Boiler Explosion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The River Steam Boat: a Ticking Time Bomb out of the Experience of The
The River Steam Boat: A Ticking Time Bomb Out of the experience of the early years of the river steam boat, there emerged two architectures of steam-engine design and building. The first and for some years the predominant one was that provided by Boulton and Watt, with their low-pressure condensing steam engine. This was the architecture followed by Robert Fulton with his early success on the Hudson estuary. However, it was less than a decade after Fulton’s successful trip up the Hudson that steam engines based on designs using high pressure steam began to evolve. The result was largely to reshape the pattern of steamboat design and virtually eliminate the earlier low-pressure practices of Fulton, Boulton and Watt. The development of the high-pressure steam engine with its attendant steam boiler was governed almost entirely by practical considerations. The advantages of the simple, compact, low-cost high pressure engine over the low-pressure engine with its complicated condensing apparatus, greater size and weight, and heavy requirements of condensing water were clearly apparent and appropriate to American conditions. These conditions were (1) scarcity of capital and skilled labor, (2) scarcity of repair facilities and (3) limited scale of operation. All of these conditions, at one time or another, contributed to the fateful disasters that followed. Although explosions were by no means confined to boilers generating steam at high pressure, it was with this class of boiler that this type of operating hazard appeared in its most destructive and spectacular form. Every high-pressure boiler was in operation a storehouse of concentrated energy in the form of water and steam at high temperature confined under pressures ranging from 30 to 150 psi [i.e., pounds per square inch] and upward. -
Accident Investigation Reports Under the Locomotive Inspection Act of February 17, 1911, As Amended
INTERSTATE COMMERCE COMMISSION REPORT NO. 3309 IN THE MATTER OF MAKING- ACCIDENT INVESTIGATION REPORTS UNDER THE LOCOMOTIVE INSPECTION ACT OF FEBRUARY 17, 1911, AS AMENDED ATLANTIC COAST LINE RAILROAD March 27, 1950 Accident (boiler explosion) near Tarboro, N. C., on February 24, 1950, caused by overheating of the crown sheet due to low water. REPORT OF THE COMMISSION PATTERSON, Commissioner: On February 24, 1950, about 6:09 p.m., near Tarboro, N. C., the boiler of Atlantic Coast Line Railroad locomotive 411 ex ploded while the locomotive was hauling a freight train at an estimated speed of 20 miles per hour. The engineer, fireman and brakeman were killed. Under authority of section 17 (2) of the Interstate Commerce Act the above-entitled proceeding was referred by the Commission to Commissioner Patterson for consideration and disposition. - 1 - DESCRIPTION OF ACCIDENT Atlantic Coast Line Railroad locomotive 411 departed from South Rocky Mount, N. C, February 24, 1950, at 9r30 a.m., on local freight run known as the Williamston Turn. The run to Vjilliamston, N= C. , a distance of 47 miles, was made without any known unusual incident and the locomotive departed at 3:50 p.m., hauling southbound extra freight train No 411 en route to South Rocky Mount. The train departed from Tarboro, N. C., at 5.57 p.m. and, at about 6:09 p0me, when about 2 miles south of Tarboro, approximately 33 miles from Williams- ton, the boiler of the locomotive exploded iijhile the train was running at an estimated speed of 20 miles per hour. The en gineer, fireman, and brakeman were killed. -
Competitive Tendering of Rail Services EUROPEAN CONFERENCE of MINISTERS of TRANSPORT (ECMT)
Competitive EUROPEAN CONFERENCE OF MINISTERS OF TRANSPORT Tendering of Rail Competitive tendering Services provides a way to introduce Competitive competition to railways whilst preserving an integrated network of services. It has been used for freight Tendering railways in some countries but is particularly attractive for passenger networks when subsidised services make competition of Rail between trains serving the same routes difficult or impossible to organise. Services Governments promote competition in railways to Competitive Tendering reduce costs, not least to the tax payer, and to improve levels of service to customers. Concessions are also designed to bring much needed private capital into the rail industry. The success of competitive tendering in achieving these outcomes depends critically on the way risks are assigned between the government and private train operators. It also depends on the transparency and durability of the regulatory framework established to protect both the public interest and the interests of concession holders, and on the incentives created by franchise agreements. This report examines experience to date from around the world in competitively tendering rail services. It seeks to draw lessons for effective design of concessions and regulation from both of the successful and less successful cases examined. The work RailServices is based on detailed examinations by leading experts of the experience of passenger rail concessions in the United Kingdom, Australia, Germany, Sweden and the Netherlands. It also -
Gently Down the Stream: How Exploding Steamboat Boilers in the 19Th Century Ignited Federal Public Welfare Regulation [REDACTED VERSION]
Gently Down the Stream: How Exploding Steamboat Boilers in the 19th Century Ignited Federal Public Welfare Regulation [REDACTED VERSION] The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Gently Down the Stream: How Exploding Steamboat Boilers in the 19th Century Ignited Federal Public Welfare Regulation [REDACTED VERSION] (2002 Third Year Paper) Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:10018995 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Gently Down the Stream: How Exploding Steamboat Boilers in the 19th Century Ignited Federal Public Welfare Regulation REDACTED VERSION Gregory P. Sandukas Harvard Law School Class of 2002 Third Year Paper April 30, 2002 1 Abstract. Boiler explosions plagued the steamboat industry during the early years of its existence (1816-1852), costing thousands of lives and prompting the federal government to enact private welfare regulation for the first time. Congress faced many challenges in this task, including opposition from steamboat owners, disagreement as to the causes of explo- sions and how best to prevent them, and, most seriously, concerns about its authority to interfere with private property rights and the extent of its constitutional power to regulate commerce. Despite these obstacles, Congress succeeded in enacting two groundbreaking pieces of legislation—one in 1838 and the other in 1852—that tackled the steamboat issue head-on. -
Rocky Mountain Express
ROCKY MOUNTAIN EXPRESS TEACHER’S GUIDE TABLE OF CONTENTS 3 A POSTCARD TO THE EDUCATOR 4 CHAPTER 1 ALL ABOARD! THE FILM 5 CHAPTER 2 THE NORTH AMERICAN DREAM REFLECTIONS ON THE RIBBON OF STEEL (CANADA AND U.S.A.) X CHAPTER 3 A RAILWAY JOURNEY EVOLUTION OF RAIL TRANSPORT X CHAPTER 4 THE LITTLE ENGINE THAT COULD THE MECHANICS OF THE RAILWAY AND TRAIN X CHAPTER 5 TALES, TRAGEDIES, AND TRIUMPHS THE RAILWAY AND ITS ENVIRONMENTAL CHALLENGES X CHAPTER 6 DO THE CHOO-CHOO A TRAIL OF INFLUENCE AND INSPIRATION X CHAPTER 7 ALONG THE RAILROAD TRACKS ACTIVITIES FOR THE TRAIN-MINDED 2 A POSTCARD TO THE EDUCATOR 1. Dear Educator, Welcome to our Teacher’s Guide, which has been prepared to help educators integrate the IMAX® motion picture ROCKY MOUNTAIN EXPRESS into school curriculums. We designed the guide in a manner that is accessible and flexible to any school educator. Feel free to work through the material in a linear fashion or in any order you find appropriate. Or concentrate on a particular chapter or activity based on your needs as a teacher. At the end of the guide, we have included activities that embrace a wide range of topics that can be developed and adapted to different class settings. The material, which is targeted at upper elementary grades, provides students the opportunity to explore, to think, to express, to interact, to appreciate, and to create. Happy discovery and bon voyage! Yours faithfully, Pietro L. Serapiglia Producer, Rocky Mountain Express 2. Moraine Lake and the Valley of the Ten Peaks, Banff National Park, Alberta 3 The Film The giant screen motion picture Rocky Mountain Express, shot with authentic 15/70 negative which guarantees astounding image fidelity, is produced and distributed by the Stephen Low Company for exhibition in IMAX® theaters and other giant screen theaters. -
Railway Investigation Report R06v0136 Runaway
RAILWAY INVESTIGATION REPORT R06V0136 RUNAWAY/DERAILMENT CANADIAN NATIONAL FREIGHT TRAIN L-567-51-29 MILE 184.8, LILLOOET SUBDIVISION NEAR LILLOOET, BRITISH COLUMBIA 29 JUNE 2006 The Transportation Safety Board of Canada (TSB) investigated this occurrence for the purpose of advancing transportation safety. It is not the function of the Board to assign fault or determine civil or criminal liability. Railway Investigation Report Runaway/Derailment Canadian National Freight Train L-567-51-29 Mile 184.8, Lillooet Subdivision Near Lillooet, British Columbia 29 June 2006 Report Number R06V0136 Synopsis On 29 June 2006, at about 1650 Pacific daylight time, Canadian National freight train L-567-51-29, travelling southward on the Lillooet Subdivision, derailed a locomotive and a loaded car of lumber after losing control while descending the grade near Lillooet, British Columbia. The lumber car came to rest at Mile 184.8 approximately 1000 feet below the right-of-way. The locomotive came to rest at Mile 182.5, approximately 800 feet below the right-of-way. Two of the three crew members sustained fatal injuries. The third crew member was taken to hospital with serious injuries. Ce rapport est également disponible en français. © Minister of Public Works and Government Services Canada 2009 Cat. No. TU3-6/06-2E ISBN 978-1-100-12770-5 TABLE OF CONTENTS 1.0 Factual Information .......................................................................... 1 1.1 The Accident................................................................................................................. -
Bursting Boilers and the Federal Power Redux: the Evolution of Safety on the Western Rivers Richard N
University of Connecticut OpenCommons@UConn Economics Working Papers Department of Economics May 1994 Bursting Boilers and the Federal Power Redux: The Evolution of Safety on the Western Rivers Richard N. Langlois University of Connecticut David J. Denault Samson M. Kimenyi University of Connecticut Follow this and additional works at: https://opencommons.uconn.edu/econ_wpapers Recommended Citation Langlois, Richard N.; Denault, David J.; and Kimenyi, Samson M., "Bursting Boilers and the Federal Power Redux: The vE olution of Safety on the Western Rivers" (1994). Economics Working Papers. 199401. https://opencommons.uconn.edu/econ_wpapers/199401 Department of Economics Working Paper Series Bursting Boilers and the Federal Power Redux The Evolution of Safety on the Western Rivers Richard N. Langlois University of Connecticut David J. Denault University of Macedonia Samson M. Kimenyi University of Connecticut Working Paper 1994-01 May 1994 341 Mansfield Road, Unit 1063 Storrs, CT 06269–1063 Phone: (860) 486–3022 Fax: (860) 486–4463 http://www.econ.uconn.edu/ Abstract Using newly constructed data series on explosions, deaths, and steamboat traf- fic, we examine econometrically the causes of increased safety in steamboat boil- ers in the nineteenth century. Although the law of 1852 (but not that of 1838) did have a dramatic initial effect in reducing explosions, that reduction came against the background not of a system out of control but of a system that from the begin- ning was steadily increasing boiler safety per person- mile. The role of the federal government in conducting and disseminating basic research on boiler technology may have been more significant for increased safety than its explicit regulatory efforts. -
Evans Patent Safety Guard and the Failure of Scientific Technology in the Steam Boat Inspection Service, 1830-1862
ABSTRACT Title of Document: THE PRACTICAL ENGINEERS’ REBELLION: EVANS PATENT SAFETY GUARD AND THE FAILURE OF SCIENTIFIC TECHNOLOGY IN THE STEAM BOAT INSPECTION SERVICE, 1830-1862 John A. Bernhardt III, Master of Arts, 2008 Directed By: Dr. Robert Friedel, Professor, History Department The U.S. Congress’s initiative to solve the problem of steamboat boiler explosions in the mid-nineteenth century resulted in the Steamboat Act of 1852. The Act brought radical changes to the western rivers, including reform of the engineering cadre, introduction of new safety devices and procedures, and the creation of a new bureaucracy (the Steam Boat Inspection Service). One of the new safety devices introduced by the Treasury Department was the controversial Evans Patent Safety Guard. This is the story of the safety guard as a central actor in framing the expertise of scientists, inventors, and practical engineers in attempting to make technology safe. The case study of the safety guard helps us to understand where expertise came from, how that expertise was defined and justified by government officials and inspectors, and why the notion of technological expertise depends on a complex mix of technical, institutional, and socioeconomic factors. THE PRACTICAL ENGINEERS’ REBELLION: EVANS PATENT SAFETY GUARD AND THE FAILURE OF SCIENTIFIC TECHNOLOGY IN THE STEAM BOAT INSPECTION SERVICE, 1830-1862. By John Anthony Bernhardt III Thesis submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Master of Arts 2008 Advisory Committee: Professor Robert F. Friedel, Chair Professor David B. -
The Economics of Railroad Safety
The Economics of Railroad Safety This manuscript was published by Kluwer Academic Publishers in 1998. It was originally prepared using WordPerfect and Lotus 1-2-3 software. In 2014, the manuscript files were converted into the latest version of Microsoft Word. The font was enlarged (to Times New Roman 12 point from CG Times 10 point) and the margins were made narrower, but otherwise the text is unaltered. The Economics of Railroad Safety by Ian Savage Department of Economics and the Transportation Center Northwestern University Kluwer Academic Publishers Boston/Dordrecht/London In Memory of my Grandmother Madge Lucy Grinyer 1911-1996 CONTENTS Abbreviations ix Preface xi Acknowledgements xiii 1 Setting the Scene 1 2 Historical Trends 11 3 Public Policy 19 4 How Safe are American Railroads? 27 5 Risk Evaluation 31 6 The Story So Far 41 7 Economic Theory of Bilateral Accidents 45 8 Highway Grade Crossings 57 9 Trespassers 71 10 Occupational Injuries 77 11 Benchmark Levels of Operational Safety 91 12 Market Power 97 13 Imperfect Information 103 14 Customer Rationality 111 viii Ian Savage 15 Railroad Myopia 113 16 Externalities 121 17 Non-Regulatory Responses 129 18 Federal Safety Regulations 137 19 Evaluation of Regulations 147 20 A New Era for Safety Regulation 163 21 The Way Forward 193 Appendix A Federal Regulations 207 Appendix B Historical Data 215 References 217 Subject Index 229 ABBREVIATIONS AAR Association of American Railroads ASLRRA American Short Line and Regional Railroad Association CFR Code of Federal Regulations DOT United -
The Locomotive
She Joromotitic. PUBLISHED BY THE NEW SERIES. Vol. IV. HARTFORD, CONN 18 83 She l0C0m0tte. PUBLISHED BY THE HARTFORD STEAM BOILER INSPECTION AND INSURANCE COMPANY. New Series—Vol. IV. HARTFORD, CONK, JANUARY, 1883. No. 1. Upright Boiler for Heating Water. The boiler which we illustrate below is not for generating steam, but for heating water. It was designed by Mr. J. M. Allen, for the purpose of supplying hot water to EAONT ELEVATION SECTION laundry, bath-rooms, and wash-bowls, in a large public institution. It is made of ^ inch iron, riveted up in the same manner as an ordinal^ vertical boiler. It sets upon a brick or cast iron base, in which is the ash pit. The grate is of the ordinary hot air furnace 78606 — THE LOCOMOTIVE. [January, pattern, and can be easily shaken or " dumped." The furnace is small, as compared with the size of the boiler, being only 18 inches in diameter. The boiler is 36 inches diameter. This gives water legs, or water safes of about 9 inches. The door frame and mouth are flanged on to the boiler shell and furnace sheets. The smoke pipe or " out-take " is smaller, but attached in the same way. This hot water boiler can be set up anywhere, near a chimney. A common sheet iron stove pipe being all that is neces- sary to connect it with the chimney. It has three hand-holes, just above the bottom head for facility of cleaning. There is a man-hole on top, also a safety valve, and supply and PLAN SECTION ON a.h feed pipes. -
Steamboilerexplo00th
UNIVERSITY OF CALIFORNIA ANDREW SMITH HALLIDIE: The Publishers and the Author will be grateful to will call ar.y of the readers of this volume who kindly their attention to any errors of omission or of commis- sion that they may find therein. It is intended to make our publications standard works of study and reference, and, to that end, the greatest accuracy is sought. It rarely happens that the early editions of works of any of the size are free from errors ; but it is the endeavor Publishers to have them removed immediately upon being discovered, and it is therefore desired that the Author may be aided in his task of revision, from time to time, by the kindly criticism of his readers. JOHN WILEY & SO^S. 43 & 45 EAST NINETEENTH STREET. STEAM-BOILER EXPLOSIONS IN THEORY AND IN PRACTICE. BY R. H. THURSTON, LL.D., DR. ENG'G, DIRECTOR OF SIBLEY COLLEGE, CORNELL UNIVERSITY; OFFICIER DE L'lNSTRUCTION PUBLIQUE DE FRANCE; PAST PRESIDENT AM. SOC. MECH. ENG*RS J FORMERLY OF U. S. N. ENGINEERS ; AUTHOR OF A HISTORY OF THE STEAM-EN- GINE, A MANUAL OF THE STEAM-ENGINE, A MANUAL OF STEAM-BOILERS, ETC., ETC., ETC. 1 ^THE XUustratefc. .3!' ; ^o;s\\K THIRD EDITION. SECOND THOUSAND. NEW YORK: JOHN WILEY & SONS. LONDON: CHAPMAN & HALL, LIMITED. 1903. COPYRIGHT, 1887, 1903, BY ROBERT H. THURSTON. PREFACE. THIS little treatise on Steam-Boiler Explosions had its origin in the following circumstances : In the year 1872 the Author received from the Secretary of the Treasury of the United States a communication in which he was requested to prepare, for the use of the Treasury Department, a report on the causes and the con- ditions leading to the explosions of steam-boilers, and began the preparation of such a report, in which he pro- posed to incorporate the facts to be here presented. -
Guidance on the Railways (Accident Investigation and Reporting) Regulations 2005
Guidance on the Railways (Accident Investigation and Reporting) Regulations 2005 Version 4.0 August 2015 Page 1 of 114 Guidance on the Railways (Accident Investigation and Reporting) Regulations 2005 Contents Introduction 3 The Regulations 5 Accident Investigation 6 Summary of the main duties imposed by the Regulations 7 Where the Regulations Apply 9 Regulation 1: Citation and Commencement 11 Regulation 2: Interpretation 12 Regulation 3: Accidents and incidents excluded from the application of Part 1 of the Railways and Transport Safety Act 2003 20 Regulation 4: Duty to notify the Rail Accident Investigation Branch of accidents and incidents 23 Regulation 5: Conduct of Investigations by the Rail Accident Investigation Branch 32 Regulation 6: Persons conducting, participating in or assisting with an investigation by the Rail Accident Investigation Branch 37 Regulation 7: Access to the site of an accident or incident 40 Regulation 8: Preservation of evidence 43 Regulation 9: Use of evidence 46 Regulation 10: Disclosure of evidence 51 Regulation 11: Reports etc. of accidents and incidents investigated by the Rail Accident Investigation Branch 58 Regulation 12: Recommendations of the Rail Accident Investigation Branch 60 Regulation 13: Duty of the Rail Accident Investigation Branch to consider representations 63 Regulation 14: Annual report of the Chief Inspector 65 Regulation 15: Miscellaneous functions 66 Regulation 16: Offences 68 Regulation 17: Scotland 69 Schedule 1: Types of accidents and incidents other than any occurring within the Channel Tunnel System which must be notified to RAIB immediately and by the quickest means available. 71 Schedule 2: Accidents and Incidents other than any occurring within the Channel Tunnel System which must be notified to RAIB as soon as reasonably practicable and in any event within 3 working days of occurrence.