Early Triassic of the western USA related to actual recovery trajectories. Additionally, it allows was dominated by depauperate benthic communities reflect− the identification of the degree of faunal heterogeneity be− ing a considerably delayed recovery. Schubert and Bottjer tween adjacent habitats along environmental gradients and, (1995: 28) suggested that this pattern largely results from the thereby, the assessing of the role of beta diversity in the extraordinary magnitude of the end−Permian mass extinction post−extinction diversity increase. and from intrinsic, ecological effects. Another mechanism that has been invoked to explain the putatively protracted Early Institutional abbreviations.—PIMUZ, Paläontologisches Triassic recovery is that adverse environmental conditions Institut und Museum collection, University of Zürich, Swit− persisted well beyond the actual extinction interval and inhib− zerland. ited re−diversification in the marine realm (Hallam 1991). This model was subsequently advocated by many investigators studying Lower Triassic sections from the USA (e.g., Wignall Material and methods and Hallam 1992; Boyer et al. 2004; Pruss and Bottjer 2004; Mata and Bottjer 2011) as well as other palaeogeographic re− Fieldwork was conducted by in October 2009 (by RH) and gions (e.g., Twitchett and Wignall 1996). However, recent August 2010 (RH and MW) in the area of St. George and Hur− studies have challenged several key aspects of this model, ricane in south−western Utah, USA. Bed−by−bed logging and such as the universality of small body sizes in the Early Trias− documentation was undertaken at three sections in the Beaver sic (Brayard et al. 2010, 2011a), the existence of global shal− Dam Mountains area west of St. George and at five sections low marine anoxia (Heydari et al. 2008), and a delayed recov− along the “Honeymoon Trail”, east of Hurricane (Fig. 1). This ery in general (Brayard et al. 2009, 2011b; Hautmann et al. main body of data was complemented by additional observa− 2011, Hofmann et al. 2011). tions from some single outcrops in the research area. At the The Virgin Formation has been repeatedly studied for studied sections, fossiliferous beds were chosen for quantita− more or less representative palaeoecological proxies such as tive sampling of macrofossils. The greater part of fossil mate− trace fossils (Pruss and Bottjer 2004; Mata and Bottjer 2011), rial was identified and counted in the field but reference sam− shell bed architecture (Boyer et al. 2004), and microbially in− ples were taken for lab preparation and further taxonomic duced sedimentary structures (Pruss et al. 2005). All of these identification. Benthic fossils from Lower Triassic succes− studies conclude that strata from this time interval in the sions are notorious for their poor preservation (Schubert and western USA record unusual and harsh environmental condi− Bottjer 1995; Fraiser and Bottjer 2005, Hautmann and Nützel tions, such as alkaline and anoxic waters permanently (Boyer 2005) with mostly internal and re−crystallised moulds being et al. 2004) or repeatedly (e.g., Pruss and Bottjer 2004) af− preserved. However, the material investigated herein is excel− fecting shallow marine habitats and, thereby, inhibiting eco− lently preserved by Early Triassic standards and poses few systems from taxonomical and ecological restoration. problems with its taxonomic identification. Crucial taxonomic A study to assess the faunal heterogeneity and the recovery criteria are readily observable on well preserved, primarily status of the Virgin fauna was recently provided by McGowan calcitic shells of epifaunal bivalves. Internal moulds of mostly et al. (2009). Their data suggest that Virgin communities actu− aragonitic infaunal bivalves are morphologically distinct and ally lack typical traits of post−extinction faunas such as pro− show no evidence of notable deformation. nounced small shell
Recommended publications
  • Biostratigraphic Precision of the Cruziana Rugosa Group: a Study from the Ordovician Succession of Southern and Central Bolivia
    Geol. Mag. 144 (2), 2007, pp. 289–303. c 2007 Cambridge University Press 289 doi:10.1017/S0016756807003093 First published online 9 February 2007 Printed in the United Kingdom Biostratigraphic precision of the Cruziana rugosa group: a study from the Ordovician succession of southern and central Bolivia SVEN O. EGENHOFF∗, BERND WEBER†, OLIVER LEHNERT‡ &JORG¨ MALETZ§ ∗Colorado State University, Department of Geosciences, 322 Natural Resources Building, Fort Collins, CO 80523-1482, USA †Freie Universitat¨ Berlin, Institut fur¨ Geologische Wissenschaften, Fachrichtung Geologie, Malteserstrasse 74-100, D-12249 Berlin, Germany ‡University of Erlangen, Institute of Geology and Mineralogie, Schlossgarten 5, D-91054 Erlangen, Germany §Department of Geology, State University of New York at Buffalo, 772 Natural Sciences and Mathematics Complex, Buffalo, New York 14260-3050, USA (Received 10 October 2005; revised version received 1 May 2006; accepted 22 May 2006) Abstract – Cruziana ichnospecies have been repeatedly reported to have biostratigraphic significance. This study presents a re-evaluation of the arthropod ichnotaxa of the Cruziana rugosa Group from bio- and/or lithostratigraphically well-defined Lower to Upper Ordovician siliciclastic sections of southern and central Bolivia. With the exception of Cruziana rouaulti, the ichnofaunas contain all the members of the Cruziana rugosa Group throughout the Ordovician (Arenig to Caradoc) successions in Bolivia. The Bolivian material therefore indicates that these arthropod ichnofossil assemblages are suitable for recognizing Ordovician strata in Bolivia. These findings cast doubt on their use as reliable indicators for a global intra-Ordovician (Arenig to Caradoc) biozonation of Peri-Gondwanan sedimentary successions. Keywords: Cruziana, biostratigraphy, Bolivia, Ordovician. 1. Introduction to the present study.
    [Show full text]
  • First Report of Swimming Trace Fossils of Fish from the Upper Permian and Lower Triassic of the Dolomites (Italy)
    Annales Societatis Geologorum Poloniae (2018), vol. 88: ...–... doi: https://doi.org/10.14241/asgp.2018.013 FIRST REPORT OF SWIMMING TRACE FOSSILS OF FISH FROM THE UPPER PERMIAN AND LOWER TRIASSIC OF THE DOLOMITES (ITALY) Ausonio RONCHI1, Giuseppe SANTI1, Lorenzo MARCHETTI 2, Massimo BERNARDI 3 & Piero GIANOLLA4 1 Dipartimento di Scienze della Terra e dell’Ambiente, University of Pavia, Italy; e-mails: [email protected]; [email protected] 2 Urweltmuseum GEOSKOP/Burg Lichtenberg (Pfalz), Thallichtenberg, Germany; e-mail: [email protected] 3 MUSE – Museo delle Scienze, Trento, Italy; e-mail: [email protected] 4 Dipartimento di Fisica e Scienze della Terra, University of Ferrara, Italy; e-mail: [email protected] Ronchi, A., Santi, G., Marchetti, L, Bernardi, M. & Gianolla, R., 2018. First report of swimming trace fossils of fish from the Upper Permian and Lower Triassic of the Dolomites (Italy). Annales Societatis Geologorum Poloniae, 88: xxx-xxx Abstract: In the Upper Permian continental to marginal-marine succession of the Southern Alps (Dolomites, north Italy), the ichnological record consists of diverse vertebrate footprints and non-diverse invertebrate trace fossils, mainly occurring in the “Bletterbach ichnoassociation” of the Val Gardena Sandstone Formation. After the Perm- ian-Triassic Boundary event, vertebrate ichnoassociations are scarce until the Middle Triassic (Anisian), whereas the uppermost Permian–Lower Triassic Werfen Formation preserves a rich invertebrate trace-fossil record. To date, fish body and trace fossils (Undichna) are very rare in the pre- and post-extinction deposits of the Dolomites; only Undichna gosiutensis Gibert, 2001 was identified in the “Voltago Conglomerate” (Middle Anisian), whereas some unidentified fossil fish casts were found in the Permian Val Gardena Sandstone and some fish remains in the overlying Werfen Formation.
    [Show full text]
  • GUIDEBOOK the Mid-Triassic Muschelkalk in Southern Poland: Shallow-Marine Carbonate Sedimentation in a Tectonically Active Basin
    31st IAS Meeting of Sedimentology Kraków 2015 GUIDEBOOK The Mid-Triassic Muschelkalk in southern Poland: shallow-marine carbonate sedimentation in a tectonically active basin Guide to field trip B5 • 26–27 June 2015 Joachim Szulc, Michał Matysik, Hans Hagdorn 31st IAS Meeting of Sedimentology INTERNATIONAL ASSOCIATION Kraków, Poland • June 2015 OF SEDIMENTOLOGISTS 225 Guide to field trip B5 (26–27 June 2015) The Mid-Triassic Muschelkalk in southern Poland: shallow-marine carbonate sedimentation in a tectonically active basin Joachim Szulc1, Michał Matysik2, Hans Hagdorn3 1Institute of Geological Sciences, Jagiellonian University, Kraków, Poland ([email protected]) 2Natural History Museum of Denmark, University of Copenhagen, Denmark ([email protected]) 3Muschelkalk Musem, Ingelfingen, Germany (encrinus@hagdorn-ingelfingen) Route (Fig. 1): From Kraków we take motorway (Żyglin quarry, stop B5.3). From Żyglin we drive by A4 west to Chrzanów; we leave it for road 781 to Płaza road 908 to Tarnowskie Góry then to NW by road 11 to (Kans-Pol quarry, stop B5.1). From Płaza we return to Tworog. From Tworog west by road 907 to Toszek and A4, continue west to Mysłowice and leave for road A1 then west by road 94 to Strzelce Opolskie. From Strzelce to Siewierz (GZD quarry, stop B5.2). From Siewierz Opolskie we take road 409 to Kalinów and then turn we drive A1 south to Podskale cross where we leave south onto a local road to Góra Sw. Anny (accomoda- for S1 westbound to Pyrzowice and then by road 78 to tion). From Góra św. Anny we drive north by a local road Niezdara.
    [Show full text]
  • 001-012 Primeras Páginas
    PUBLICACIONES DEL INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Serie: CUADERNOS DEL MUSEO GEOMINERO. Nº 9 ADVANCES IN TRILOBITE RESEARCH ADVANCES IN TRILOBITE RESEARCH IN ADVANCES ADVANCES IN TRILOBITE RESEARCH IN ADVANCES planeta tierra Editors: I. Rábano, R. Gozalo and Ciencias de la Tierra para la Sociedad D. García-Bellido 9 788478 407590 MINISTERIO MINISTERIO DE CIENCIA DE CIENCIA E INNOVACIÓN E INNOVACIÓN ADVANCES IN TRILOBITE RESEARCH Editors: I. Rábano, R. Gozalo and D. García-Bellido Instituto Geológico y Minero de España Madrid, 2008 Serie: CUADERNOS DEL MUSEO GEOMINERO, Nº 9 INTERNATIONAL TRILOBITE CONFERENCE (4. 2008. Toledo) Advances in trilobite research: Fourth International Trilobite Conference, Toledo, June,16-24, 2008 / I. Rábano, R. Gozalo and D. García-Bellido, eds.- Madrid: Instituto Geológico y Minero de España, 2008. 448 pgs; ils; 24 cm .- (Cuadernos del Museo Geominero; 9) ISBN 978-84-7840-759-0 1. Fauna trilobites. 2. Congreso. I. Instituto Geológico y Minero de España, ed. II. Rábano,I., ed. III Gozalo, R., ed. IV. García-Bellido, D., ed. 562 All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system now known or to be invented, without permission in writing from the publisher. References to this volume: It is suggested that either of the following alternatives should be used for future bibliographic references to the whole or part of this volume: Rábano, I., Gozalo, R. and García-Bellido, D. (eds.) 2008. Advances in trilobite research. Cuadernos del Museo Geominero, 9.
    [Show full text]
  • Introduction to the Trilobites: Morphology, Ecology, Macroevolution and More by Michelle M
    Introduction to the Trilobites: Morphology, Ecology, Macroevolution and More By Michelle M. Casey1, Perry Kennard2, and Bruce S. Lieberman1, 3 1Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, 2Earth Science Teacher, Southwest Middle School, USD497, and 3Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 Middle level laboratory exercise for Earth or General Science; supported provided by National Science Foundation (NSF) grants DEB-1256993 and EF-1206757. Learning Goals and Pedagogy This lab is designed for middle level General Science or Earth Science classes. The learning goals for this lab are the following: 1) to familiarize students with the anatomy and terminology relating to trilobites; 2) to give students experience identifying morphologic structures on real fossil specimens 3) to highlight major events or trends in the evolutionary history and ecology of the Trilobita; and 4) to expose students to the study of macroevolution in the fossil record using trilobites as a case study. Introduction to the Trilobites The Trilobites are an extinct subphylum of the Arthropoda (the most diverse phylum on earth with nearly a million species described). Arthropoda also contains all fossil and living crustaceans, spiders, and insects as well as several other extinct groups. The trilobites were an extremely important and diverse type of marine invertebrates that lived during the Paleozoic Era. They only lived in the oceans but occurred in all types of marine environments, and ranged in size from less than a centimeter to almost a meter across. They were once one of the most successful of all animal groups and in certain fossil deposits, especially in the Cambrian, Ordovician, and Devonian periods, they are extremely abundant.
    [Show full text]
  • Late Permian to Middle Triassic Palaeogeographic Differentiation of Key Ammonoid Groups: Evidence from the Former USSR Yuri D
    Late Permian to Middle Triassic palaeogeographic differentiation of key ammonoid groups: evidence from the former USSR Yuri D. Zakharov1, Alexander M. Popov1 & Alexander S. Biakov2 1 Far-Eastern Geological Institute, Russian Academy of Sciences (Far Eastern Branch), Stoletija Prospect 159, Vladivostok, RU-690022, Russia 2 North-East Interdisciplinary Scientific Research Institute, Russian Academy of Sciences (Far Eastern Branch), Portovaja 16, Magadan, RU-685000, Russia Keywords Abstract Ammonoids; palaeobiogeography; palaeoclimatology; Permian; Triassic. Palaeontological characteristics of the Upper Permian and upper Olenekian to lowermost Anisian sequences in the Tethys and the Boreal realm are reviewed Correspondence in the context of global correlation. Data from key Wuchiapingian and Chang- Yuri D. Zakharov, Far-Eastern Geological hsingian sections in Transcaucasia, Lower and Middle Triassic sections in the Institute, Russian Academy of Sciences (Far Verkhoyansk area, Arctic Siberia, the southern Far East (South Primorye and Eastern Branch), Vladivostok, RU-690022, Kitakami) and Mangyshlak (Kazakhstan) are examined. Dominant groups of Russia. E-mail: [email protected] ammonoids are shown for these different regions. Through correlation, it is doi:10.1111/j.1751-8369.2008.00079.x suggested that significant thermal maxima (recognized using geochemical, palaeozoogeographical and palaeoecological data) existed during the late Kun- gurian, early Wuchiapingian, latest Changhsingian, middle Olenekian and earliest Anisian periods. Successive expansions and reductions of the warm– temperate climatic zones into middle and high latitudes during the Late Permian and the Early and Middle Triassic are a result of strong climatic fluctuations. Prime Middle–Upper Permian, Lower and Middle Triassic Bajarunas (1936) (Mangyshlak and Kazakhstan), Popov sections in the former USSR and adjacent territories are (1939, 1958) (Russian northern Far East and Verkhoy- currently located in Transcaucasia (Ševyrev 1968; Kotljar ansk area) and Kiparisova (in Voinova et al.
    [Show full text]
  • Zapla Range, Subandean Ranges, Jujuy Province
    Zapla Range, Subandean Ranges, Jujuy Province Gladys Ortega1, M. Cristina Moya2 and Guillermo L. Albanesi1 1 CONICET. Museo de Paleontología, Universidad Nacional de Córdoba, C.C. 1598, 5000 Córdoba. E–mail: [email protected] / [email protected] 2 CONICET, CIUNSA. Universidad Nacional de Salta. Buenos Aires 177, 4400 Salta. e–mail:[email protected] Introduction Stratigraphic framework The Subandean Ranges (Sierras Subandinas) are placed between the Eastern Cordillera (Cordillera Oriental) to the west and Chaco–pampean Plain to the east, in northwestern Argentina. Stratigraphic and structural studies of this geological province were carried out by Bonarelli (1913, 1921), Baldis et al.(1975), Mingramm et al. (1979), and Ramos (1999), among others. Ancient deposits of the Subandean Ranges correspond to the Proterozoic and Ordovician System, which are restricted to the western part. Silurian–Devonian rocks of wider distribution integrate a thick marine–deltaic succession tapering to the east, which is linked to a foreland basin (Turner, 1967; Ramos, 1999). The Ocloyic unconformity (Turner & Méndez, 1975; Ramos, 1986) separates Lower–Middle Ordovician rocks from Hirnantian and younger deposits (Moya, 1999). The Lower Paleozoic succession is covered by thick marine and continental sequences of Neopaleozoic, Mesozoic and Cenozoic ages. An angular unconformity is present between ancient deposits and Miocene to Quaternary sediments. The Subandean Ranges show wide east–vergence anticlines, limited by thrusts and overthrusts, whose detachment levels are Silurian–Devonian shales (Ramos, 1999). The structural style of this geological province allows for the identification of the Interandean System to the west, and the Subandean System sensu stricto to the east (Ramos, op.
    [Show full text]
  • Cruziana Traces from the Late Silurian (Pridoli) Carbonate Shelf of Saaremaa, Estonia
    Estonian Journal of Earth Sciences, 2014, 63, 2, 71–75 doi: 10.3176/earth.2014.06 Cruziana traces from the Late Silurian (Pridoli) carbonate shelf of Saaremaa, Estonia Olev Vinn Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu, Estonia; [email protected] Received 25 February 2014, accepted 28 April 2014 Abstract. Late Pridoli Cruziana traces have recently been found in carbonate shelf sediments of the Ohesaare Formation on Saaremaa Island, Estonia. Cruziana isp. is interpreted here as a locomotory trace (repichnia) of an arthropod, possibly a trilobite. Cruziana traces previously known from the Silurian of Baltica differ from Cruziana isp., indicating that the diversity of Cruziana traces in the late Silurian of Baltica was higher than previously thought. Key words: trace fossils, Late Silurian, carbonate platform, Cruziana, trilobites, Baltica. INTRODUCTION Cruziana traces have mostly been restricted to specific palaeogeographic regions and localities (Seilacher 2007). Trace fossils of the Silurian of Estonia and the eastern Cruziana kufraensis has been described from Lower Baltic in general are poorly studied. A few reports are Silurian rocks of Libya and C. acacensis from the Lower devoted to borings in the hard substrates of the Silurian Silurian of North Africa and South America (Seilacher of Estonia (Vinn & Wilson 2010a, 2010b). Even less 2007). Cruziana pudica has a wide distribution in the is known about the softground substrate trace fossils. Upper Ordovician and Lower Silurian of North America Only Skolithos burrows have previously been described (Garlock & Isaacson 1977; Seilacher 2007). Records of from the late Pridoli of Saaremaa (Vinn & Wilson Rhusophycus pudicum and Rhusophycus pudica should 2013).
    [Show full text]
  • Death in the Shallows the Record of Permo-Triassic Mass Extinction In
    University of Birmingham Death in the shallows Wignall, Paul; Chu, Daoliang; Hilton, Jason; Dal Corso, Jacopo; Wu, Yuyang; Wang, Yao; Atkinson, Jed; Tong, Jinnan DOI: 10.1016/j.gloplacha.2020.103176 License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Wignall, P, Chu, D, Hilton, J, Dal Corso, J, Wu, Y, Wang, Y, Atkinson, J & Tong, J 2020, 'Death in the shallows: the record of Permo-Triassic mass extinction in paralic settings, southwest China', Global and Planetary Change, vol. 189, 103176, pp. 1-12. https://doi.org/10.1016/j.gloplacha.2020.103176 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    (This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Chemical Geology 322–323 (2012) 121–144 Contents lists available at SciVerse ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo The end‐Permian mass extinction: A rapid volcanic CO2 and CH4‐climatic catastrophe Uwe Brand a,⁎, Renato Posenato b, Rosemarie Came c, Hagit Affek d, Lucia Angiolini e, Karem Azmy f, Enzo Farabegoli g a Department of Earth Sciences, Brock University, St. Catharines, Ontario, Canada, L2S 3A1 b Dipartimento di Scienze della Terra, Università di Ferrara, Polo Scientifico-tecnologico, Via Saragat 1, 44100 Ferrara Italy c Department of Earth Sciences, The University of New Hampshire, Durham, NH 03824 USA d Department of Geology and Geophysics, Yale University, New Haven, CT 06520–8109 USA e Dipartimento di Scienze della Terra, Via Mangiagalli 34, Università di Milano, 20133 Milan Italy f Department of Earth Sciences, Memorial University, St.
    [Show full text]
  • Exceptional Vertebrate Biotas from the Triassic of China, and the Expansion of Marine Ecosystems After the Permo-Triassic Mass Extinction
    Earth-Science Reviews 125 (2013) 199–243 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction Michael J. Benton a,⁎, Qiyue Zhang b, Shixue Hu b, Zhong-Qiang Chen c, Wen Wen b, Jun Liu b, Jinyuan Huang b, Changyong Zhou b, Tao Xie b, Jinnan Tong c, Brian Choo d a School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK b Chengdu Center of China Geological Survey, Chengdu 610081, China c State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China d Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China article info abstract Article history: The Triassic was a time of turmoil, as life recovered from the most devastating of all mass extinctions, the Received 11 February 2013 Permo-Triassic event 252 million years ago. The Triassic marine rock succession of southwest China provides Accepted 31 May 2013 unique documentation of the recovery of marine life through a series of well dated, exceptionally preserved Available online 20 June 2013 fossil assemblages in the Daye, Guanling, Zhuganpo, and Xiaowa formations. New work shows the richness of the faunas of fishes and reptiles, and that recovery of vertebrate faunas was delayed by harsh environmental Keywords: conditions and then occurred rapidly in the Anisian. The key faunas of fishes and reptiles come from a limited Triassic Recovery area in eastern Yunnan and western Guizhou provinces, and these may be dated relative to shared strati- Reptile graphic units, and their palaeoenvironments reconstructed.
    [Show full text]
  • AUSTRIAN JOURNAL of EARTH SCIENCES Volume 98 2005
    AUSTRIAN JOURNAL of EARTH SCIENCES [MITTEILUNGEN der ÖSTERREICHISCHEN GEOLOGISCHEN GESELLSCHAFT] an INTERNATIONAL JOURNAL of the AUSTRIAN GEOLOGICAL SOCIETY volume 98 2005 Gerd RANTITSCH & Barbara RUSSEGGER: Organic maturation within the Central Northern Calcareous Alps (Eastern Alps)________________________________ www.univie.ac.at/ajes EDITING: Grasemann Bernhard, Wagreich Michael PUBLISCHER: Österreichische Geologische Gesellschaft Rasumofskygasse 23, A-1031 Wien TYPESETTER: Irnberger Norbert, www.irnberger.net Copy-Shop Urban, Bahnstraße 26a, 2130 Mistelbach PRINTER: Holzhausen Druck & Medien GmbH Holzhausenplatz 1, 1140 Wien ISSN 0251-7493 Austrian Journal of Earth Sciences Volume 98 Vienna 2005 Organic maturation within the Central Northern Calca- reous Alps (Eastern Alps) Gerd RANTITSCH1) & Barbara RUSSEGGER2) KEYWORDS very low-grade metamorphism Northern Calcareous Alps 1) Department of Applied Geosciences and Geophysics, Montanuniversität Leoben, vitrinite reflectance Austria, A-8700 Leoben, Austria, Email: [email protected] thermal modeling Jurassic orogeny 2) Library of the University of Graz, A-8010 Graz, Austria Eastern Alps Abstract Organic maturation within the central Northern Calcareous Alps (Eastern Alps) has been investigated using vitrinite reflectance data from Upper Permian to Upper Cretaceous strata of the Stauffen-Höllengebirge Nappe, Dachstein Nappe, Tennengebirge Block and Lammer Unit. Within the Lammer Unit a metamorphic break is observed between the Strubberg Formation and the tectonically overlying
    [Show full text]