Choosing a DSP Processor Berkeley Design Technology, Inc

Total Page:16

File Type:pdf, Size:1020Kb

Choosing a DSP Processor Berkeley Design Technology, Inc Choosing a DSP Processor Berkeley Design Technology, Inc. Introduction A second feature shared by DSP processors is the ability to complete several accesses to memory in a sin- DSP processors are microprocessors designed to per- gle instruction cycle. This allows the processor to fetch form digital signal processing—the mathematical ma- an instruction while simultaneously fetching operands nipulation of digitally represented signals. Digital signal and/or storing the result of a previous instruction to processing is one of the core technologies in rapidly memory. For example, in calculating the vector dot prod- growing application areas such as wireless communica- uct for an FIR filter, most DSP processors are able to per- tions, audio and video processing, and industrial control. form a MAC while simultaneously loading the data Along with the rising popularity of DSP applications, the sample and coefficient for the next MAC. Such single- variety of DSP-capable processors has expanded greatly cycle multiple memory accesses are often subject to since the introduction of the first commercially success- many restrictions. Typically, all but one of the memory ful DSP chips in the early 1980s. Market research firm locations accessed must reside on-chip, and multiple Forward Concepts projects that sales of DSP processors memory accesses can only take place with certain in- will total U.S. $6.2 billion in 2000, a growth of 40 per- structions. To support simultaneous access of multiple cent over 1999. With semiconductor manufacturers vy- memory locations, DSP processors provide multiple on- ing for bigger shares of this booming market, designers’ chip buses, multi-ported on-chip memories, and in some choices will broaden even further in the next few years. cases multiple independent memory banks. Today’s DSP processors (or “DSPs”) are sophisticat- A third feature often used to speed arithmetic pro- ed devices with impressive capabilities. In this paper, we cessing on DSP processors is one or more dedicated ad- introduce the features common to modern commercial dress generation units. Once the appropriate addressing DSP processors, explain some of the important differ- registers have been configured, the address generation ences among these devices, and focus on features that a unit operates in the background (i.e., without using the system designer should examine to find the processor main data path of the processor), forming the addresses that best fits his or her application. What is a DSP Processor? X Data Bus Y Data Bus Most DSP processors share some common basic fea- 24 24 tures designed to support high-performance, repetitive, numerically intensive tasks. X0 Operand X1 Registers Y0 The most often cited of these features is the ability to Y1 perform one or more multiply-accumulate operations 24 24 (often called “MACs”) in a single instruction cycle. The multiply-accumulate operation is useful in DSP algo- Multiplier rithms that involve computing a vector dot product, such as digital filters, correlation, and Fourier transforms. To 56 56 ALU achieve a single-cycle MAC, DSP processors integrate Shifter multiply-accumulate hardware into the main data path of 56 the processor, as shown in Figure 1. Some recent DSP 24 Accumulators A (56) processors provide two or more multiply-accumulate B (56) 24 units, allowing multiply-accumulate operations to be 56 56 performed in parallel. In addition, to allow a series of multiply-accumulate operations to proceed without the Shifter/Limiter possibility of arithmetic overflow (the generation of numbers greater than the maximum value the proces- 24 24 sor’s accumulator can hold), DSP processors generally provide extra “guard” bits in the accumulator. For exam- ple, the Motorola DSP processor family examined in FIGURE 1. A representative conventional fixed-point Figure 1 offers eight guard bits. DSP processor data path (from the Motorola DSP560xx, a 24-bit, fixed-point processor family). © 1996-2000 Berkeley Design Technology, Inc. required for operand accesses in parallel with the execu- On the other hand, because general-purpose proces- tion of arithmetic instructions. In contrast, general-pur- sor architectures generally lack features that simplify pose processors often require extra cycles to generate the DSP programming, software development is sometimes addresses needed to load operands. DSP processor ad- more tedious than on DSP processors and can result in dress generation units typically support a selection of ad- awkward code that’s difficult to maintain. Moreover, if dressing modes tailored to DSP applications. The most general-purpose processors are used only for signal pro- common of these is register-indirect addressing with cessing, they are rarely cost-effective compared to DSP post-increment, which is used in situations where a re- chips designed specifically for the task. Thus, at least in petitive computation is performed on data stored sequen- the short run, we believe that system designers will con- tially in memory. Modulo addressing is often supported, tinue to use traditional DSP processors for the majority to simplify the use of circular buffers. Some processors of DSP intensive applications. We focus on DSP proces- also support bit-reversed addressing, which increases the sors in this paper. speed of certain fast Fourier transform (FFT) algorithms. Applications Because many DSP algorithms involve performing repetitive computations, most DSP processors provide DSP processors find use in an extremely diverse ar- special support for efficient looping. Often, a special ray of applications, from radar systems to consumer loop or repeat instruction is provided, which allows the electronics. Naturally, no one processor can meet the programmer to implement a for-next loop without ex- needs of all or even most applications. Therefore, the pending any instruction cycles for updating and testing first task for the designer selecting a DSP processor is to the loop counter or branching back to the top of the loop. weigh the relative importance of performance, cost, inte- gration, ease of development, power consumption, and Finally, to allow low-cost, high-performance input other factors for the application at hand. Here we’ll brief- and output, most DSP processors incorporate one or ly touch on the needs of just a few classes of DSP appli- more serial or parallel I/O interfaces, and specialized I/O cations. handling mechanisms such as low-overhead interrupts and direct memory access (DMA) to allow data transfers In terms of dollar volume, the biggest applications to proceed with little or no intervention from the rest of for digital signal processors are inexpensive, high-vol- the processor. ume embedded systems, such as cellular telephones, disk drives (where DSPs are used for servo control), and por- The rising popularity of DSP functions such as table digital audio players. In these applications, cost and speech coding and audio processing has led designers to integration are paramount. For portable, battery-pow- consider implementing DSP on general-purpose proces- ered products, power consumption is also critical. Ease sors such as desktop CPUs and microcontrollers. Nearly of development is usually less important; even though all general-purpose processor manufacturers have re- these applications typically involve the development of sponded by adding signal processing capabilities to their custom software to run on the DSP and custom hardware chips. Examples include the MMX and SSE instruction surrounding the DSP, the huge manufacturing volumes set extensions to the Intel Pentium line, and the extensive justify expending extra development effort. DSP-oriented retrofit of Hitachi’s SH-2 microcontroller to form the SH-DSP. A second important class of applications involves processing large volumes of data with complex algo- In some cases, system designers may prefer to use a rithms for specialized needs. Examples include sonar general-purpose processor rather than a DSP processor. and seismic exploration, where production volumes are Although general-purpose processor architectures often lower, algorithms more demanding, and product designs require several instructions to perform operations that larger and more complex. As a result, designers favor can be performed with just one DSP processor instruc- processors with maximum performance, good ease of tion, some general-purpose processors run at extremely use, and support for multiprocessor configurations. In fast clock speeds. If the designer needs to perform non- some cases, rather than designing their own hardware DSP processing, then using a general-purpose processor and software from scratch, designers assemble such sys- for both DSP and non-DSP processing could reduce the tems using off-the-shelf development boards, and ease system parts count and lower costs versus using a sepa- their software development tasks by using existing func- rate DSP processor and general-purpose microprocessor. tion libraries as the basis of their application software. Furthermore, some popular general-purpose processors feature a tremendous selection of application develop- ment tools. © 1996-2000 Berkeley Design Technology, Inc. PAGE 2 OF 8 Choosing the Right DSP Processor It’s possible to perform general-purpose floating- point arithmetic on a fixed-point processor by using soft- As illustrated in the preceding section, the right DSP ware routines that emulate the behavior of a floating- processor for a job depends heavily on the application.
Recommended publications
  • Chapter 5 Multiprocessors and Thread-Level Parallelism
    Computer Architecture A Quantitative Approach, Fifth Edition Chapter 5 Multiprocessors and Thread-Level Parallelism Copyright © 2012, Elsevier Inc. All rights reserved. 1 Contents 1. Introduction 2. Centralized SMA – shared memory architecture 3. Performance of SMA 4. DMA – distributed memory architecture 5. Synchronization 6. Models of Consistency Copyright © 2012, Elsevier Inc. All rights reserved. 2 1. Introduction. Why multiprocessors? Need for more computing power Data intensive applications Utility computing requires powerful processors Several ways to increase processor performance Increased clock rate limited ability Architectural ILP, CPI – increasingly more difficult Multi-processor, multi-core systems more feasible based on current technologies Advantages of multiprocessors and multi-core Replication rather than unique design. Copyright © 2012, Elsevier Inc. All rights reserved. 3 Introduction Multiprocessor types Symmetric multiprocessors (SMP) Share single memory with uniform memory access/latency (UMA) Small number of cores Distributed shared memory (DSM) Memory distributed among processors. Non-uniform memory access/latency (NUMA) Processors connected via direct (switched) and non-direct (multi- hop) interconnection networks Copyright © 2012, Elsevier Inc. All rights reserved. 4 Important ideas Technology drives the solutions. Multi-cores have altered the game!! Thread-level parallelism (TLP) vs ILP. Computing and communication deeply intertwined. Write serialization exploits broadcast communication
    [Show full text]
  • Computer Organization & Architecture Eie
    COMPUTER ORGANIZATION & ARCHITECTURE EIE 411 Course Lecturer: Engr Banji Adedayo. Reg COREN. The characteristics of different computers vary considerably from category to category. Computers for data processing activities have different features than those with scientific features. Even computers configured within the same application area have variations in design. Computer architecture is the science of integrating those components to achieve a level of functionality and performance. It is logical organization or designs of the hardware that make up the computer system. The internal organization of a digital system is defined by the sequence of micro operations it performs on the data stored in its registers. The internal structure of a MICRO-PROCESSOR is called its architecture and includes the number lay out and functionality of registers, memory cell, decoders, controllers and clocks. HISTORY OF COMPUTER HARDWARE The first use of the word ‘Computer’ was recorded in 1613, referring to a person who carried out calculation or computation. A brief History: Computer as we all know 2day had its beginning with 19th century English Mathematics Professor named Chales Babage. He designed the analytical engine and it was this design that the basic frame work of the computer of today are based on. 1st Generation 1937-1946 The first electronic digital computer was built by Dr John V. Atanasoff & Berry Cliford (ABC). In 1943 an electronic computer named colossus was built for military. 1946 – The first general purpose digital computer- the Electronic Numerical Integrator and computer (ENIAC) was built. This computer weighed 30 tons and had 18,000 vacuum tubes which were used for processing.
    [Show full text]
  • Parallel Computer Architecture
    Parallel Computer Architecture Introduction to Parallel Computing CIS 410/510 Department of Computer and Information Science Lecture 2 – Parallel Architecture Outline q Parallel architecture types q Instruction-level parallelism q Vector processing q SIMD q Shared memory ❍ Memory organization: UMA, NUMA ❍ Coherency: CC-UMA, CC-NUMA q Interconnection networks q Distributed memory q Clusters q Clusters of SMPs q Heterogeneous clusters of SMPs Introduction to Parallel Computing, University of Oregon, IPCC Lecture 2 – Parallel Architecture 2 Parallel Architecture Types • Uniprocessor • Shared Memory – Scalar processor Multiprocessor (SMP) processor – Shared memory address space – Bus-based memory system memory processor … processor – Vector processor bus processor vector memory memory – Interconnection network – Single Instruction Multiple processor … processor Data (SIMD) network processor … … memory memory Introduction to Parallel Computing, University of Oregon, IPCC Lecture 2 – Parallel Architecture 3 Parallel Architecture Types (2) • Distributed Memory • Cluster of SMPs Multiprocessor – Shared memory addressing – Message passing within SMP node between nodes – Message passing between SMP memory memory nodes … M M processor processor … … P … P P P interconnec2on network network interface interconnec2on network processor processor … P … P P … P memory memory … M M – Massively Parallel Processor (MPP) – Can also be regarded as MPP if • Many, many processors processor number is large Introduction to Parallel Computing, University of Oregon,
    [Show full text]
  • Digital Signal Processing – II
    www.jntuworld.com Digital Signal Processing – 8 December 24, 2009 VIII. DSP Processors 2007 Syllabus: Introduction to programmable DSPs: Multiplier and Multiplier-Accumulator (MAC), Modified bus structures and memory access schemes in DSPs, Multiple access memory, Multiport memory, VLSI architecture, Pipelining, Special addressing modes, On-chip peripherals. Architecture of TMS 320C5X – Introduction, Bus structure, Central Arithmetic Logic Unit, Auxiliary register, Index register, Auxiliary register, Compare register, Block move address register, Parallel Logic Unit, Memory mapped registers, Program controller, Some flags in the status registers, On-chip registers, On-chip peripherals. Contents: 8.1 DSP Processors – Market 8.2 DSP Processors – Features 8.3 Multiply-and-Accumulate 8.4 Interrupts – handling incoming signal values 8.5 Fixed- and Floating-point 8.6 Real-time FIR filter example We shall use “DSP” to mean Digital Signal Processor(s) and sometimes even refer to them as DSP processors, also as programmable digital signal processors (PDSPs). This includes 1. General purpose DSPs (such as the TMS320’s of TI and DSP563’s of Motorola and others) 2. Special purpose DSPs tailored to specific applications like FFT However, the so-called programmability of DSPs mentioned above pales in comparison to that of general purpose CPUs. In what follows, for the most part, we contrast general purpose CPUs (whose strength is in general purpose programmability) with DSPs (whose strength is in high throughput, hardwired, number crunching). For a
    [Show full text]
  • Computer Memory Architecture Pdf
    Computer memory architecture pdf Continue The methods used to implement the electronic computer storage memory architecture describe the methods used to implement electronic computer data storage, in such a way that it is a combination of the fastest, most reliable, most durable and least expensive way to store and obtain information. Depending on the application, one of these requirements may need to be compromised to improve the other requirement. Memory architecture also explains how binary digits are converted into electrical signals and then stored in memory cells. As well as the structure of the memory cell. For example, dynamic memory is commonly used for primary storage because of the fast speed of access. However, dynamic memory must be repeatedly updated with a spike of current dozens of times per second, or stored data will disintegrate and be lost. Flash memory allows you to store for years, but it's much slower than dynamic memory, and static memory storage cells wear out when used frequently. Similarly, the data bead is often designed to meet specific needs such as serial or parallel access to data, and memory can be designed to detect parity errors or even correct errors. The earliest memory architectures are Harvard Architecture, which has two physically separate memories and data transfer paths for the program and data, and Princeton's architecture, which uses a single path of memory and data for both the program and the storage of data. Most general-purpose computers use a hybrid split-cache modified Harvard architecture, which appears to be an application program to have a clean Princeton architectural machine with gigabytes of virtual memory, but internally (for speed) it works with a cache of instructions physically separate from a data cache more like the Harvard model.
    [Show full text]
  • Introduction to Computer Architecture
    Introduction to Computer Architecture Mark Bull, EPCC Building Blocks of HPC Systems Four principal technologies which make up HPC systems: • Processors • to calculate • Memory • for temporary storage of data • Interconnect • so processors can talk to each other (and the outside world) • Storage • disks for storing input/output data and tapes for long term archiving of data • These talks will focus on the first two of these. 2 Processors • Basic functionality • execute instructions to perform arithmetic operations (integer and floating point) • load data from memory and store data to memory • decide which instructions to execute next • Arithmetic is performed on values in registers (local storage in the processor) • moving data between memory and registers must be done explicitly by load and store instructions • separate integer and floating point registers • typical size ~100 values • Basic characteristics: • Clock speed • Peak floating point capability 3 Processors (cont.) • Clock speed determines rate at which instructions are executed • modern chips are around 2-3 GHz • integer and floating point calculations can be done in parallel • can also have multiple issue, e.g. simultaneous add and multiply • peak flop rate is just clock rate x no. of floating point operations per clock cycle • Whole series of hardware innovations • pipelining • out-of-order execution, speculative computation • ... • Details of these become important for extracting high performance • most features are fairly generic 4 Moore’s Law • “CPU power doubles every
    [Show full text]
  • Programmable Address Generation Unit for Deep Neural Network Accelerators
    DEGREE PROJECT IN ELECTRICAL ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Programmable Address Generation Unit for Deep Neural Network Accelerators MUHAMMAD JAZIB KHAN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE KTH ROYAL INSTITUTE OF TECHNOLOGY Electrical Engineering and Computer Science Programmable Address Generation Unit for Deep Neural Network Accelerators Muhammad Jazib Khan Master in Electrical Engineering Supervisor KTH: Yu Yang Examiner: Prof. Ahmed Hemani School of Electrical Engineering and Computer Science Host company: Robert Bosch GmbH Supervisor Bosch: Sebastian Vogel and Dr. Leonardo Ecco Abstract The Convolutional Neural Networks are getting more and more popular due to their applications in revolutionary technologies like Autonomous Driving, Biomedical Imaging, and Natural Language Processing. With this increase in adoption, the complexity of underlying algorithms is also increasing. This trend entails implications for the computation platforms as well, i.e. GPUs, FPGA, or ASIC based accelerators, especially for the Address Generation Unit (AGU), which is responsible for the memory access. Existing accelerators typically have Parametrizable Datapath AGUs, which have minimal adaptability towards evolution in algorithms. Hence new hardware is required for new algorithms, which is a very inefficient approach in terms of time, resources, and reusability. In this research, six algorithms with different implications for hardware are evaluated for address generation, and a fully Programmable AGU (PAGU) is presented, which can adapt to these algorithms. These algorithms are Standard, Strided, Dilated, Upsampled and Padded convolution, and MaxPooling. The proposed AGU architecture is a Very Long Instruction Word based Application Specific Instruction Processor which has specialized components like hardware counters and zero-overhead loops and a powerful Instruction Set Architecture (ISA), which can model static and dynamic constraints and affine and non-affine Address Equations.
    [Show full text]
  • FPGA Implementation of RISC-Based Memory-Centric Processor Architecture
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 10, No. 9, 2019 FPGA Implementation of RISC-based Memory-centric Processor Architecture Danijela Efnusheva1 Computer Science and Engineering Department Faculty of Electrical Engineering and Information Technologies Skopje, North Macedonia Abstract—The development of the microprocessor industry in by the strict separation of the processing and memory resources terms of speed, area, and multi-processing has resulted with in the computer system. In such processor-centric system the increased data traffic between the processor and the memory in a memory is used for storing data and programs, while the classical processor-centric Von Neumann computing system. In processor interprets and executes the program instructions in a order to alleviate the processor-memory bottleneck, in this paper sequential manner, repeatedly moving data from the main we are proposing a RISC-based memory-centric processor memory in the processor registers and vice versa, [1]. architecture that provides a stronger merge between the Assuming that there is no final solution for overcoming the processor and the memory, by adjusting the standard memory processor-memory bottleneck, modern computer systems hierarchy model. Indeed, we are developing a RISC-based implement different types of techniques for "mitigating" the processor that integrates the memory into the same chip die, and occurrence of this problem, [10], (ex. branch prediction thus provides direct access to the on-chip memory, without the use of general-purpose registers (GPRs) and cache memory. The algorithms, speculative and re-order instructions execution, proposed RISC-based memory-centric processor is described in data and instruction pre-fetching, and multithreading, etc.).
    [Show full text]
  • A Scalable Near-Memory Architecture for Training Deep Neural Networks on Large In-Memory Datasets
    IEEE TRANSACTIONS ON COMPUTERS, VOL. (VOL), NO. (NO), (MONTH) (YEAR) 1 A Scalable Near-Memory Architecture for Training Deep Neural Networks on Large In-Memory Datasets Fabian Schuiki, Michael Schaffner, Frank K. Gürkaynak, and Luca Benini, Fellow, IEEE Abstract—Most investigations into near-memory hardware accelerators for deep neural networks have primarily focused on inference, while the potential of accelerating training has received relatively little attention so far. Based on an in-depth analysis of the key computational patterns in state-of-the-art gradient-based training methods, we propose an efficient near-memory acceleration engine called NTX that can be used to train state-of-the-art deep convolutional neural networks at scale. Our main contributions are: (i) a loose coupling of RISC-V cores and NTX co-processors reducing offloading overhead by 7× over previously published results; (ii) an optimized IEEE 754 compliant data path for fast high-precision convolutions and gradient propagation; (iii) evaluation of near-memory computing with NTX embedded into residual area on the Logic Base die of a Hybrid Memory Cube; and (iv) a scaling analysis to meshes of HMCs in a data center scenario. We demonstrate a 2:7× energy efficiency improvement of NTX over contemporary GPUs at 4:4× less silicon area, and a compute performance of 1:2 Tflop=s for training large state-of-the-art networks with full floating-point precision. At the data center scale, a mesh of NTX achieves above 95% parallel and energy efficiency, while providing 2:1× energy savings or 3:1× performance improvement over a GPU-based system.
    [Show full text]
  • Computer Architectures & Hardware Programming 1
    COMPUTER ARCHITECTURES & HARDWARE PROGRAMMING 1 Dr. Varga, Imre University of Debrecen Department of IT Systems and Networks 06 February 2020 Requirements Practice (signature, only Hardware Programming 1) Visit classes (maximum absences: 3) 2 practical tests • All tests at least 50% 1 re-take chance (covers the whole semester) Lecture (exam, CA & HP1) Written exam Multiple choice + Calculation/Programming + Essay • At least 40% Computer Architectures Warning Lexical knowledge about the slides are necessary, but not enough to pass. Understanding is necessary, that is why active participating on lectures are advantages. Other literature can be also useful. Computer Architectures Computer Science Engineering computer science… …engineering Assembly Electronics programming Computer Programming Digital architectures languages 1-2 design Physics Operating Database systems systems Embedded Signals and systems systems System programming Computer Architectures Topics Number representation, datatype implementation Essential structure and work of CPUs Modern processors Concrete processor architecture Instruction-set, programming Aspects of programming closely related to the hardware Basics of digital technology from the point of view of the hardware Assembly programming Mapping high-level programming to low-level Computer Architectures The goal of the subject Giving knowledge about hardware Creating connection between … ‚programming’ and ‚electronics’ ‚abstract’ and ‚fundamental’ knowledge Deeper understanding of high-level programming
    [Show full text]
  • PRIME: a Novel Processing-In-Memory Architecture for Neural Network Computation in Reram-Based Main Memory
    PRIME: A Novel Processing-in-memory Architecture for Neural Network Computation in ReRAM-based Main Memory Ping Chi∗, Shuangchen Li∗, Cong Xu†, Tao Zhang‡, Jishen Zhao§, Yongpan Liu¶,YuWang¶ and Yuan Xie∗ ∗Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA †HP Labs, Palo Alto, CA 94304, USA; ‡NVIDIA Corporation, Santa Clara, CA 95950, USA §Department of Computer Engineering, University of California, Santa Cruz, CA 95064, USA ¶Department of Electronic Engineering, Tsinghua University, Beijing 100084, China ∗Email: {pingchi, shuangchenli, yuanxie}@ece.ucsb.edu Abstract—Processing-in-memory (PIM) is a promising so- by leveraging 3D memory technologies [6] to integrate lution to address the “memory wall” challenges for future computation logic with the memory. computer systems. Prior proposed PIM architectures put ad- Recent work demonstrated that some emerging non- ditional computation logic in or near memory. The emerging metal-oxide resistive random access memory (ReRAM) has volatile memories, such as metal-oxide resistive random showed its potential to be used for main memory. Moreover, access memory (ReRAM) [7], spin-transfer torque mag- with its crossbar array structure, ReRAM can perform matrix- netic RAM (STT-RAM) [8], and phase change memory vector multiplication efficiently, and has been widely studied to (PCM) [9], have the capability of performing logic and accelerate neural network (NN) applications. In this work, we arithmetic operations beyond data storage. This allows the propose a novel PIM architecture, called PRIME, to accelerate NN applications in ReRAM based main memory. In PRIME, memory to serve both computation and memory functions, a portion of ReRAM crossbar arrays can be configured as promising a radical renovation of the relationship between accelerators for NN applications or as normal memory for a computation and memory.
    [Show full text]
  • Computer Architecture Review Von Neumann Model, the CPU
    Computer Architecture Review ICS332 - Spring 2016 Operating Systems ENIAC (1946) Electronic Numerical Integrator and Calculator Stored-Program Computer (instead of Fixed-Program) Vacuum tubes, punch cards 100 kHz / 5 kIPS (now ~2-3GHz/5,000 MIPS) 8x3x100 ft; 27 tons 150 kW Programming with wires Von-Neumann In 1944, John von Neumann joined ENIAC He wrote a memo about computer architecture, formalizing ENIAC ideas Eckert and Mauchly have pretty much been forgotten (they were in the trenches) These ideas became the Von Neumann architecture model A processor that performs operations and controls all that happens A memory that contains code and data I/O of some kind Von-Neumann Model CPU Memory I/O System Amazingly, it’s still possible to think of the computer this way at a conceptual level (model from ~70 years ago!!!) But a computer today doesn’t look quite like this Von-Neumann Model CPU Memory I/O System Amazingly, it’s still possible to think of the computer this way at a conceptual level (model from ~70 years ago!!!) But a computer today doesn’t look quite like this Memory Bus Data Stored in Memory All “information” in the computer is in binary form Boolean algebra 1847. Truth value: True / False Claude Shannon's MS thesis 1937 Bit (binary digit): smallest unit of information 0: false/zero voltage, 1: true/positive voltage (e.g., 5V) The basic unit of memory is a byte (octet/octad(e)) 1 Byte = 8 bits, e.g., “0101 1101” Each byte in memory is labeled by a unique address All addresses in the machine have the same number of bits e.g., 16-bit addresses (today 39-bit/48-bit) The processor has instructions that say “Read the byte at address X and give me its value” and “Write some value into the byte at address X” Conceptual View of Memory address content 0000 0000 0000 0000 0110 1110 0000 0000 0000 0001 1111 0100 0000 0000 0000 0010 0000 0000 0000 0000 0000 0011 0000 0000 0000 0000 0000 0100 0101 1110 0000 0000 0000 0101 1010 1101 0000 0000 0000 0110 0000 0001 0000 0000 0000 0111 0100 0000 0000 0000 0000 1000 1111 0101 ..
    [Show full text]