CROP and PRAIRIE GRASSES SERVING AS HOSTS for the HESSIAN FLY MAYETIOLA DESTRUCTOR (SAY) (DIPTERA: CECIDOMYIIDAE) a Thesis Submi

Total Page:16

File Type:pdf, Size:1020Kb

CROP and PRAIRIE GRASSES SERVING AS HOSTS for the HESSIAN FLY MAYETIOLA DESTRUCTOR (SAY) (DIPTERA: CECIDOMYIIDAE) a Thesis Submi CROP AND PRAIRIE GRASSES SERVING AS HOSTS FOR THE HESSIAN FLY MAYETIOLA DESTRUCTOR (SAY) (DIPTERA: CECIDOMYIIDAE) A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Yue Li In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Entomology November 2012 Fargo, North Dakota North Dakota State University Graduate School Title CROP AND PRAIRIE GRASSES SERVING AS HOSTS FOR THE HESSIAN FLY MAYETIOLA DESTRUCTOR (SAY) (DIPTERA: CECIDOMYIIDAE) By Yue Li The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Marion Harris Chair Jason Harmon Steven Xu Steven Travers Approved: November 8, 2012 Frank Casey Date Department Chair ABSTRACT Insect herbivores typically parasitize a relatively small number of plant species. Host specialization is presumed to be a result of evolutionary arms races, with insect adaptations ultimately restricting host range. Being a gall-maker, the Hessian fly has highly evolved interactions with plant hosts. As a consequence, its host range is expected to be narrow. Two crop species, wheat and barley are hosts of the Hessian fly. I studied whether non-crop grasses can also serve as hosts. Included in tests were seven grass species that are important components of the grasslands of the Northern Great Plains. Although less suitable than wheat and barley, all seven species received eggs and five of the seven species supported development of offspring to the adult reproductive stage. Results indicate a broader host range than was expected. A benefit of being able to use non-crop grasses is availability of alternate hosts when superior crop hosts are not available. iii ACKNOWLEDGMENTS I am extremely grateful to my major advisor Dr. Marion O. Harris for her tireless supervision, support, and assistance in this project. She always encouraged and challenged me throughout the three years. I am also extremely thankful to her patience on me, and her caring for both my academics and life. Thanks to my committee members Drs. Jason Harmon, Steven Xu, and Steve Travers, who have given me constructive comments throughout my Master’s study. I extend my heartfelt gratitude to Kirk Anderson who helped me rear and prepare insects, and take care of my plants. Moreover, Kirk also helped me figure out many problems I encountered in the experiments. I also would like to thank all the faculty, staff and students in the Entomology Department. iv TABLE OF CONTENT ABSTRACT ................................................................................................................................... iii ACKNOWLEDGMENTS .............................................................................................................. iv LIST OF TABLES ........................................................................................................................ vii LIST OF FIGURES ..................................................................................................................... viii CHAPTER 1. LITERATURE REVIEW .........................................................................................1 Introduction ..........................................................................................................................1 Offensive Traits of Phytophagous Insects ...........................................................................4 Host Finding and Selection by Phytophagous Insects .........................................................5 Does Mother Know Best? Preference and Performance ......................................................6 Gene-for-gene Plant Resistance ...........................................................................................8 Non-Host Resistance ..........................................................................................................11 Geographic Distribution of the Hessian Fly ......................................................................12 Systematics of Gall Midges and the Hessian Fly...............................................................12 Morphology of the Hessian Fly .........................................................................................12 Life Cycle of the Hessian Fly ............................................................................................13 Host Finding and Selection Behavior of the Hessian Fly ..................................................14 The Hessian fly as a Gall-maker ........................................................................................15 Hessian fly Impacts on Plant Growth ................................................................................17 The Hessian fly and Gene-for-gene Interactions ...............................................................17 Why Study Host Range of the Hessian Fly? ......................................................................19 The Crop Hosts of the Hessian Fly ....................................................................................20 Grassland Ecosystems ........................................................................................................22 v Prairie Grass Species Used in My Research .....................................................................23 Canada Wildrye .....................................................................................................23 Crested Wheatgrass ................................................................................................24 Intermediate Wheatgrass ........................................................................................24 Tall Wheatgrass .....................................................................................................25 Western Wheatgrass...............................................................................................25 Meadow Brome ......................................................................................................26 Smooth Brome .......................................................................................................26 References ..........................................................................................................................27 CHAPTER 2. CROP AND PRAIRIE GRASSES AS HOSTS FOR THE HESSIAN FLY .........37 Introduction ........................................................................................................................37 Materials and Methods ......................................................................................................43 Insects ....................................................................................................................43 Plants ......................................................................................................................45 Oviposition Preference Tests .................................................................................46 Offspring Performance Tests .................................................................................48 General Statistical Methods ...................................................................................53 Results ................................................................................................................................53 Oviposition Preference...........................................................................................53 Offspring Performance...........................................................................................56 Plant Response to Attack .......................................................................................70 Discussion ..........................................................................................................................76 References .........................................................................................................................84 vi LIST OF TABLES Table Page 1. Common grasses in the Northern Great Plains ..................................................................23 2. Grasses found to be host plants of the Hessian fly (based on Zeiss et al. 1993) ...............39 3. Grasses on which experiments have failed to detect Hessian fly reproduction (based on Zeiss et al. 1993) ................................................................................................................41 4. Ten crop and non-crop grass species used in tests to explore insect-plant relationships with the Hessian fly ...........................................................................................................44 5. Days of growth required for each of the ten grasses to attain the two-leaf seedling stage and the size of two-leaf seedlings at the time of testing ....................................................47 6. Choice of egglaying sites by Hessian fly females ovipositing on the ten grasses .............55 7. For tests of performance, differences in Hessian fly density on grasses ..........................57 8. Numbers of female and male Hessian fly adults that developed on the seven grasses .....62 9. Estimates of reproductive fitness of female and male Hessian flies that developed on the seven grasses ......................................................................................................................67 10. Statistical tests for Figure 17 comparing growth responses
Recommended publications
  • Native Cool Season Grasses Guide
    NATIVE COOL SEASON GRASSES GUIDE PURE STAND SEEDING RATES SCIENTIFIC NAME COMMON NAME HEIGHT (PLS LBS/ACRE) Achnatherum hymenoides Indian Rice Grass 1.5' 8 Agropyron smithii Western Wheatgrass 3' 12 Agropyron trachycaulum Slender Wheatgrass 3' 8 Bromus anomalus Nodding Brome 2' 18 Bromus carinatus California Brome 4' 15 Bromus ciliatus Fringed Brome 4' 10 Bromus kalmii Prairie Brome 3' 12 Bromus marginatus Mountain Brome 4' 25 Bromus purgans Hairy Wood Chess 4' 12 Calamagrostis canadensis Blue Joint Reed Grass (Canada Bluejoint) 4' 0.4 Danthonia spicata Poverty Oats 1' 4 Deschampsia cespitosa Tufted Hairgrass 3.5' 2 Elymus canadensis Canada Wildrye 3'–4' 8 Elymus elymoides Bottlebrush Squirreltail 1.5' 8 Elymus glaucus Blue Wildrye 5' 12 Elymus lanceolatus Thickspike (Streambank) Wheatgrass 2.5' 10 SEASONNATIVE COOL GRASSES GUIDE Elymus riparius Riverbank Wildrye 4' 8 Elymus villosus Silky Wildrye 3' 8 Elymus virginicus Virginia Wildrye 3' 12 Elymus wawawaiensis Snake River Wheatgrass 2.5' 18 Festuca arizonica Arizona Fescue 2' 3 Festuca campestris Rough Fescue 1.5' 8 Festuca idahoensis Idaho Fescue 2' 4 Festuca obtusa Nodding Fescue 2' 5 Festuca occidentalis Western Fescue 3' 5 Festuca saximontana Rocky Mountain Fescue 3' 2 75 SPEAK WITH A SPECIALIST NOW! | 888.498.7333 NATIVE COOL SEASON GRASSES GUIDE CONTINUED PURE STAND SEEDING RATES SCIENTIFIC NAME COMMON NAME HEIGHT (PLS LBS/ACRE) Glyceria canadensis Rattlesnake Grass 3' 1 Glyceria striata Fowl Manna Grass 3' 0.8 Hordeum brachyantherum Meadow Barley 2.5' 10 Hordeum jubatum Squirrel Tail Grass 2' 8 Koeleria cristata Prairie June Grass 2' 0.8 Leersia oryzoides Ride Cut Grass 4' 3 Leymus cinereus Great Basin Wildrye 5' 11 Leymus salinus Salina Wildrye 2.5' 12 Leymus triticoides Beardless Wildrye (Creeping Wildrye) 3' 9 Poa alpina Alpine Bluegrass 1.75' 2 Poa compressa Canada Bluegrass 8" 2 Poa fenderiana Muttongrass 2' 2 Poa nervosa Wheeler Bluegrass 1.8' 2 Poa palustris Fowl Bluegrass 2' 0.8 Poa secunda ssp.
    [Show full text]
  • Norman Borlaug
    Norman Borlaug Melinda Smale, Michigan State University I’d like to offer some illustrative examples of how scientific partnerships and exchange of plant genetic resources in international agricultural research have generated benefits for US farmers and consumers. 1. It is widely accepted that the greatest transformation in world agriculture of the last century was the Green Revolution, which averted famine particularly in the wheat and rice-growing areas of numerous countries in Asia by boosting levels of farm productivity several times over, lowering prices for consumers, raising income and demand for goods and services. Most of us here are familiar with the history of this transformation. • You will remember that the key technological impetus was short- statured varieties that were fertilizer responsive and didn’t fall over in the field when more of the plant’s energy was poured into grain rather than the stalk and leaves. • Less well known is that the origin of the genes that conferred short- stature in wheat was a landrace from Korea--transferred to Japan, named Daruma, and bred into Norin 10. Norin 10 was named for a Japanese research station, tenth selection from a cross. Later, Norin 10 was brought as a seed sample by an agronomist advisor who served in the MacArthur campaign after WWII. At Washington State University it was crossed to produce important US wheat varieties. The most extensive use of Norin 10 genes outside Japan and the US was by Norman Borlaug, who won the 1970 Nobel Peace Prize. He was the founder of the World Food Prize (won, for example, by Gebisa Ejeta).
    [Show full text]
  • Diptera, Cecidomyiidae, Oligotrophini) with Description of G
    Entomologica, XXII, Bari , 20-Xll-1987 E. SYLVÉW -M. SOLINAS 2 Structural and systematic review of Gephyraulus Riibsaamen (Diptera, Cecidomyiidae, Oligotrophini) with description of G. moricandiae sp. n. from Tunisia ABSTRA CT - The genus Gephyraulus Riibsaamen, 1915, is h ere redescribed. In addition to the type species , G. raphanistri (Kieffer), two species have been assigned to this genus : G. diplotaxis (Solinas), here transferred from Paragephyrau/us Solinas, 1982 , and G. moricandiae sp . n. In particular, the genus is characterized by the shape of the female uromeres VII and VIII, rogether forming (in resting position) a conspicuous swelling comaining most of the muscles for the regulation of the movemems of the oviposiror. The three species consti tute a distinct monophyletic group as indicated by obvious synapomorphies. Ali these species display a common behaviour as flower bud gall-makers on cruciferous plants. Key words: Cecidomyiidae, Gephyrau/us, functional anaromy, taxonomy, phylogeny. CONTENTS l. Imroduction 2. Methods, specimens examined, explanation of symbols 3. Results and discussion 3.1 Description survey 3.1.1 Redescription of Gephyraulus Riibsaamen , 1915 3.1.2 Description of Gephyraulus moricandiae sp. n. 3.1.3 Distinguishing characters on species leve! 3.2 Host plants and geographical disrribution 3.3 Preoviposiror functional unir 3.4 Phylogenetic aspects 4. Acknowledgements l. INTRODUCTION R OBSAAMEN (1915) established the genus Gephyraulus indicating as a peculiar feature: «die obere Lamelle der Legerohre cles 9 kurz; das letzte Glied oberseits mit einer Chitinspange, die sich bis iiber die Mitte der Lamelle hinzieht». He 1 Swedish Museum ofNaturai History, Department ofEntomology , S-1 0405 Srockholm, Sweden.
    [Show full text]
  • United Comstock Merger Mill at American Flat (AFM), While Addressing the Historic Resources
    Sierra Front Sierra United Comstock Merger Nevada Office, Field Mill at American Flat ENVIRONMENTAL ASSESSMENT DOI-BLM-NV-C020-2012-0040-EA U.S. Department of the Interior Bureau of Land Management Carson City District Sierra Front Field Office 5665 Morgan Mill Road Carson City, NV 89701 775-885-6000 December 2012 It is the mission of the Bureau of Land Management to sustain the health, diversity, and productivity of the public lands for the use and enjoyment of present and future generations. DOI-BLM-NV-C020-2012-0040-EA ii Table of Contents 1.0 INTRODUCTION .......................................................................................... 1 1.1 Background ...................................................................................................................... 1 1.2 Purpose and Need ............................................................................................................. 4 1.3 Scoping and Issues Identification ..................................................................................... 4 1.3.1 Tribal Consultation ................................................................................................... 4 1.3.2 Public Scoping in 2011 ............................................................................................. 5 1.3.3 Issues Considered in this EA .................................................................................... 5 1.4 Land Use Conformance Statement ................................................................................... 6 1.5 Relationships
    [Show full text]
  • Phylogeny and Host Association in Platygaster Latreille, 1809 (Hymenoptera, Platygastridae)
    Phylogeny and host association in Platygaster Latreille, 1809 (Hymenoptera, Platygastridae) Peter Neerup Buhl Buhl, P.N.: Phylogeny and host association in Platygaster Latreille, 1809 (Hy­ menoptera, Platygastridae). Ent. Meddr 69: 113-122. Copenhagen, Denmark 2001. ISSN 0013-8851. An examination of the known midge host/midge plant host associations for species of Platygasterparasitoid wasps seems to indicate a number of natural par­ asitoid species groups restricted to specific plant families. Midge hosts seem less indicative for platygastrid relationships, but several exceptions from this rule exist. The possible reasons for this are discussed. It is also shown that species of Platy­ gaster with known host associations generally prefer midges on plant families which are not the families generally prefered by the midges. Furthermore, a com­ parison of the known midge host/midge plant host associations for the genera of the "Platygaster-cluster" and the "Synopeas-cluster" shows great differences in the general preferences of the clusters. P.N. Buhl, Troldh0jvej 3, DK-3310 0lsted, Denmark. E-mail: [email protected] Introduction The phylogeny of the very large platygastrid genus Platygaster, tiny parasitoids on gall midges (Diptera, Cecidomyiidae), is mostly unresolved. The great problems which meet the investigator are primarily - as in all platygastrids - the few external characters avail­ able in a phylogenetic analysis. A further obstacle in the revisionary work is that many species are known only from short dated original descriptions (unknown or unrevised type material). Aspects of the biology (midge host or host plant of midge) are, however, known for about half the described species, so perhaps this could enlighten aspects of the parasitoid taxonomy- as was successfully done e.g.
    [Show full text]
  • Improving Seed Retention and Germination Characteristics of North American Basin Wildrye by Marker-Assisted Gene Introgression
    agronomy Article Improving Seed Retention and Germination Characteristics of North American Basin Wildrye by Marker-Assisted Gene Introgression Steven R. Larson * , Thomas A. Jones, Linnea M. Johnson and Blair L. Waldron United States Department of Agriculture, Agriculture Research Service, Forage and Range Research, Utah State University, Logan, UT 84322, USA; [email protected] (T.A.J.); [email protected] (L.M.J.); [email protected] (B.L.W.) * Correspondence: [email protected] Received: 23 September 2020; Accepted: 6 November 2020; Published: 8 November 2020 Abstract: Basin wildrye [Leymus cinereus (Scribn. and Merr.) Á. Löve] and creeping wildrye [Leymus triticoides (Buckley) Pilg.] are native perennial grasses cultivated for seed used for fire rehabilitation and revegetation in western North America. Although L. cinereus produces large spike inflorescences with many seeds, it is prone to seed shattering. Seed can be harvested before shattering, but often displays poor germination and seedling vigor. Conversely, L. triticoides has fewer seeds per spike, but relatively strong seed retention. Both species are allotetraploid (2n = 4x = 28) and form fertile hybrids used for breeding and genetic research. A dominant, major-effect seed-shattering gene (SH6) from L. cinereus was previously identified in an L. triticoides backcross population. In this study, a DNA marker was used to select the recessive L. triticoides seed-retention allele (sh6) in cycle six (C6) of a L. cinereus L. triticoides breeding population and evaluate gene harvest date effects on × × seed yield and germination characteristics in a full-sib family derived from homozygous (sh6/sh6) and heterozygous (SH6/sh6) C6 parents.
    [Show full text]
  • W a Sh in G to N Na Tu Ra L H Er Itag E Pr Og Ra M
    PROGRAM HERITAGE NATURAL Conservation Status Ranks of Washington’s Ecological Systems Prepared for Washington Dept. of Fish and WASHINGTON Wildlife Prepared by F. Joseph Rocchio and Rex. C. Crawford August 04, 2015 Natural Heritage Report 2015-03 Conservation Status Ranks for Washington’s Ecological Systems Washington Natural Heritage Program Report Number: 2015-03 August 04, 2015 Prepared by: F. Joseph Rocchio and Rex C. Crawford Washington Natural Heritage Program Washington Department of Natural Resources Olympia, Washington 98504-7014 .ON THE COVER: (clockwise from top left) Crab Creek (Inter-Mountain Basins Big Sagebrush Steppe and Columbia Basin Foothill Riparian Woodland and Shrubland Ecological Systems); Ebey’s Landing Bluff Trail (North Pacific Herbaceous Bald and Bluff Ecological System and Temperate Pacific Tidal Salt and Brackish Marsh Ecological Systems); and Judy’s Tamarack Park (Northern Rocky Mountain Western Larch Savanna). Photographs by: Joe Rocchio Table of Contents Page Table of Contents ............................................................................................................................ ii Tables ............................................................................................................................................. iii Introduction ..................................................................................................................................... 4 Methods..........................................................................................................................................
    [Show full text]
  • An Annotated Bibliography of the Hessian Fly Phytophaga Destructor (Say)
    .■;'TrKA"??^ =V=^TWKî^ UNITED STATES DEPARTMENT OF AGRICULTURE Miscellaneous Publication No. 198 WASHINGTON, D.C. ISSUED SEPTEMBER 1934 i.4^« J7 AN ANNOTATED BIBLIOGRAPHY OF THE HESSIAN FLY PHYTOPHAGA DESTRUCTOR (SAY) BY J. S. WADE Associate Entomologist Division of Cereal and Forage Insects Bureau of Entomology and Plant Quarantine For sale by the Superintendent of Documents, Washington, D.C. Price 10 cents *42 :^^n9fíH UNITED STATES DEPARTMENT OF AGRICULTURE Miscellaneous Publication No. 198 Washington, D.C. September 1934 AN ANNOTATED BIBLIOGRAPHY OF THE HESSIAN FLY, PHYTOPHAGA DESTRUCTOR (SAY) By J. S". WADE, associate entomologistf Division of Cereal and Forage Insects, Bureau of Entomology and Plant Quarantine INTRODUCTION It is the purpose of this publication to present in a form as condensed as is feasible an annotated bibliography of the hessian fly, Phytophaga destructor (Say), with special reference to the literature relating to the insect within its areas of distribution in North America north of Mexico, to June 30, 1933. The outstanding importance of this insect as a crop pest and the almost incalculable damage it has wrought to American farmers since it gained entry into the United States indicate that it will continue to be a subject of great interest and study, and the value of a bibliography to future investigators is obvious. This bibliography presents results of some 18 years of collection by the compiler in a number of the larger public libraries in the eastern part of the United States. The assembling and much of the work, however, has been done at Washington where, through the facilities of departmental and other libraries, such studies can be prosecuted with a fullness and completeness not elsewhere possible.
    [Show full text]
  • Advances in Wheat Genetics: from Genome to Field Proceedings of the 12Th International Wheat Genetics Symposium Advances in Wheat Genetics: from Genome to Field
    Yasunari Ogihara · Shigeo Takumi Hirokazu Handa Editors Advances in Wheat Genetics: From Genome to Field Proceedings of the 12th International Wheat Genetics Symposium Advances in Wheat Genetics: From Genome to Field Yasunari Ogihara • Shigeo Takumi Hirokazu Handa Editors Advances in Wheat Genetics: From Genome to Field Proceedings of the 12th International Wheat Genetics Symposium Editors Yasunari Ogihara Shigeo Takumi Kihara Institute for Biological Research Graduate School of Agricultural Sciences Yokohama City University Kobe University Yokohama , Kanagawa , Japan Kobe , Hyogo , Japan Hirokazu Handa Plant Genome Research Unit National Institute of Agrobiological Sciences Tsukuba , Ibaraki , Japan ISBN 978-4-431-55674-9 ISBN 978-4-431-55675-6 (eBook) DOI 10.1007/978-4-431-55675-6 Library of Congress Control Number: 2015949398 Springer Tokyo Heidelberg New York Dordrecht London © The Editor(s) (if applicable) and the Author(s) 2015 . The book is published with open access at SpringerLink.com. Open Access This book is distributed under the terms of the Creative Commons Attribution Non- commercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. All commercial rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Klicken, Um Den Anhang Zu Öffnen
    Gredleria- VOL. 1 / 2001 Titelbild 2001 Posthornschnecke (Planorbarius corneus L.) / Zeichnung: Alma Horne Volume 1 Impressum Volume Direktion und Redaktion / Direzione e redazione 1 © Copyright 2001 by Naturmuseum Südtirol Museo Scienze Naturali Alto Adige Museum Natöra Südtirol Bindergasse/Via Bottai 1 – I-39100 Bozen/Bolzano (Italien/Italia) Tel. +39/0471/412960 – Fax 0471/412979 homepage: www.naturmuseum.it e-mail: [email protected] Redaktionskomitee / Comitato di Redazione Dr. Klaus Hellrigl (Brixen/Bressanone), Dr. Peter Ortner (Bozen/Bolzano), Dr. Gerhard Tarmann (Innsbruck), Dr. Leo Unterholzner (Lana, BZ), Dr. Vito Zingerle (Bozen/Bolzano) Schriftleiter und Koordinator / Redattore e coordinatore Dr. Klaus Hellrigl (Brixen/Bressanone) Verantwortlicher Leiter / Direttore responsabile Dr. Vito Zingerle (Bozen/Bolzano) Graphik / grafica Dr. Peter Schreiner (München) Zitiertitel Gredleriana, Veröff. Nat. Mus. Südtirol (Acta biol. ), 1 (2001): ISSN 1593 -5205 Issued 15.12.2001 Druck / stampa Gredleriana Fotolito Varesco – Auer / Ora (BZ) Gredleriana 2001 l 2001 tirol Die Veröffentlichungsreihe »Gredleriana« des Naturmuseum Südtirol (Bozen) ist ein Forum für naturwissenschaftliche Forschung in und über Südtirol. Geplant ist die Volume Herausgabe von zwei Wissenschaftsreihen: A) Biologische Reihe (Acta Biologica) mit den Bereichen Zoologie, Botanik und Ökologie und B) Erdwissenschaftliche Reihe (Acta Geo lo gica) mit Geologie, Mineralogie und Paläontologie. Diese Reihen können jährlich ge mein sam oder in alternierender Folge erscheinen, je nach Ver- fügbarkeit entsprechender Beiträge. Als Publikationssprache der einzelnen Beiträge ist Deutsch oder Italienisch vorge- 1 Naturmuseum Südtiro sehen und allenfalls auch Englisch. Die einzelnen Originalartikel erscheinen jeweils Museum Natöra Süd Museum Natöra in der eingereichten Sprache der Autoren und sollen mit kurzen Zusammenfassun- gen in Englisch, Italienisch und Deutsch ausgestattet sein.
    [Show full text]
  • Map-Based Cloning of the Hessian Fly Resistance Gene H13 in Wheat
    Map-based cloning of the Hessian fly resistance gene H13 in Wheat by Anupama Joshi B.S., Panjab University, 2006 M.S., Panjab University, 2008 AN ABSTRACT OF A DISSERTATION Submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Interdepartmental Genetics College of Agriculture KANSAS STATE UNIVERSITY Manhattan, Kansas 2018 Abstract H13, a dominant resistance gene transferred from Aegilops tauschii into wheat (Triticum aestivum), confers a high level of antibiosis against a wide range of Hessian fly (HF, Mayetiola destructor) biotypes. Previously, H13 was mapped to the distal arm of chromosome 6DS, where it is flanked by markers Xcfd132 and Xgdm36. A mapping population of 1,368 F2 individuals derived from the cross: PI372129 (h13h13) / PI562619 (Molly, H13H13) was genotyped and H13 was flanked by Xcfd132 at 0.4cM and by Xgdm36 at 1.8cM. Screening of BAC-based physical maps of chromosome 6D of Chinese Spring wheat and Ae. tauschii coupled with high resolution genetic and Radiation Hybrid mapping identified nine candidate genes co-segregating with H13. Candidate gene validation was done on an EMS-mutagenized TILLING population of 2,296 M3 lines in Molly. Twenty seeds per line were screened for susceptibility to the H13- virulent HF GP biotype. Sequencing of candidate genes from twenty-eight independent susceptible mutants identified three nonsense, and 24 missense mutants for CNL-1 whereas only silent and intronic mutations were found in other candidate genes. 5’ and 3’ RACE was performed to identify gene structure and CDS of CNL-1 from Molly (H13H13) and Newton (h13h13). Increased transcript levels were observed for H13 gene during incompatible interactions at larval feeding stages of GP biotype.
    [Show full text]
  • Hessian Fly, Mayetiola Destructor (Diptera: Cecidomyiidae), Smart-Trap Design and Deployment Strategies
    Hessian fly, Mayetiola destructor (Diptera: Cecidomyiidae), smart-trap design and deployment strategies by Ryan B. Schmid B.S., South Dakota State University, 2011 M.S., South Dakota State University, 2014 AN ABSTRACT OF A DISSERTATION submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Department of Entomology College of Agriculture KANSAS STATE UNIVERSITY Manhattan, Kansas 2018 Abstract Timely enactment of insect pest management and incursion mitigation protocols requires development of time-sensitive monitoring approaches. Numerous passive monitoring methods exist (e.g., insect traps), which offer an efficient solution to monitoring for pests across large geographic regions. However, given the number of different monitoring tools, from specific (e.g., pheromone lures) to general (e.g., sticky cards), there is a need to develop protocols for deploying methods to effectively and efficiently monitor for a multitude of potential pests. The non-random movement of the Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae), toward several visual, chemical, and tactile cues, makes it a suitable study organism to examine new sensor technologies and deployment strategies that can be tailored for monitoring specific pests. Therefore, the objective was to understand Hessian fly behavior toward new sensor technologies (i.e., light emitting diodes (LEDs) and laser displays) to develop monitoring and deployment strategies. A series of laboratory experiments and trials were conducted to understand how
    [Show full text]