Ibuprofen Rescues Mutant Cystic Fibrosis Transmembrane

Total Page:16

File Type:pdf, Size:1020Kb

Ibuprofen Rescues Mutant Cystic Fibrosis Transmembrane View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Cystic Fibrosis 14 (2015) 16–25 www.elsevier.com/locate/jcf Original Article Ibuprofen rescues mutant cystic fibrosis transmembrane conductance regulator trafficking ⁎ Graeme W. Carlile a, ,1, Renaud Robert b,1, Julie Goepp b, Elizabeth Matthes b, Jie Liao b, Bart Kus c, Sean D. Macknight a, Daniela Rotin c, John W. Hanrahan b, David Y. Thomas a a Cystic Fibrosis Translational Research Center, Dept. of Biochemistry, McGill University, Montreal, Quebec H3G1Y6, Canada b Cystic Fibrosis Translational Research Center, Dept. of Physiology, McGill University, Montreal, Quebec H3G1Y6, Canada c Hospital for Sick Children, Dept. of Biochemistry, University of Toronto, Ontario M5G 1X8, Canada Received 18 December 2013; recieved in revised form 27 May 2014; accepted 1 June 2014 Available online 25 June 2014 Abstract Background: Small molecules as shown by VX809 can rescue the mislocalization of F508del-CFTR. The aim of this study was to identify correctors with a clinical history and their targets of action. Methods: CFTR correctors were screened using two F508del-CFTR expressing cell based HTS assays. Electrophysiological studies using CFBE41o− and HBE cells and in-vivo mouse assays confirmed CFTR rescue. The target of action was attained using pharmacological inhibitors and siRNA to specific genes. Results: Ibuprofen was identified as a CFTR corrector. Ibuprofen treatment of polarized CFBE41o− monolayers increased the short-circuit current (Isc) response to stimulation. In vivo CF mice treatment with ibuprofen restored the CFTR trafficking. SiRNA knock down of cyclooxygenase expression caused partial F508del-CFTR correction. Conclusion: These studies show that ibuprofen is a CFTR corrector and that it causes correction by COX-1 inhibition. Hence ibuprofen may be suitable to be part of a future CF combination therapy. © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved. Keywords: Cystic fibrosis; NSAID; Protein folding; Protein trafficking 1. Introduction is retained in the ER prior to degradation by the ubiquitin proteasome system [2,3]. However, if cells are incubated at Cystic fibrosis (CF) is a lethal autosomal recessive disease reduced temperature a small portion of newly synthesized triggered by mutations in the gene encoding the CF transmem- F508del-CFTR does traffick to the cell surface where it is a brane conductance regulator protein [1]. The most common partially functional anion channel [3,4]. disease-associated mutation is a deletion of the phenylalanine The ability to rectify the location of F508del-CFTR has residue at position 508 (F508del-CFTR) with approximately heightened the interest in drug development for this purpose. 70% of all CF patients being homozygous for this mutation. Several groups undertook high throughput-screening (HTS) The F508del-CFTR mutation results in a misfolded protein that projects to identify small molecules that correct F508del-CFTR trafficking [5–7] with Vx-809 (ivacaftor) the only drug that has completed monotherapy testing in the clinic [8]. ⁎ Corresponding author at: Biochemistry Department, McIntyre Medical Sciences Our goal here is to test known drugs that were developed Building, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada. Tel.: +1 514 398 1341; fax: +1 514 398 7384. for other indications for their ability to correct F508del-CFTR E-mail address: [email protected] (G.W. Carlile). trafficking. Such compounds have known safety and bioavail- 1 G.W.C and R.R. contributed equally to this work. ability hence potentially reducing the time needed for pre-clinical http://dx.doi.org/10.1016/j.jcf.2014.06.001 1569-1993/© 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved. G.W. Carlile et al. / Journal of Cystic Fibrosis 14 (2015) 16–25 17 development and accelerating their approval for clinical use. One 2.4. YFP fluorescence assay compound we identified was ibuprofen. Ibuprofen was first investigated as a CF treatment in 1990 and Compounds were counter screened as previously described is currently used in CF patients to reduce extreme inflammation (and supplementary methods) using Human Embryonic Kidney [9]. Ibuprofen was found to significantly slow the decline in cells (HEK293 GripTite™, Invitrogen) stably expressing F508del- FEV1 over a four-year period and this has been confirmed in CFTR that was transfected with a halide sensitive variant of subsequent studies [10–12]. The effect of ibuprofen has been eYFP [6]. attributed to its anti-inflammatory effect based, in part, on early rat model studies of Pseudomonas infection [9]. 2.5. Transfection for non-CF protein diseases We identified ibuprofen in a cell-based HTS assay specifically designed to detect F508del-CFTR trafficking correctors. Here HeLa cells (5.0 × 106 cells/flask) were transfected with 16 μg we evaluated ibuprofen corrector potency for F508del-CFTR of plasmid and 60 μl of fugene HD overnight. The next day cells processing in several in vitro model systems including polarized were transferred to 6 well dishes (1.0–1.2 × 106 cells/well) and epithelial cells, primary human airway epithelial cell monolayers, 24 h later treated with the compound of interest for 24 h [18]. and freshly isolated intestines from CF mice. We found partial CFTR correction in all these systems. Also, in an in-vivo 2.6. Immunoblots F508del-CFTR mouse assay ibuprofen gave correction. Here we further show that the target of action for ibuprofen induced CFTR Immunoblots were used to measure CFTR maturation using correction maybe via inhibition of the COX protein family a mouse monoclonal anti-CFTR primary antibody (24-1; R&D particularly COX-1. Hence the CF patient benefit of ibuprofen Systems USA. Cat. MAB25031) and a secondary antibody, HRP- treatment is not only due to reducing inflammation but also due to conjugated anti-mouse antibody (Amersham). CFTR correction. 2. Methods 2.7. Iodide efflux assay 2.1. Materials used Iodide efflux was used to measure CFTR functionality in BHK cells as described in supplementary methods and previously Four specific cyclooxygenase (COX) inhibitors were [5]. used; the COX1 inhibitors Sc560 (5-(4-chlorophenyl)-1- (4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole) [13] 2.8. Voltage-clamp of CFBE41o− cell monolayers and TFAP (N-(5-amino-2-pyridinyl)-4-trifluoromethylbenzamide) − [14] the COX2 inhibitors DuP 697 (5-bromo-2-(4-fluorophenyl)- Short-circuit current (Isc) was measured across CFBE41o cell 3-(4-(methylsulfonyl) phenyl)-thiophene) [15] and NPIMA monolayers in Ussing chambers as stated previously [6] and in (N-(3-pyridyl)-indomethacin amide) [16] (all from Cayman the supplementary materials. Chem.). 2.9. CF mice 2.2. Cell culture Homozygous F508del-CFTR mutant mice (Cftrtm1Eur; [6]) The CFBE cell line used is the CFBE41o− derived from and non-CF littermate controls on a FVB background were used. CF patients bronchial epithelial cells and stably infected with Canadian Institutes of Health Research (CIHR) guidelines were TranzVector lentivectors containing either wt or F508del-CFTR. followed and approved by the McGill University Animal Care They were kindly provided by J.P. Clancy (University of Alabama, Committee. Mice were genotyped by PCR [6]. Compounds were Birmingham, USA) [17]. Wild-type V2R and V2R-V206D were tested in-vivo and ex-vivo: as described previously [6] (and in provided by Dr. Peter Deen (NCMLS, The Netherlands). HEK supplementary methods). cells stably expressing HA-tagged hERG G601S or wild-type hERG were given by Eckhard Ficker (Case Western Reserve University U.S.A.) Flag-tagged hamster SUR1 both the wild-type 2.10. High-throughput FACS assay for siRNA treatment and A116P mutant form and rat Kir6.2 plasmids were given by Show-Ling Shyng (Oregon Health and Science University) and HEK293 Flp-In T-Rex cells were utilized as discussed in were reported previously [18]. the supplementary materials and previously [5] to measure the increase in surface CFTR upon siRNA treatment. 2.3. HTS protocol 2.11. RNA extraction and quantitative real-time RT-PCR Screening was performed as described previously (and supplementary methods) using BHK cells that express F508del- Total RNA was extracted and real-time PCR assays were CFTR with 3 tandem hemagglutinin-epitope tags (3HA) in the performed as described previously and in supplementary materials fourth extra-cellular loop [19]. [6]. 18 G.W. Carlile et al. / Journal of Cystic Fibrosis 14 (2015) 16–25 2.12. Statistics (at 10 μM and 320 μM) to 14 ± 1.2% of the amount of CFTR in the lane. In comparison VRT-325 (10μM) had 26% of its CFTR Statistical analysis was performed as described previously expressed in the band C form. and in supplementary materials [6]. To determine if the corrected F508del-CFTR was functional it was measured using an automated iodide efflux assay. Ibuprofen 3. Results treatment (10 μM) for 24 h caused recovery of halide efflux responses to 10 μMforskolin+50μMgenistein(Fig. 3A). 3.1. Ibuprofen partially corrects the F508del-CFTR trafficking Correction was less robust than VRT-325 treatment or in cells defect expressing wild-type CFTR, consistent with the HTS assays and immunoblots. Ibuprofen correction potency and dynamics were Ibuprofen was identified as a CFTR corrector from a screen tested (Fig. 3B, C). Doses between 10 nM and 500 μMof of 3200 known drugs from commercial compound libraries ibuprofen caused a significant F508del-CFTR iodide efflux (Supplemental Table 1 and supplementary information) (Fig. 1A). restoration peaking at 10 μM, consistent with the HTS assay for Ibuprofen gave a 25.7 ± 1.6% increase in cell surface F508del- protein trafficking. Ibuprofen gave a significant response after CFTR signal as compared to wild type signal (Fig. 1B). By treatment with a single dose of 10 μM for 18 to 48 h. comparison, the known corrector VRT-325 gave a 39.5 ± 1.3% increase.
Recommended publications
  • Epithelial Delamination Is Protective During Pharmaceutical-Induced Enteropathy
    Epithelial delamination is protective during pharmaceutical-induced enteropathy Scott T. Espenschieda, Mark R. Cronana, Molly A. Mattya, Olaf Muellera, Matthew R. Redinbob,c,d, David M. Tobina,e,f, and John F. Rawlsa,e,1 aDepartment of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710; bDepartment of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; cDepartment of Biochemistry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599; dDepartment of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599; eDepartment of Medicine, Duke University School of Medicine, Durham, NC 27710; and fDepartment of Immunology, Duke University School of Medicine, Durham, NC 27710 Edited by Dennis L. Kasper, Harvard Medical School, Boston, MA, and approved July 15, 2019 (received for review February 12, 2019) Intestinal epithelial cell (IEC) shedding is a fundamental response to in mediating intestinal responses to injury remains poorly un- intestinal damage, yet underlying mechanisms and functions have derstood for most xenobiotics. been difficult to define. Here we model chronic intestinal damage in Gastrointestinal pathology is common in people using phar- zebrafish larvae using the nonsteroidal antiinflammatory drug maceuticals, including nonsteroidal antiinflammatory drugs (NSAID) Glafenine. Glafenine induced the unfolded protein response (NSAIDs) (11). While gastric ulceration has historically been a (UPR) and inflammatory pathways in IECs, leading to delamination. defining clinical presentation of NSAID-induced enteropathy, Glafenine-induced inflammation was augmented by microbial colo- small intestinal pathology has also been observed, although the nizationandassociatedwithchanges in intestinal and environmental incidence may be underreported due to diagnostic limitations microbiotas.
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • Glafenine-Induced Intestinal Injury in Zebrafish Is Ameliorated by -Opioid Signaling Via Enhancement of Atf6-Dependent Cellular Stress Responses
    RESEARCH ARTICLE Disease Models & Mechanisms 6, 146-159 (2013) doi:10.1242/dmm.009852 Glafenine-induced intestinal injury in zebrafish is ameliorated by -opioid signaling via enhancement of Atf6-dependent cellular stress responses Jason R. Goldsmith1, Jordan L. Cocchiaro2, John F. Rawls2,3,*,‡ and Christian Jobin1,3,4,*,‡ SUMMARY Beside their analgesic properties, opiates exert beneficial effects on the intestinal wound healing response. In this study, we investigated the role of -opioid receptor (MOR) signaling on the unfolded protein response (UPR) using a novel zebrafish model of NSAID-induced intestinal injury. The NSAID glafenine was administered to zebrafish larvae at 5 days post-fertilization (dpf) for up to 24 hours in the presence or absence of the MOR- specific agonist DALDA. By analysis with histology, transmission electron microscopy and vital dye staining, glafenine-treated zebrafish showed evidence of endoplasmic reticulum and mitochondrial stress, with disrupted intestinal architecture and halted cell stress responses, alongside accumulation of apoptotic intestinal epithelial cells in the lumen. Although the early UPR marker BiP was induced with glafenine-induced injury, downstream atf6 and s-xbp1 expression were paradoxically not increased, explaining the halted cell stress responses. The -opioid agonist DALDA protected against glafenine-induced injury through induction of atf6-dependent UPR. Our findings show that DALDA prevents glafenine-induced epithelial damage through induction of effective UPR. DMM INTRODUCTION importance of the epithelium in maintaining intestinal homeostasis, Intestinal homeostasis is achieved in part by the maintenance of a understanding mechanisms involved in intestinal epithelial healing functional barrier composed of a single layer of intestinal epithelial and cell stress responses, and the identification of compounds that cells (IEC), which separates the host from the highly antigenic promote these processes, could lead to new therapeutic strategies lumenal milieu (Sartor, 2008).
    [Show full text]
  • Product Monograph
    PRODUCT MONOGRAPH NOVO–KETOROLAC (ketorolac tromethamine) 10 mg Tablets NSAID Analgesic Agent Novopharm Limited Date of Revision: Toronto, Canada August 02, 2007 Control Number 112565 PRODUCT MONOGRAPH NOVO–KETOROLAC (ketorolac tromethamine) 10 mg Tablets THERAPEUTIC CLASSIFICATION NSAID Analgesic Agent ACTION AND CLINICAL PHARMACOLOGY NOVO-KETOROLAC (ketorolac tromethamine) is a non-steroidal anti-inflammatory drug (NSAID) that has analgesic activity. It is considered to be a peripherally acting analgesic. It is thought to inhibit the cyclo-oxygenase enzyme system, thereby inhibiting the synthesis of prostaglandins. At analgesic doses it has minimal anti-inflammatory and antipyretic activity. The peak analgesic effect occurs at 2 to 3 hours post-dosing with no evidence of a statistically significant difference over the recommended dosage range. The greatest difference between large and small doses of administered ketorolac is in the duration of analgesia. Following oral administration, ketorolac tromethamine is rapidly and completely absorbed, and pharmacokinetics are linear following single and multiple dosing. Steady state plasma levels are achieved after one day of q.i.d. dosing. - 2 - Peak plasma concentrations of 0.7 to 1.1 µg/mL occurred at 44 minutes following a single oral dose of 10 mg. The terminal plasma elimination half-life ranged between 2.4 and 9 hours in healthy adults, while in the elderly subjects (mean age: 72 years) it ranged between 4.3 and 7.6 hours. A high fat meal decreased the rate but not the extent of absorption of oral ketorolac tromethamine, while antacid had no effect. In renally impaired patients there is a reduction in clearance and an increase in the terminal half- life of ketorolac tromethamine (See Table 1).
    [Show full text]
  • Treatment for Acute Pain: an Evidence Map Technical Brief Number 33
    Technical Brief Number 33 R Treatment for Acute Pain: An Evidence Map Technical Brief Number 33 Treatment for Acute Pain: An Evidence Map Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 5600 Fishers Lane Rockville, MD 20857 www.ahrq.gov Contract No. 290-2015-0000-81 Prepared by: Minnesota Evidence-based Practice Center Minneapolis, MN Investigators: Michelle Brasure, Ph.D., M.S.P.H., M.L.I.S. Victoria A. Nelson, M.Sc. Shellina Scheiner, PharmD, B.C.G.P. Mary L. Forte, Ph.D., D.C. Mary Butler, Ph.D., M.B.A. Sanket Nagarkar, D.D.S., M.P.H. Jayati Saha, Ph.D. Timothy J. Wilt, M.D., M.P.H. AHRQ Publication No. 19(20)-EHC022-EF October 2019 Key Messages Purpose of review The purpose of this evidence map is to provide a high-level overview of the current guidelines and systematic reviews on pharmacologic and nonpharmacologic treatments for acute pain. We map the evidence for several acute pain conditions including postoperative pain, dental pain, neck pain, back pain, renal colic, acute migraine, and sickle cell crisis. Improved understanding of the interventions studied for each of these acute pain conditions will provide insight on which topics are ready for comprehensive comparative effectiveness review. Key messages • Few systematic reviews provide a comprehensive rigorous assessment of all potential interventions, including nondrug interventions, to treat pain attributable to each acute pain condition. Acute pain conditions that may need a comprehensive systematic review or overview of systematic reviews include postoperative postdischarge pain, acute back pain, acute neck pain, renal colic, and acute migraine.
    [Show full text]
  • Licofelone Enhances the Efficacy of Paclitaxel in Ovarian Cancer by Reversing Drug
    Author Manuscript Published OnlineFirst on June 11, 2018; DOI: 10.1158/0008-5472.CAN-17-3993 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Licofelone enhances the efficacy of paclitaxel in ovarian cancer by reversing drug resistance and tumor stem-like properties Jeff Hirst1, Harsh B. Pathak1, Stephen Hyter1, Ziyan Y. Pessetto1, Thuc Ly1, Stefan Graw2, Devin C. Koestler2,3, Adam J. Krieg4,5, Katherine F. Roby3,6,7, and Andrew K. Godwin1,3 1Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA 2Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA 3University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA 4Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA 5Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA 6Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS, USA 7Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA Corresponding author: Andrew K. Godwin 3901 Rainbow Boulevard, MS 3040 Kansas City, KS 66160 Email: [email protected] Phone: 913-945-6373 Fax (913) 945-6327 DISCLOSURE OF POTENTIAL CONFLICT OF INTEREST -1- Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2018 American Association for Cancer Research. Author Manuscript Published OnlineFirst on June 11, 2018; DOI: 10.1158/0008-5472.CAN-17-3993 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. The authors declare no potential conflicts of interest.
    [Show full text]
  • Does Paracetamol (Acetaminophen) Reduce the Pain of Osteoarthritis?: a Meta-Analysis of Randomised Controlled Trials W Zhang, a Jones, M Doherty
    901 REVIEW Ann Rheum Dis: first published as 10.1136/ard.2003.018531 on 5 March 2004. Downloaded from Does paracetamol (acetaminophen) reduce the pain of osteoarthritis?: a meta-analysis of randomised controlled trials W Zhang, A Jones, M Doherty ............................................................................................................................... Ann Rheum Dis 2004;63:901–907. doi: 10.1136/ard.2003.018531 Objective: To assess the best available evidence for efficacy of paracetamol (acetaminophen) in the treatment of osteoarthritis (OA). Design: Systematic review and meta-analysis of randomised controlled trials (RCTs). Data sources: Medline, Embase, Scientific Citation Index, CINAHL, Cochrane Library, and conference abstracts in the past 2 years from the British Society for Rheumatology, the European League Against Rheumatism, the American College of Rheumatology, and the Osteoarthritis Research Society International. Subjects: 10 RCTs including 1712 patients with either symptomatic OA of the knee (6 trials) or hip/knee (3 trials) or multiple joints (1 trial). See end of article for authors’ affiliations Main outcome measures: (a) effect size (ES) for pain, stiffness, and functional scores from baseline to end ....................... point; (b) rate ratio (RR) and number needed to treat for clinical response rate and patient preference for treatment. Correspondence to: Dr W Zhang, Academic Results: Paracetamol was effective in relieving pain due to OA (ES = 0.21, 95% confidence interval (CI) Rheumatology, University 0.02 to 0.41). Non-steroidal anti-inflammatory drugs (NSAIDs) were better than paracetamol for pain of Nottingham, Clinical relief (ES = 0.20, 95% CI 0.10 to 0.30). Clinical response rate was higher with NSAIDs than with Sciences Building, City Hospital, Nottingham NG5 paracetamol (RR = 1.24, 95% CI 1.08 to 1.41), and the number of patients who preferred NSAIDs was 1PB, UK; weiya.zhang@ more than twice the number of those preferring paracetamol (RR = 2.46, 95% CI 1.51 to 4.12).
    [Show full text]
  • Immune Hemolytic Anemia Associated with Drug Therapy
    Blood Reviews 24 (2010) 143–150 Contents lists available at ScienceDirect Blood Reviews journal homepage: www.elsevier.com/locate/blre REVIEW Immune hemolytic anemia associated with drug therapy George Garratty ⁎ American Red Cross Blood Services, Southern California Region, 100 Red Cross Circle, Pomona, CA 91768, United States article info abstract Keywords: Drug-induced immune hemolytic anemia (DIIHA) is rare; it can be mild or associated with acute severe Hemolytic anemia hemolytic anemia (HA) and death. About 125 drugs have been implicated as the cause. The HA can be caused Drugs and hemolytic anemia by drug-independent antibodies that are indistinguishable, in vitro and in vivo, from autoantibodies causing Cephalosporins and hemolytic anemia idiopathic warm type autoimmune hemolytic anemia (AIHA). More commonly, the antibodies are drug- Piperacillin and hemolytic anemia dependent (i.e., will only react in vitro in the presence of the drug). The most common drugs to cause DIIHA Fludarabine and hemolytic anemia are anti-microbials (e.g., cefotetan, ceftriaxone and piperacillin), which are associated with drug-dependent Drug antibodies antibodies. The most common drug to cause AIHA is fludarabine. Finding out which drug is causing the problem and stopping that drug is the first approach to therapy. It is not easy to identify the drug interactions accurately in vitro; laboratories specializing in this area can be of great help. © 2010 Elsevier Ltd. All rights reserved. 1. Introduction the drug or that the etiology is immune. The diagnosis must be supported with serological data showing that an antibody is involved Drugs were first suspected as a cause of immune hemolytic anemia (see later).
    [Show full text]
  • Pharmaceutical Co-Crystal Compositions of Celecoxib
    (19) & (11) EP 2 339 328 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 29.06.2011 Bulletin 2011/26 G01N 21/27 (2006.01) G01N 25/08 (2006.01) C07B 63/00 (2006.01) A61K 31/415 (2006.01) (2006.01) (2006.01) (21) Application number: 10193736.5 C07B 63/04 C07D 231/12 (22) Date of filing: 24.12.2003 (84) Designated Contracting States: • Remenar, Julius AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Framingham, MA 01701 (US) HU IE IT LI LU MC NL PT RO SE SI SK TR • Peterson, Matthew Hopkinton, MA 01748 (US) (30) Priority: 30.12.2002 US 437516 P • Almarsson, Orn 21.01.2003 US 441335 P Shrewsbury, MA 01545 (US) 28.02.2003 US 451213 P • Guzman, Hector 18.03.2003 US 456027 P Boston, MA 02118 (US) 21.03.2003 US 456608 P • Chen, Hongming 01.04.2003 US 459501 P Acton, MA 01720 (US) 20.06.2003 US 601092 • Oliveira, Mark 11.07.2003 US 486713 P Bedford, MA 01730 (US) 11.07.2003 US 487064 P 11.09.2003 US 660202 (74) Representative: Daniels, Jeffrey Nicholas 20.06.2003 PCT/US03/19574 Page White & Farrer 04.09.2003 PCT/US03/27772 Bedford House 16.09.2003 PCT/US03/28982 John Street London WC1N 2BF (GB) (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: Remarks: 03808567.6 / 1 579 198 •Claims filed after the date of filing of the application/ after the date of receipt of the divisional application (71) Applicant: Transform Pharmaceuticals, Inc.
    [Show full text]
  • Pharmaceuticals (Monocomponent Products) ………………………..………… 31 Pharmaceuticals (Combination and Group Products) ………………….……
    DESA The Department of Economic and Social Affairs of the United Nations Secretariat is a vital interface between global and policies in the economic, social and environmental spheres and national action. The Department works in three main interlinked areas: (i) it compiles, generates and analyses a wide range of economic, social and environmental data and information on which States Members of the United Nations draw to review common problems and to take stock of policy options; (ii) it facilitates the negotiations of Member States in many intergovernmental bodies on joint courses of action to address ongoing or emerging global challenges; and (iii) it advises interested Governments on the ways and means of translating policy frameworks developed in United Nations conferences and summits into programmes at the country level and, through technical assistance, helps build national capacities. Note Symbols of United Nations documents are composed of the capital letters combined with figures. Mention of such a symbol indicates a reference to a United Nations document. Applications for the right to reproduce this work or parts thereof are welcomed and should be sent to the Secretary, United Nations Publications Board, United Nations Headquarters, New York, NY 10017, United States of America. Governments and governmental institutions may reproduce this work or parts thereof without permission, but are requested to inform the United Nations of such reproduction. UNITED NATIONS PUBLICATION Copyright @ United Nations, 2005 All rights reserved TABLE OF CONTENTS Introduction …………………………………………………………..……..……..….. 4 Alphabetical Listing of products ……..………………………………..….….…..….... 8 Classified Listing of products ………………………………………………………… 20 List of codes for countries, territories and areas ………………………...…….……… 30 PART I. REGULATORY INFORMATION Pharmaceuticals (monocomponent products) ………………………..………… 31 Pharmaceuticals (combination and group products) ………………….……........
    [Show full text]
  • High Throughput Assay Identifies Glafenine As a Corrector for the Folding Defect in Corneal Dystrophy–Causing Mutants of SLC4A
    Cornea High Throughput Assay Identifies Glafenine as a Corrector for the Folding Defect in Corneal Dystrophy–Causing Mutants of SLC4A11 Anthony M. Chiu,1 Jake J. Mandziuk,1,2 Sampath K. Loganathan,1,2 Kumari Alka,1,2 and Joseph R. Casey1,2 1Department of Physiology, University of Alberta, Edmonton, Alberta, Canada 2Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada Correspondence: Joseph R. Casey, PURPOSE. Protein misfolding, causing retention of nascent protein in the endoplasmic Department of Biochemistry, Uni- reticulum (ER), is the most common molecular phenotype for disease alleles of membrane versity of Alberta, Edmonton, AB, proteins. Strategies are needed to identify therapeutics able to correct such folding/trafficking Canada T6G 2H7; defects. Mutations of SLC4A11, a plasma membrane transport protein of the human corneal [email protected]. endothelial cell layer, cause cases of congenital hereditary endothelial dystrophy, Harboyan Submitted: July 27, 2015 syndrome, and Fuchs’ endothelial corneal dystrophy. Most SLC4A11 mutations induce Accepted: October 30, 2015 SLC4A11 misfolding and retention in the ER. Citation: Chiu AM, Mandziuk JJ, Loga- METHODS. An assay amenable to high-throughput screening was developed to quantify nathan SK, Alka K, Casey JR. High SLC4A11 at the plasma membrane, enabling a search for potential traffic-correcting small throughput assay identifies glafenine as a corrector for the folding defect in molecules. The assay was validated by comparing cell surface abundance of SLC4A11 mutants corneal dystrophy–causing mutants of measured in the assay to observations from confocal immunofluorescence and values from SLC4A11. Invest Ophthalmol Vis Sci. cell surface biotinylation. Functionality of mutant proteins was assessed, using a confocal 2015;56:7739–7753.
    [Show full text]
  • Nonsteroidal Antiinflammatory Drugs Or Acetaminophen For
    Nonsteroidal Antiinflammatory Drugs or Acetaminophen for Osteoarthritis of the Hip or Knee? A Systematic Review of Evidence and Guidelines ANKE WEGMAN, DANIËLLE van der WINDT, MAURITS van TULDER, WIM STALMAN, and THEO de VRIES ABSTRACT. Objective. The interpretation of available evidence on the relative efficacy of nonsteroidal antiin- flammatory drugs (NSAID) and acetaminophen in osteoarthritis (OA) has recently been debated. This systematic review summarizes the available evidence on the efficacy of NSAID compared to acetaminophen, and compares the quality and content of clinical guidelines regarding the pharma- cological treatment of OA. Methods. Published reports of randomized controlled trials (RCT) and clinical guidelines were iden- tified by a systematic search of bibliographic databases and relevant websites. The quality of RCT was assessed by 2 reviewers independently using a standardized checklist. Data from these RCT were used to calculate pooled differences between groups for pain and disability. The methodology of identified guidelines was appraised using the AGREE (Appraisal of Guidelines for Research and Evaluation) instrument. Results. The search strategy resulted in the identification of 5 RCT. Statistical pooling of data from 3 trials with adequate methods and sufficient data presentation resulted in a pooled standardized mean difference for general pain of 0.33 (95% CI 0.15 to 0.51), indicating a small effect in favor of NSAID. Pooled estimates for other outcome measures were smaller. Three of the 9 identified guide- lines satisfied more AGREE criteria than others, particularly regarding rigor of development. Stakeholder involvement, applicability, and editorial independence were poorly described in most guidelines. The content of recommendations regarding the use of NSAID or acetaminophen was fairly consistent.
    [Show full text]