Antagonistic Co-Evolution Between a Plant and One of Its Parasites Is Commonly Portrayed As an Arms Race (Ref)

Total Page:16

File Type:pdf, Size:1020Kb

Antagonistic Co-Evolution Between a Plant and One of Its Parasites Is Commonly Portrayed As an Arms Race (Ref) DEVELOPMENT AND CHARACTERIZATION OF WHEAT GERMPLASM FOR RESISTANCE TO STEM RUST UG99 IN WHEAT A Dissertation Submitted to the Graduate Faculty of the North Dakota State University Of Agriculture and Applied Science By Qijun Zhang In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY Major Department: Plant Science December 2013 Fargo, North Dakota North Dakota State University Graduate School Title DEVELOPMENT AND CHARACTERIZATION OF WHEAT GERMPLASM FOR RESISTANCE TO STEM RUST UG99 IN WHEAT By Qijun Zhang The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of DOCTOR OF PHILOSOPHY SUPERVISORY COMMITTEE: Steven S. Xu Chair Xiwen Cai Justin D. Faris Timothy L. Friesen Shaobin Zhong Approved: 12/20/13 Richard D. Horsley Date Department Chair ABSTRACT World wheat production is currently threated by stem rust (caused by Puccinia graminis f. sp. tritici) Ug99 race (TTKSK). The ongoing global effort to combat Ug99 is focusing on the identification and deployment of Ug99-resistant genes (Sr) into commercial cultivars. The objectives of this study were to identify TTKSK-effective Sr genes in untapped durum and common wheat germplasm and introgression of TTKSK-effective Sr genes from tetraploid wheat (Triticum turgidium) and Aegilops tauschii into hexaploids through production of synthetic hexaploid wheat (SHW). For identification of TTKSK-effective Sr genes, 177 durum and common wheat cultivars and lines were first evaluated using three highly virulent races TTKSK, TRTTF, and TTTTF and 71 cultivars and lines with TTKSK resistance were identified. The TTKSK-resistant cultivars and lines were then evaluated using six local races and the molecular markers that are diagnostic or tightly linked to the known TTKSK-effective Sr genes. The race specification and marker analysis showed that several previously deployed TTKSK-effective Sr genes such as Sr2, Sr24 and Sr42 were present in some of the cultivars and lines. A number of resistant cultivars and lines derived from wheat relatives such as Thinopyrum ponticum, Th. elongatum, Th. intermedium, and Ae. speltoides may carry novel Sr genes. For SHW development, 200 new SHW lines were developed by crossing 181 tetraploid wheat accessions to 14 Ae. tauschii accessions. Sixty-six of the new SHW lines, 14 previously-developed SHW lines, and their parents were evaluated for resistance to TTKSK, TRTTF, TTTTF and six other races and genotyped using molecular markers linked to the known genes in T. dicoccum and Ae. tauschii. The evaluation data showed that 44 SHW lines were resistant to TTKSK. The race specification and marker analysis showed that Sr2 from T. dicoccum and Sr33 from Ae. tauschii were present in some of the SHW lines and a number of SHW lines have novel genes conferring iii TTKSK resistance. The durum and wheat cultivars and lines and SHW lines with known and novel Sr genes conferring resistance to TTKSK will be useful resources for improving wheat resistance to TTKSK and other emerging races of stem rust. iv ACKNOWLEDGEMENTS I express the deepest thanks to my major adviser, Dr. Steven S. Xu, for his encouragement, support, and guidance during my graduate study in the past five years. He spent numerous hours to guide me in my thesis research and preparation. I also express my deepest appreciation to my co-advisor, Dr. Xiwen Cai, for his support and guidance in this study and to my graduate committee, Dr. Justin D. Faris, Dr. Timothy L. Friesen, and Dr. Shaobin Zhong for their assistance and reviewing this dissertation. I am highly grateful to the Department of Plant Science and North Dakota State University for providing the opportunity for me in pursuit of the Ph.D degree and to Dr. Richard D. Horsley, Dr. Michael C. Edwards, and Mrs. Eileen Buringrud for their help and assistance. I am thankful to USDA-ARS for funding the Graduate Research Assistantship. My thanks also go to Charles and Linda Moses for providing a scholarship. I express my deepest appreciations to Drs. Yue Jin, Matthew N. Rouse, Daryl L. Klindworth, Timothy L. Friesen, and Dr. Shaobin Zhong for their assistance in stem rust testing, to Drs. Shiaoman Chao, Lili Qi, Justin D. Faris, and Yunming Long for marker analysis, Drs. Chao-Chien Jan and Zhao Liu for the GISH protocol, and Dr. Elias M. Elias for providing durum wheat germplasm. I extend my sincere thanks to Jason E. Axtman, Danielle J. Holmes, Mary M. Osenga, Richard M. Sonju, Rachel McArthur, and Stan Stancyk for technical assistance. My thanks also go to Drs Zhixia Niu, Chenggen Chu, Guotai Yu, Zhaohui Liu, Zengcui Zhang, Gongjun Shi, Guojia Ma, Aifeng Liu, and Gang Feng for friendship and insightful discussion. I express my deepest gratitude to my parents and my sisters for their support and encouragement. I express my deepest appreciation to my wife for her support and help during the preparation of my thesis. v TABLE OF CONTENTS ABSTRACT ................................................................................................................................... iii ACKNOWLEDGEMENTS ............................................................................................................ v LIST OF TABLES ....................................................................................................................... viii LIST OF FIGURES ....................................................................................................................... ix LIST OF APPENDIX TABLES ..................................................................................................... x CHAPTER 1. GENERAL INTRODUCTION ............................................................................... 1 Literature Cited .................................................................................................................. 2 CHAPTER 2. LITERATURE REVIEW ........................................................................................ 4 Wheat and Wheat Gene Pools.............................................................................................4 Exploitation of Wheat Gene Pools for Germplasm Improvement ......................................6 Wheat Stem Rust...............................................................................................................13 Ug99 Lineage Races and Their Control ...........................................................................24 Literature Cited ................................................................................................................ 32 CHAPTER 3. EVALUATION AND MOLECULAR CHARACTERIZATION OF WHEAT LINES AND CULTIVARS FOR STEM RUST UG99 RESISTANCE DERIVED FROM RELATIVES OF WHEAT ................................................................................. 46 Abstract ............................................................................................................................. 46 Introduction ....................................................................................................................... 47 Methods and Materials ...................................................................................................... 50 Results ............................................................................................................................... 53 Discussion ......................................................................................................................... 61 Literature Cited ................................................................................................................. 83 CHAPTER 4. DEVELOPMENT AND CHARACTERIZATION OF SYNTHETIC HEXAPLOIDS FROM UNDER-EXPLOITED TETRAPLOIDS AS A NEW RESOURCE FOR STEM RUST UG99 RESISTANCE ...................................................90 vi Abstract ............................................................................................................................ 90 Introduction ...................................................................................................................... 91 Methods and Materials ..................................................................................................... 95 Results .............................................................................................................................. 99 Discussion ...................................................................................................................... 105 Literature Cited .............................................................................................................. 120 APPENDIX ................................................................................................................................. 127 vii LIST OF TABLES Table Page 2.1. An international nomenclature system designating P. graminis f. sp. tritici (Pgt) races ...... 15 2.2. Chromosome location and original source of Sr genes ..........................................................19 3.1. Wheat cultivars/breeding lines and their parents characterized for their resistance to stem rust ......................................................................................................................................... 72 3.2. Avirulence/virulence on the North America differentials for nine stem rust races used in this study ................................................................................................................................ 75 3.3.
Recommended publications
  • JOINTED GOATGRASS Mature Jointed Goatgrass (Aegilops Cylindrica)
    INVASIVE SPECIES ALERT! JOINTED GOATGRASS Mature Jointed goatgrass (Aegilops cylindrica) HAVE YOU SEEN THIS PLANT? DESCRIPTION • Native to southeastern Europe and western Asia • Winter annual grass with numerous erect stems branching at the base; 40-60 cm tall • Alternate leaves 2-5 mm wide and 3-15 cm long Sam Brinker, OMNR-NHIS • Leaves sparsely hairy, with hairs evenly spaced along the leaf margin; hairy auricles • Narrow, cylindrical seed head/spike (5-10 cm long) with alternately arranged spikelets (8-10 mm long) on opposite REPORT INVASIVE SPECIES sides of the spike axis • Each spikelet contains an average of 2 seeds Download the App! • Roots are shallow and fibrous • Can hybridize with wheat and other closely related species www.gov.bc.ca/invasive- PRIMARY THREAT: Significant losses in winter species wheat crop yield and quality. BIOLOGY & SPREAD Seedlings • Reproduces by seed. • Seeds mainly spread as a contaminant in cereal crops, like winter wheat, or with farm machinery, straw and in agricultural field runoff. • Seeds remain viable after passing through cattle. Steve Dewey, Utah State University • New introductions to B.C. could come from grain transport pathways, such as Evenly spaced rail lines, or range expansion from infested areas in Washington, Idaho, and hairs on leaf Montana. margin HABITAT • Prefers cultivated fields, pastures and disturbed areas along fences, Richard Old, XID Services Inc. ditches, and roadsides. For more information : https://www2.gov.bc.ca/gov/content/environment/plants- animals-ecosystems/invasive-species/priority-species/priority-plants Updated April 2021 JOINTED GOATGRASS (Aegilops cylindrica) DISTRIBUTION & Status • Federally regulated Plant Pest and regulated Provincial Noxious Weed • Management goal provincial eradication • Present in very limited amounts in B.C.
    [Show full text]
  • A Forever Green Agriculture Initiative Donald Wyse University Of
    Developing High-Efficiency Agricultural and Food Systems: A Forever Green Agriculture Initiative Donald Wyse University of Minnesota Satellite images of vegetative activity. Areas of annual row cropping April 20 – May 3 Areas of perennial vegetation May 4 – 17 Satellite images of vegetative activity. May 18 - 31 June 15 - 28 Satellite images of vegetative activity. July 13 - 26 October 5 - 18 Annual Tile Drainage Loss in Corn-Soybean Rotation Waseca, 1987-2001 July-March April, May, 29% June 71% Gyles Randall, 2003 Developing New Perennial and Winter Annual Crops to Enhance Minnesota’s Soil and Water Resources Pg. 26 EQB Report Intermediate Wheatgrass Kernza™ Thinopyrum intermedium Enterprises: Beer/Whiskey Food Biomass Grazing Funding: IREE, MDA, Forever Green Initiative, The Land Institute Intermediate wheatgrass ---- Environment services Reduce erosion and soil nitrate leaching Reduce inputs of energy and pesticide Increase carbon sequestration Intermediate wheatgrass in Minnesota St. Paul Campus Intermediate wheatgrass ---- Agronomic traits Large seeds ---- 10-15g/1000 seeds Large biomass ---- comparably to big bluestem and switchgrass) Disease resistance ---- Lr38, Sr43, Sr44, Pm40, Pm43… Favorable end-use food wheat wheatgrass Intermediate wheatgrass Our goal Obtain a commercially viable perennial grain/biomass crop Wild Perennial Perennial Grain Domestication Increase grain yield and biomass Enhance grain quality for food Sequencing the Kernza Genome Project started in 2016 Chromosome-scale assembly completed 3/31/17 Wheatgrass Wheat Current Forage Intermediate Wheatgrass improvement Large seeds 35. 1 15. 12. 13. 0 4 8 4.8 Seed weight Seed (mg) Wheat Wheatgrass Wheatgrass Current Forage Breeding nurseries in St. Paul 3’ 3’ … 2000 … spaced plants 4’ 8’ … … 440 yield plots Soil moisture beneath annual and perennial crops Soil moisture content 100 cm below soil surface in corn, Kernza, and switchgrass at Waseca in 2015.
    [Show full text]
  • Genome Wide Association Study Reveals Novel QTL for Barley Yellow
    Choudhury et al. BMC Genomics (2019) 20:891 https://doi.org/10.1186/s12864-019-6249-1 RESEARCH ARTICLE Open Access Genome wide association study reveals novel QTL for barley yellow dwarf virus resistance in wheat Shormin Choudhury1,2, Philip Larkin3, Rugen Xu4, Matthew Hayden5,6, Kerrie Forrest6, Holger Meinke1, Hongliang Hu1, Meixue Zhou1* and Yun Fan1* Abstract Background: Barley yellow dwarf (BYD) is an important virus disease that causes significant reductions in wheat yield. For effective control of Barley yellow dwarf virus through breeding, the identification of genetic sources of resistance is key to success. In this study, 335 geographically diverse wheat accessions genotyped using an Illumina iSelect 90 K single nucleotide polymorphisms (SNPs) bead chip array were used to identify new sources of resistance to BYD in different environments. Results: A genome-wide association study (GWAS) performed using all the generalised and mixed linkage models (GLM and MLM, respectively) identified a total of 36 significant marker-trait associations, four of which were consistently detected in the K model. These four novel quantitative trait loci (QTL) were identified on chromosomes 2A, 2B, 6A and 7A and associated with markers IWA3520, IWB24938, WB69770 and IWB57703, respectively. These four QTL showed an additive effect with the average visual symptom score of the lines containing resistance alleles of all four QTL being much lower than those with less favorable alleles. Several Chinese landraces, such as H-205 (Baimazha) and H-014 (Dahongmai) which have all four favorable alleles, showed consistently higher resistance in different field trials. None of them contained the previously described Bdv2, Bdv3 or Bdv4 genes for BYD resistance.
    [Show full text]
  • Cereal Rust Bulletin
    CEREAL RUST Report No. 5 BULLETIN May 31, 1994 From: Issued by: CEREAL RUST LABORATORY AGRICULTURAL RESEARCH SERVICE U.S. DEPARTMENT OF AGRICULTURE U.S. DEPARTMENT OF AGRICULTURE UNIVERSITY OF MINNESOTA, ST. PAUL 55108 (In cooperation with the Minnesota Agricultural Experiment Station) 612) 625-6299 FAX (612) 649-5054 Internet: [email protected] The small grain harvest is underway from southern Georgia to southwestern Oklahoma. In the northern grain growing area most spring sown small grains have been planted. Wheat stem rust. During the third week in May, wheat stem rust was severe in plots and light in fields at hard dough in eastern and central Louisiana. This late stem rust development is normal for this area. By the third week in May, traces of stem rust were found in plots and fields in eastern Arkansas and in plots in west central Mississippi at the soft dough stage. This year light amounts of wheat stem rust have been found scattered throughout the lower Mississippi Valley wheat growing area but not much stem rust has been found in the rest of the country. In all of these areas only minimal stem rust losses are expected. Wheat leaf rust. By late May, leaf rust severities ranged from trace to 50% in plots from northwestern Alabama to northeastern Arkansas (Fig. 1). In fields in the same area only trace to 10% severities were observed. These infected plants are providing leaf rust inoculum for wheat farther north. In late May, leaf rust was light in southeastern and the eastern shore of Virginia.
    [Show full text]
  • Advances in Wheat Genetics: from Genome to Field Proceedings of the 12Th International Wheat Genetics Symposium Advances in Wheat Genetics: from Genome to Field
    Yasunari Ogihara · Shigeo Takumi Hirokazu Handa Editors Advances in Wheat Genetics: From Genome to Field Proceedings of the 12th International Wheat Genetics Symposium Advances in Wheat Genetics: From Genome to Field Yasunari Ogihara • Shigeo Takumi Hirokazu Handa Editors Advances in Wheat Genetics: From Genome to Field Proceedings of the 12th International Wheat Genetics Symposium Editors Yasunari Ogihara Shigeo Takumi Kihara Institute for Biological Research Graduate School of Agricultural Sciences Yokohama City University Kobe University Yokohama , Kanagawa , Japan Kobe , Hyogo , Japan Hirokazu Handa Plant Genome Research Unit National Institute of Agrobiological Sciences Tsukuba , Ibaraki , Japan ISBN 978-4-431-55674-9 ISBN 978-4-431-55675-6 (eBook) DOI 10.1007/978-4-431-55675-6 Library of Congress Control Number: 2015949398 Springer Tokyo Heidelberg New York Dordrecht London © The Editor(s) (if applicable) and the Author(s) 2015 . The book is published with open access at SpringerLink.com. Open Access This book is distributed under the terms of the Creative Commons Attribution Non- commercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. All commercial rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • 2.8 Pearson Calvin
    Developing Low-Input, High-Biomass, Perennial Cropping Systems for Advanced Biofuels in the Intermountain West Calvin H. Pearson1,*, Catherine Keske2, Ron Follett3, Ardell Halvorson3, Steve Larson4, Andrew Brandess2 Abstract Lignocellulosic biomass studies are being conducted to evaluate perennial herbaceous feedstocks and to determine their field performance and adaptation potential for biomass production in the Intermountain West. Field performance of four biomass entries and four inputs are being evaluated over a long-term testing period at three western Colorado locations. Also, a native grass field trial was planted in 2011 to evaluate new crosses of basin wildrye (Leymus cinereus) x creeping wildrye (Leymus triticoides) as potential biomass resources. The Introduced Biomass Treatment, consisting of mostly alfalfa, has consistently had the highest biomass yield at the Fruita site. In the first cutting that occurred in 2012 in the native grass species study, tall wheatgrass (Thinopyrum ponticum) and intermediate wheatgrass (Thinopyrum intermedium) had high biomass yields. An easy-to-use crop budget enterprise tool has been developed to model the economic viability of the various plant species being evaluated. There is agronomic and economic potential to develop 200-300,000 acres of marginal land within a 50-mile radius of Rifle for the production of dedicated, herbaceous biomass. A pilot plant nearing completion at the Colorado Mountain College will convert the various perennial biomass grass species into butanol. In order to advance production, further refinement of the definition of marginal lands for bioenergy crops is needed. Keywords: biomass, grasses, native plants, herbaceous perennial crops, dedicated energy crops, lignocellulosic biomass, biomass budget generator Introduction Biofuels from lignocellulosic biomass have potential to provide public benefits including increased energy independence and security, foreign exchange savings, rural development, and job creation (Rajagopal et al., 2007).
    [Show full text]
  • Screening and Analysis of Differentially Expressed Genes from an Alien Addition Line of Wheat Thinopyrum Intermedium Induced by Barley Yellow Dwarf Virus Infection
    1114 Screening and analysis of differentially expressed genes from an alien addition line of wheat Thinopyrum intermedium induced by barley yellow dwarf virus infection Shu-Mei Jiang, Long Zhang, Jun Hu, Rui Shi, Guang-He Zhou, Yu-Hong Chen, Wei-Bo Yin, Richard R.-C. Wang, and Zan-Min Hu Abstract: The alien addition line TAI-27 contains a pair of chromosomes of Thinopyrum intermedium that carry resis- tance against barley yellow dwarf virus (BYDV). A subtractive library was constructed using the leaves of TAI-27, which were infected by Schizaphis graminum carrying the GAV strain of BYDV, and the control at the three-leaf stage. Nine differentially expressed genes were identified from 100 randomly picked clones and sequenced. Two of the nine clones were highly homologous with known genes. Of the remaining seven cDNA clones, five clones matched with known expressed sequence tag (EST) sequences from wheat and (or) barley whereas the other two clones were un- known. Five of the nine differentially expressed sequences (WTJ9, WTJ11, WTJ15, WTJ19, and WTJ32) were highly homologous (identities >94%) with ESTs from wheat or barley challenged with pathogens. These five sequences and another one (WTJ18) were also highly homologous (identities >86%) with abiotic stress induced ESTs in wheat or bar- ley. Reverse Northern hybridization showed that seven of the nine differentially expressed cDNA sequences hybridized with cDNA of T. intermedium infected by BYDV. Three of these also hybridized with cDNA of line 3B-2 (a parent of TAI-27) infected by BYDV. The alien chromosome in TAI-27 was microdissected. The second round linker adaptor mediated PCR products of the alien chromosomal DNA were labeled with digoxygenin and used as the probe to hy- bridize with the nine differentially expressed genes.
    [Show full text]
  • A Survey of the Elymus L. S. L. Species Complex (Triticeae, Poaceae) in Italy: Taxa and Nothotaxa, New Combinations and Identification Key
    Natural History Sciences. Atti Soc. it. Sci. nat. Museo civ. Stor. nat. Milano, 5 (2): 57-64, 2018 DOI: 10.4081/nhs.2018.392 A survey of the Elymus L. s. l. species complex (Triticeae, Poaceae) in Italy: taxa and nothotaxa, new combinations and identification key Enrico Banfi Abstract - Elymus s. l. is a critical topic on which only a little INTRODUCTION light has begun to be made regarding phylogenetic reticulation, Elymus L. s. l. is one of the most debated topic among genome evolution and consistency of genera. In Italy, Elymus s. l. officially includes ten species (nine native, one alien) and some genera within the tribe Triticeae (Poaceae), with represen- well-established and widespread hybrids generally not treated as tatives spread all over the world. It has been the subject little or nothing is known of them. In this paper fourteen species of basic studies (Löve A., 1984; Dewey, 1984) that have (with two subspecies) and six hybrids are taken into account and opened important horizons not only in the field of agroge- the following seven new combinations are proposed: Thinopyrum netic research, but also and especially on systematics and acutum (DC.) Banfi, Thinopyrum corsicum (Hack.) Banfi, Thi- taxonomy. However, the still rather coarse knowledge of nopyrum intermedium (Host) Barkworth & Dewey subsp. pouzolzii (Godr.) Banfi, Thinopyrum obtusiflorum (DC.) Banfi, Thinopyrum the genomes and the lack of a satisfactory interpretation ×duvalii (Loret) Banfi, ×Thinoelymus drucei (Stace) Banfi, ×Thi- of their role in the highly reticulate phylogeny of Triticeae noelymus mucronatus (Opiz) Banfi. Some observations are pro- for a long time discouraged taxonomists to clarify species vided for each subject and a key to species, subspecies and hybrids relationships within Elymus s.
    [Show full text]
  • Toward a Taxonomic Definition of Perennial Wheat: a New Species ×Tritipyrum Aaseae Described
    Genet Resour Crop Evol DOI 10.1007/s10722-016-0463-3 RESEARCH ARTICLE Toward a taxonomic definition of perennial wheat: a new species 3Tritipyrum aaseae described Colin Curwen-McAdams . Matthew Arterburn . Kevin Murphy . Xiwen Cai . Stephen S. Jones Received: 5 April 2016 / Accepted: 17 October 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Nearly a century has passed since the first convention based on the International Code for crosses were made between wheat (Triticum L.) and Nomenclature and describe one combination within perennial Triticeae relatives with the goal of develop- the new nothogenus 9Tritipyrum. The development of ing a perennial grain and forage crop. Numerous perennial grains has the potential to allow for new crosses of different species and genera have been agricultural systems that take advantage of the persis- attempted, and many have yielded fertile hybrids. tent nature of the crop. The taxonomic definition of Despite these successes, a definitive taxonomic treat- this new crop type will help focus research and ment of stable hybrids has never been established. breeding efforts as well as organize the literature and ‘‘Perennial wheat’’ is the term commonly used to refer facilitate collaboration. to these hybrids when the traits of interest are the perennial growth habit and grain yield, regardless of Keywords Intergeneric hybridization Á New parentage. In order to establish a consistent system in species Á Nomenclature Á Perennial wheat Á which researchers can effectively communicate and Taxonomy Á Triticum aestivum Á Thinopyrum collaborate, it is important to characterize unique ponticum Á 9Tritipyrum Á Wheatgrass combinations.
    [Show full text]
  • Mcgish Identification and Phenotypic Description of Leaf Rust and Yellow Rust Resistant Partial Amphiploids Originating from a Wheat×Thinopyrum Synthetic Hybrid Cross
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector J Appl Genetics (2016) 57:427–437 DOI 10.1007/s13353-016-0343-8 PLANT GENETICS • ORIGINAL PAPER McGISH identification and phenotypic description of leaf rust and yellow rust resistant partial amphiploids originating from a wheat×Thinopyrum synthetic hybrid cross Klaudia Kruppa1 & Edina Türkösi1 & Marianna Mayer1 & Viola Tóth1 & Gyula Vida1 & Éva Szakács1 & Márta Molnár-Láng1 Received: 18 January 2016 /Accepted: 15 February 2016 /Published online: 27 February 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract A Thinopyrum intermedium × Thinopyrum Introduction ponticum synthetic hybrid wheatgrass is an excellent source of leaf and stem rust resistanceproducedbyN.V.Tsitsin. The perennial wheatgrasses possess several favourable fea- Wheat line Mv9kr1 was crossed with this hybrid tures for wheat improvement, such as tolerance to biotic and (Agropyron glael) in Hungary in order to transfer its advanta- abiotic stresses, leading to better crop safety, yield and quality. geous agronomic traits into wheat. As the wheat parent was Intermediate wheatgrass [Thinopyrum intermedium (Host) susceptible to leaf rust, the transfer of resistance was easily Barkworth & D.R. Dewey] and tall wheatgrass [Thinopyrum recognizable in the progenies. Three different partial amphi- ponticum (Podp.) Z.-W. Liu & R.-C. Wang] are the two most ploid lines with leaf rust resistance were selected from the common introduced species. Because of the sterility of wheat/Thinopyrum hybrid derivatives by multicolour geno- wheat × Thinopyrum F1 hybrids, complete amphiploids or mic in situ hybridization. Chromosome counting on the partial more frequently partial amphiploids are the starting material amphiploids revealed 58 chromosomes (18 wheatgrass) in for successful gene transfer (Jiang et al.
    [Show full text]
  • Mapping of Powdery Mildew Resistance Gene Pmch89 in a Putative Wheat-Thinopyrum Intermedium Introgression Line
    Int. J. Mol. Sci. 2015, 16, 17231-17244; doi:10.3390/ijms160817231 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Mapping of Powdery Mildew Resistance Gene pmCH89 in a Putative Wheat-Thinopyrum intermedium Introgression Line Liyuan Hou 1, Xiaojun Zhang 2,3, Xin Li 2,3, Juqing Jia 4, Huizhen Yang 2, Haixian Zhan 2,3, Linyi Qiao 2,3, Huijuan Guo 2,3 and Zhijian Chang 2,3,* 1 College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China; E-Mail: [email protected] 2 Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China; E-Mails: [email protected] (X.Z.); [email protected] (X.L.); [email protected] (H.Y.); [email protected] (H.Z.); [email protected] (L.Q.); [email protected] (H.G.) 3 Key Laboratory for Crop Gene Resources and Germplasm Enhancement on the Loess Plateau, Ministry of Agriculture, Taiyuan 030031, Shanxi, China 4 College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi, China; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-35-1713-0805; Fax: +86-35-1713-6763. Academic Editor: Marcello Iriti Received: 1 April 2015 / Accepted: 22 July 2015 / Published: 28 July 2015 Abstract: Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a globally serious disease adversely affecting wheat production. The Bgt-resistant wheat breeding line CH09W89 was derived after backcrossing a Bgt resistant wheat-Thinopyrum intermedium partial amphiploid TAI7045 with susceptible wheat cultivars. At the seedling stage, CH09W89 exhibited immunity or high resistance to Bgt pathotypes E09, E20, E21, E23, E26, Bg1, and Bg2, similar to its donor line TAI7045 and Th.
    [Show full text]
  • Distribution and Characterization of Aegilops Cylindrica Species from Iran
    bioRxiv preprint doi: https://doi.org/10.1101/525964; this version posted January 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Distribution and characterization of Aegilops cylindrica species from Iran 2 3 Behnam Bakhshi1*, Mohammad Jaffar Aghaei2, Eissa Zarifi2, Mohammad Reza Bihamta3 and 4 Ehsan Mohseni Fard4 5 1 6 Horticulture Crops Research Department, Sistan Agricultural and Natural Resources Research and 7 Education Center, Agricultural Research, Education and Extension Organization (AREEO), Zabol, 8 Iran 9 2Seed and Plant Improvement Institute, Agricultural Research, Education and Extension 10 Organization (AREEO), Karaj, Iran 11 3Department of Plant Breeding, The University of Tehran, Karaj, Iran 12 4Department of Agronomy and Plant Breeding, University of Zanjan, Zanjan, Iran 13 14 *Corresponding author’s email: [email protected] , [email protected] 15 16 Abstract 17 Jointed goatgrass (Aegilops cylindrica Host; 2n = 4x = 28, CcCcDcDc) is a tetraploid remote relative 18 of bread wheat (Triticum aestivum L; 2n=6x=42, AABBDD) with 2 genomes and 28 chromosomes. 19 The diversity center of this species is in the Fertile Crescent and in central Asia and could also be 20 found in many places in Iran. In this experiment, 359 accessions provided by National Plant Gene 21 Bank of Iran (NPGBI) were used. Based on the geographical distribution, the highest distribution of 22 Ae. cylindrica are from North, West and North West regions of Iran.
    [Show full text]