INDEX

Absence of prism faces on synthetic quartz, 28 Buddington, A. F., 135 Adiabatic crystallization, 69 Buerger, M. J., 95 Bunsen, R., 117 content of natural by (201) spacing, 11 Chayes, F., 77, 79, 80, 98, 100, 101, 108, 109, high, 14, 15, 17 111, 112, 113, 115 hydrothermally crystallized, 14 Clark, H., 119 inversions in, 16, 38 Classification low, 14, 16 , syenites, and nepheline syenites, monoclinic, 16, 39 127-130 optic axial angle, 14 rocks, 126 pressure-temperature relations, 16 Coes, L., 33 triclinic, 15, 16 Cold-seal pressure vessel, 10,11 Albite-water (See System NaAISi308-H20), 35,46 Composition Alkali-alumina ratio of granitic rocks, 88 , 131 Alkali feldspar perthite using (201) spacing, 20, 22 composition of by (201) spacing, 10, 11, 42 discrepancies, 22, 23 high albite in, 107 sanidine cryptoperthites, 20 in Skye , modal analyses, 112, 115 orthoclase cryptoperthites, 22 low albite in, 107 vapor in equilibrium with hydrous granitic optic axial angle, 105 melts, 89-91 single crystal X-ray studies, 107 Compositional variations size of, 105 , 77 transitional optics, 105, 106 , 77 201 spacing, 106 Control of fractionation by viscosity, 77 Alumina-silica order-disorder in Crystallization feldspar, 5, 26 feldspar, in , , and Amphibole from Quincy granite, 92 , 130-136 stability, 92, 93 in system NaAlSi308-KAlSi308-H20, 46, 47 Analyses, modal equilibrium, 46-48 alkali feldspar in Skye granites, 112, 115 fractional, 47 plagioclase feldspar in Skye granites, 113, 115 isobaric, 46, 48 quartz in Skye granites, 112, 115 in system NaAlSisOs-KAlSisOg-SiCVHjO, 5, Skye granites, 112, 113, 115 66-68 Anthophyllite, 91 adiabatic, 69 Apparatus, hydrothermal quenching, 8, 35 as control of granite compositions, 77 equilibrium, 66, 67 Bakken, Ruth, 15, 16 fractional, 64, 66 Batholith, origin, 124, 180 isobaric, 63-67 Beginning of melting isothermal, 67-69 earth's crust, 121, 122 relation to viscosity, 77 feldspar, 39 Quincy granite, 82 sluggishness, 6 synthetic mixtures, 83 trend, 77 Westerly granite, 80, 83 in "dry" system NaAlSi30a-KAlS30s-Si02, 5 Biotite glass, 39 primary phase in granites, 83 Core of plagioclase, 134 Skye granites, 109 Cristobalite, 29, 32 Birch, F., 119 field, 29 Bowen, N. L., 5, 10, 14, 15, 17, 18, 64, 80, 86, liquidus, 31 91, 94, 99, 107, 128, 139 Cross, C. W., 88

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/955695/mem74-bm.pdf by guest on 24 September 2021 148 ORIGIN OF GRANITE- IN THE LIGHT OF EXPERIMENTAL STUDIES

Crucibles Eutectic, isobaric "ternary", 75 open, 6, 7 position of at 4000 bars pressure, 74 platinum, 6 Evolution of granitic texture, 137-141 method of fabricating, 7 comparison to sulfide textures, 139 Cryptoperthites influence of volatiles, 39 low sanidine-high albite, 19-21 Experimental equipment, 8-10 , 26 Experimental methods, 8-14 orthoclase, 16, 21-23, 35 determination of liquidus, 11 Crystalline material, experimental methods for determination of solidus, 11, 12 use of, 11 use of crystalline material, 11 Curve, pressure-temperature -cristobalite, 29, 32 Fairbairn, H. W., 6 tridymite-quartz, 29, 39, 40 Feldspar alkali, 103 Daly, R. A., 117 composition of by (201) spacing, 10, 11, 42 Depth to complete melting in earth's crust, 122 high albite, 107 Determination of low albite, 107 liquidus, experimental methods, 11 optic axial angle, 105 solidus, experimental methods, 11, 12 single crystal X-ray studies, 107 solvus size, 105 high sanidine-high albite, 18, 40 transitional optics, 105,106 low sanidine-high albite, 19 201 spacing, 106 metastable, 25 as geologic thermometer, 28 microcline-low albite, 26 environment for unmixing, 42, 50, 128, 139, orthoclase-low albite, 26 142 water content of glasses, 13, 31, 54, 58 liquidus, 39 Diagram, isobaric, 40, 50, 54-56 mantled, 96 Discrepancies in composition of perthite using metastable solvus, 43 (201) spacing, 22, 23 minimum, 40 Donnay, G., 15, 38 natural, content of orthoclase by (201) Donnay, J. D. H., 15, 38 spacing, 11 Dry melting, 5 ovoid alkali, 95 "Dry" system NaAlSisCVKAlSisOs-SiOj, 5 order-disorder, 26 crystallization, 5 plagioclase, 107 preparation of glasses, 5 high-temperature modification, 107 Durocher, J., 117 low-temperature modification, 107 X-ray determination, 109 Earth's crust potash, order-disorder, 26 beginning of melting, 121, 122 potassium, 17 depth to complete melting, 122 inversions, 109 geothermal gradients in, 121, 122 Fenner, C. N., 84 granitic magma, 117, 118, 126 Field zone of melting, 123 cristobalite, 29 significance, 124-126 , 37, 41 Effect of bubbles on water content of glasses, 14 Field studies, 5,101-104 Effect of particle size on water content, 14 Flaschen, S. S., 92 Endo, Y., 44 Fractional crystallization, 47, 64, 66 England, J. L., 31, 92 Friedman, I., 85, 86 Equilibrium crystallization, 46-48, 66, 67 Equipment Gap, miscibility, 26 experimental, 8-10 Geothermal gradient, 117, 118, Fig. 59 hydrothermal, 9-11 change with depth, 118 Eskola, P., 84 factors influencing, 118-121

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/955695/mem74-bm.pdf by guest on 24 September 2021 INDEX 149

influence of thermal conductivity at elevated Harker, A., 141 temperatures, 120 Heat production by radioactivity, 121 Glass High albite, 14, 15, 17 crystallization, 39 High quartz, 28 use of in determining liquidus and solidus, High sanidine, 17, 18 11, 12 Holmqvist, P. J., 93 ignition loss, 13 Homogenization preparation of in "dry" system NaAlSisOs- perthite, 23

KAlSi308-Si02, 5 orthoclase cryptoperthite, 23 Goranson, R. W., 8, 31, 36, 37, 41, 46, 84 sanidine cryptoperthite, 20 Gradient, geothermal, 117, 118, Fig. 59 Hydrothermal change with depth, 118 crystallization of albite, 14 factors influencing, 118-121 equipment for experimentation, 9-11 influence of thermal conductivity at elevated quenching apparatus, 8, 35 temperatures, 120 Hydrous granitic magmas, 125 Granite movement, 125 beginning of melting of Westerly, Rhode Hydrous minerals, 5 Island, and Quincy, Massachusetts, 80,83 Hypersolvus granite, 129 classification, 129, 130 hypersolvus, 129 Iddings, J. P., 88, 135 magma, 117 Ignition loss of glasses, 13 movement of hydrous, 125 Inversion water content, 78 albite, 16, 38 quartz-tridymite, 29 one-feldspar, 98 studies of quartz, 101-103 relations to other granites, 99 Isobaric diagram, 40, 50, 54-56 Rapakivi, 93-98 Isobaric "ternary" eutectic, 25 genesis, 93-95 position at 4000 bars pressure, 74 mantled feldspars, 97, 98 Isobaric "ternary" minimum ovoid feldspars, 95, 96 control of composition, 77 two generations of feldspars, 97, 98 importance of in magmatic composition, 77 views on origin, 93, 94 location, 74 Skye, 98 position of as a function of pressure, 75 alkali feldspar, 112, 113 Isothermal crystallization, 67 modal analysis, 110-112 Ito, T., 135 normative Ab-Or-Q content, 113, 116 plagioclase feldspar content, 113 Jahns, R. H., 93 quartz content, 112 Jefferies, H., 126 subsolvus, 129 Johannsen, A., 126 textures, 137-142 evolution, 137-142 Kalsilite, 5 two-feldspar, 130 Keith, M. L., 101,103 Westerly, Rhode Island, 99-101 Kozu, S., 44 Granitic magma in earth's crust, 117, 118, 126 Granitic rocks, alkali alumina ratio, 88 Laboratory studies, importance, 5 Granitic texture Larsen, E. S., 131, 136 comparison to sulfide textures, 139 Laves, F., 17, 25, 26, 35, 36 evolution, 137-141 Leucite, field, 37, 41 influence of volatiles, 139 Liquids, viscosity of, 76 Greig, J. W., 83 Liquidus Grunerite, 92 cristobalite, 31 stability, 92 determination of relations, 15 * Gutenberg, B., 118 feldspar, 39

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/955695/mem74-bm.pdf by guest on 24 September 2021 150 ORIGIN OF GRANITE- IN THE LIGHT OF EXPERIMENTAL STUDIES

Liquidus—(.Cont'd.) Modal analyses silica, 32, 43 alkali feldspar in Skye granites, 112, 115 stability fields, 70-73, 96-98 plagioclases in Skye granites, 113, 115 cause of changing, 70 quartz in Skye granites, 112, 115 Low albite, 14, 16 Skye granites, 112, 113, 115 Low quartz, 28, 32 Modifications of plagioclase, 108 Low sanidine, 17 Monoclinic albite, 16, 39 Low sanidine-high albite cryptoperthites, 19-21 Moonstone, 19, 44 microcline, 26 Morey, G. W., 33, 84, 86 orthoclase, 16, 21-23, 25 Mosesman, M. A., 28, 31

MacKenzie, W. S., 15, 16, 17, 38, 73 Nepheline, 5 Magma, granite, 117 Nepheline syenites, 5 in earth's crust, 117, 118, 126 Noble, J. A., 118, 119 movement of hydrous, 125 Mantled feldspar, 96 One-feldspar granites, 98 Measurement and control relation to other granites, 99 pressure, 8 Open crucibles, 6, 7 temperature, 8 Optic axial angle of albite, 14 Melting Optical studies on plagioclase, 108 beginning of, 121, 122 Order-disorder in feldspar, 26 depth of complete, 122, 123 Origin of batholiths, 124 dry, 5 Orthoclase, 16, 17, 22 granite, 80-84, Fig. 43 Orthoclase cryptoperthite Quincy, Massachusetts, 80, Fig. 43 homogenization, 23 Westerly, Rhode Island, 80, Fig. 43 incomplete miscibility, 26 metastable, 5 Osborn, E. F., 64 zone of, 123-125 Oscillatory zoning, 69 Merwin, H. E., 83 Metamorphism, regional, 126 Metastable melting, 5 Perthite, 43, 44, 49-51, 140, 141 Metastable mixing, 25 composition of using (201) spacing, 20, 22 Metastable solvus of feldspar, 43 discrepancies in, 22, 23 Method of fabricating platinum crucibles, 7 orthoclase cryptoperthites, 22 sanidine cryptoperthites, 20 Microcline, 17 homogenization, 23 Microperthites, 43 Phenocrysts, reaction of plagioclase, 134 Minerals, hydrous, 5 Phonolites, 5 Minimum Pirsson, L. V., 88 feldspar, 40 Pitzer, K. S., 28, 31 isobaric "ternary" Plagioclase control of composition, 77 core, 134 importance of in magmatic compositions, 77 early, dependent on lime content, 136, 137 location, 74 feldspar, 107 position of as function of pressure, 75 high-temperature modification, 107 Miscibility low-temperature modification, 107 complete in sanidine-albite series, 20 X-ray determination, 109 gap, 26 modifications, 108 incomplete in orthoclase cryptoperthites, 26 optical studies, 108 Mixing, metastable, 26 Skye granites, modal analyses, 113, 115 Mixtures, preparation, 6 X-ray studies, 109 chemicals used for, 6 Platinum crucibles, 6 materials used, 6 method of fabricating, 7 possible errors introduced during, 6 Popofï, B., 94

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/955695/mem74-bm.pdf by guest on 24 September 2021 INDEX 151

Position of thermal trough, 75, 76, Fig. 23 Rhyolite Potash feldspar, order-disorder, 26 compositional variation, 77 Potassium feldspar, 17 water content, 78 inversions, 118 Ricci, J. E., 33 Preparation of mixtures, 6 Riebeckite, 92 chemicals used for, 6 stability, 92 materials used, 6 Rocks, salic, 5 possible errors introduced during, 6 classification, 126 Pressure Rosenqvist, I. Th., 15, 16 effect of on thermal trough, 78, Fig. 23 measurement and control, 8 Sahama, Th. G., 93,95 Pressure-temperature relations in albite, 16 Salic rocks, 5 Pressure vessel, 10, 11 classification, 126 cold seal, 9 Sanidine, 16, 19 internally heated, 31 high, 17, 18 Primary phase in granites, biotite, 83 low, 17 PTX diagram for silica, 31 Sanidine-albite series, complete miscibility in, 20 Pyroxene Sanidine cryptoperthites, 20 primary phase in granites, 84, 85 Schairer, J. F., 5, 6, 17, 38, 64, 86 Skye in, 109 Schwartz, G. M., 139 Sealed-tube technique, 8 Quartz Sederholm, J. J., 94, 95, 96, 97, 98 absence of prism faces on synthetic, 28 Shepherd, E. S., 83 high, 28 Silica inversion studies, 101-103 liquidus of, 32 low, 28, 32 PTX diagram for, 31 (lOlO) spacing of as standard, 12, 13 solubility in water vapor, 31 Skye granites, modal analyses, 112, 115 stable forms of, 29 stability, 28, 29 water determination, 31 Quartz-cristobalite, 31 Silica glass, water content, 31 Quartz-tridymite Skye, granites, 98-117 heat of transformation, 30 alkali feldspar, 103, 104 inversion, 29 biotite, 109 melting, 30 mineralogy, 102-108 slope of PT curve for, 29 modal analyses, 12, 113, 115 Quincy granite normative Ab-Or-Q content, 113, 116 amphibole, 92 plagioclase feldspar content, 113 stability, 92, 93 pyroxene, 84, 85 beginning of melting, 82 quartz content, 112 Solidus, determination of relations, 11-13 Radioactivity, heat production, 121 Solubility of silica in water vapor, 31 Ramberg, H., 84 Solution, residual, 84, 89 Rapakivi granite, 93-98 formed by crystallizing granite magmas, 88, 89 genesis, 93-95 Solvus mantled feldspar, 97, 98 ovoid feldspar, 95, 96 determination, 39 two generations of feldspars, 97, 98 high sanidine-high albite, 18, 40 views on origin, 93, 94 low sanidine-high albite, 19 Reaction of plagioclase phenocrysts, 134 metastable, 25 Regional metamorphism, 126 microcline-low albite, 26 Relations, determination of liquidus and solidus, orthoclase-low albite, 26 11, 12 Spencer, E., 16, 17, 20-26, 44, 105 Residual solution, 84, 89 Spicer, H. C., 118 formed by crystallizing granite magma, 88, 89 Stable forms of silica, 29

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/955695/mem74-bm.pdf by guest on 24 September 2021 152 ORIGIN OF GRANITE- IN THE LIGHT OF EXPERIMENTAL STUDIES

Stability of solidus, 40 amphiboles, 91, 93 determination, 43 anthophyllite, 91 solvus, 42 grunerite, 92 determination, 43 Quincy granite, 92, 93 metastability of portion, 43 riebeckite, 92 tridymite field, 50 Stability fields on the liquidus, 70-73 System NaAlSi308-KAlSi;i08-CaAl2Si208, 131 cause of changing, 70 crystallization, 131 Studies, field, 5, 101-104 solid solution, 131 Subsolvus granite, 129 System NaAlSi308-KAlSi308-Si02, "dry", 5 Sulfides, unmixing, 139-141 crystallization, 5 Syenite, 129 preparation of glasses, 5 classification, 127-130 System NaAlSi30s-Si02-H20, 50 nepheline, 129 albite-quartz boundary, 52 classification, 127-130 albite-tridymite boundary, 52 Synthetic compositions, water content of, 57 appearance of low quartz, 52 Synthetic mixtures, beginning of melting, 83 TX diagram, 52 System K20-Na20-Al203-Si02, 87 System NaAlSi208-KAlSi308-Si02-H,0, 61 residual solutions, 87 adiabatic crystallization, 69 System K20-Al203-Si02-H20, 85 determination of minimum, 63, 74 residual solutions, 86 equilibrium crystallization, 63, 66, 67 System KAlSi308-H20, 36 fractional crystallization, 63-67 System KAlSi308-Si02-H20, 53 isobaric crystallization, 63, 64 System Na20-Al203-Si02-H20, 86 boiling of liquid, 64 System NaAlSi04(nepheline)-KAlSi04(kalsilite)- equilibrium, 63, 67 Si02, 5 fractional, 63, 64 System NaAlSi308-H20, 35, 36 isothermal crystallization, 67-69 beginning of melting in, 36 heat of crystallization, 67 liquidus, 35 liquidus determinations, 61 PT relations, 36 location of isobaric "minimum", 75 range of melting, 36 "ternary" eutectic, 72 System NaAlSi30rKAlSi308, 17 "ternary" minimum, 71 anorthoclases, 17,19 three-phase triangles, 62 System NaAlSi308-KAlSi308-H20, 37, 46, 54 tie lines, 58 albite field, 52 unique "invariant" point, 72 beginning of melting, 40 zoning in plagioclase, 69 complete series of solid solution, 38 System Si02-H20, 31 critical phenomena, 48 cristobalite stability, 32 crystallization, 46 liquidus, 32 of mixtures, 39, 46, 47 liquidus lowering, 31 determination of solvus, 42 PTX relations, 34 effect of water-vapor pressures on mini- quadruple points, 34 mum, 40 tridymite stability, 32 equilibrium crystallization, 46 triple points, 33 effect of pressures, 87 fractional crystallization, 47 water determination of glass, 31 influence of pressure, 48 inversion in crystals, 39 Technique, sealed-tube, 8 leucite field, 41, 42 Temperature, measurement and control, 8 minimum, 41 Ternary "eutectic", 71 composition, 41 Ternary "minimum", 74 determination, 40 relation of water content to, 98 mixing and unmixing, 43 relation of water content of rhyolite to, 79

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/955695/mem74-bm.pdf by guest on 24 September 2021 INDEX

Textures of granite, 137-142 cold seal, 10, 11 evolution, 137-142 internally heated, 31 Thermal conductivity, 120 Viscosity Thermal gradient, 120 control of fractionation, 77 Thermal trough, 75 liquid, 76 effect of pressure, 78, Fig. 23 Vogt, J. H. L., 94, 131 importance, 76, 77 Volátiles, 5 position, 75, 76, Fig. 23 Tilley, C. E., 109 Wager, L. R., 115 Trachyte, compositional variation, 77 Wahl, W., 93, 94 Transport, vapor, 6, 90, 91 Warren, C. H., 92 Triclinic albite, 15, 16 Washington, H. S., 77, 88, 116, 135, 137 Tridymite, 28, 29, 32 Water content stability, 29 determination of in glasses, 13, 31, 54, 58 Turner, F. J., 84, 126 effect of bubbles, 14 Two-feldspar granites, 130 effect of particle size, 14 Tuttle, O. F., 8, 10, 13, 14, 17, 18, 19, 24, 26, granite magmas, 78 28, 31, 85, 91, 93, 99, 101, 103, 104, 107, relation to "ternary minimum", 79 129, 130, 138, 144, 145, 150, 151, 154, rhyolite, 78 191, 192, 208 silica, 31 silica glass, 31 Unmixing synthetic compositions, 57 feldspars, environment, 42, 50, 128, 139, 142 Westerly granite, 99-101 sulfides, 139-141 beginning of melting, 83

VanOrstrand, C. E., 118 X-ray studies of plagioclase, 109 Vapor in equilibrium with hydrous granitic melts, Yagi, K., 135 composition of, 89-91 Yoder, H. S., 28, 69 prevention of transport, 6 transport, 90,91 Zone of melting in earth's crust, 123 Verhoogen, J., 84, 126 significance, 124-126 Vessel, pressure, 9 Zoning, oscillatory, 69

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/955695/mem74-bm.pdf by guest on 24 September 2021 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/955695/mem74-bm.pdf by guest on 24 September 2021