The Light Source Guide

Total Page:16

File Type:pdf, Size:1020Kb

The Light Source Guide LIA Members only. For use by THE LIGHT SOURCE GUIDE. LIA Copyright © 2017. All information stated within this brochure is correct at time of publication – Jan 2017. www.thelia.org.uk CONTENTS INTRODUCTION LEGISLATION LIGHT LAMP HISTORY LAMPS INCANDESCENT LIGHT EMITTING DIODES (LEDS) FLUORESCENT LAMPS HIGH INTENSITY DISCHARGE INDUCTION LAMPS NEW AND UNUSUAL LAMP TECHNOLOGIES LAMPS AND THE ENVIRONMENT FAQS GLOSSARY 2 www.thelia.org.uk INTRODUCTION The Lighting Industry Association (LIA) is a trade association representing UK manufacturers and importers of lighting equipment. LIA members design, manufacture and sell electric lamps,luminaires, lamp-holders, low-voltage lighting, emergency lighting, road lighting, control gear and equipment associated with lighting, throughout the European Union (EU) and worldwide. Most lamp types associated with general lighting within and around buildings can be used in various applications. Consequently, this guide focuses more on how the lighting is generated and not by end usage, although typical applications are given. The Light Source Guide aims to provide an introduction to the key lamp types available, with the objective of providing as much information as possible for the reader, whether they are new to lighting or even an experienced engineer or designer. Detailed information about individual lamps is available from lamp manufacturer members of the Lighting Industry Association. With the global concern over carbon emissions and global warming, the key driving factor in the development and use of light sources is Energy Efficiency. Energy efficient technology is seen to play an important role in the future approach to energy both in the short and medium to long term. According to the European Commission by 2010 about 180 million tonnes of CO2, the equivalent annual output of around 50 power stations, could be prevented by the use of energy-efficient products and appliances alone in Europe -around half of the EU’s commitment under Kyoto. More than 50% of all lamp technologies installed in Europe are still not the most energy efficient; as such the potential for improvements and savings (of energy, costs and CO2 emissions) for Europe are significant. 3 www.thelia.org.uk LEGISLATION Lighting is affected by a wide range of regulations and legislation that have been set by the European Union (EU) and the United Kingdom (UK). A large proportion of UK legislation has been created by over- arching EU Directives and Regulations, some of which may have their origins in International agreements. This guide looks at the legislation that most directly applies to lamps. These rules and regulations relate largely to environmental issues including energy use, waste and recycling, hazardous substances and labelling. In addition electrical safety, optical hazards and electromagnetic interference are also covered. The legislation landscape affecting products is constantly being updated, revised and recast in order to maintain both consistency of intent and relevance to advances in technology. As a result this guide seeks to point the reader towards the relevant documents and references rather than provide a detailed explanation of each. It is the responsibility of all manufacturers, suppliers, importers and distributors to familiarise themselves with the detailed obligations they are obliged to meet under any relevant legislation. The lighting industry and the LIA, as a representative body, are committed to the development and introduction of quality lighting products that meet all relevant national and international legislation. Definition For the purposes of this guide a lamp is any product that can be fitted to a recognised standard lamp socket and includes those with integrated electronics. Background information and summary of relevant legislation It is estimated that lighting consumes about 18% of the electricity generated in the UK. As a result there is considerable emphasis placed on encouraging the use of more efficient lighting products as well as better control of its use within commercial and domestic applications. However, the importance of light in terms of well-being, and other human factors, means that any efficiency gains must not be at the expense of the quality of light delivered. Lamps directly affect the performance and characteristics of lighting and, as such, are covered specifically by a number of rules and regulations. These can be considered under a number of distinct subject headings: • Energy and CO2 emissions reduction • Health • Safety & EMC • Environmental issues There is a degree of overlap between some of these headings and the guide will highlight any legislation that covers more than one of these headings. 4 www.thelia.org.uk Energy and CO2 emissions reduction Much of the recent legislation that is relevant to lighting is concerned with the reduction of energy use linked to the lowering of CO2 emissions. Initially the focus has been on ensuring products are as efficient as technically and practically possible, although there is now some recognition that controlling the use of energy consuming products is also important. Legislation covers both the energy performance of the various products and how the public is informed about the performance through labelling and required technical descriptions. The most relevant directives, regulations and implementing measures directly affecting lamps are: • The EcoDesign Framework Directive – 2009/125/EC • Commission Regulations (or ‘implementing measures’ within 2009/125/EC) - EU 1194/2012 – Directional lamps, LEDs and related equipment - EC 245/2009 (as amended by EU 347/2010) – Fluorescent lamps, HIDs, and ballasts and luminaires able to operate such lamps - EC 244/2009 – Non-directional household lamps. (As amended by EC 859/2009 concerning the UV radiation of non-directional lamps) - The Energy Labelling Directive – 2012/30/EU; as supplemented by Commission Delegated Regulation (EU) No. 874/2012 - EU 2015/1428 amending 244/2009, 245/2009 & 1194/2012. Summary information and tables are included in this guide, particularly where clarification or explanation is required. Health LightingEurope have produced the following guides that cover the current EU Directives and Regulations that refer to all the relevant aspects of photobiology, light and health: • Human Centric Lighting: Beyond Energy Efficiency – LightingEurope, July 2013; • Photobiological Safety in Lighting Products for use in Working Places – LightingEurope, February 2013 Safety & EMC Lighting is also affected by wider legislation concerning safety, particularly that which refers to electrical products. The development of ‘low energy replacement lamps’, initially using fluorescent and now solid state (LED) technology has introduced electrical and electronic components into main stream lamps. The most relevant measures are: • Low Voltage Directive – 2014/35/EU • EMC Directive – 2014/30/EU • Radio Equipment Directive (RED) – 2014/53/EU The LVD largely focusses on the electrical safety of products, while the EMC Directive addresses the issues of electromagnetic interference potentially occurring between electronic devices. The RED covers any product which uses radio communication (wifi, Bluetooth etc) and includes requirements for LVD and EMCD. All products covered by the scope of these Directives must have supporting documentation to demonstrate their compatibility. Meeting these criteria is also mandatory under the CE marking scheme. 5 www.thelia.org.uk Environmental issues The manufacture of lighting and electronic products involves the use of a wide range of materials and substances, some of which are now controlled by legislation concerning the use of hazardous substances. In addition there is legislation covering the treatment of ‘end of life’ products which has an impact on the lighting industry, both in terms of the disposal of lamps and luminaires. The most relevant measures are: • Waste Electrical and Electronic Equipment (WEEE) Directive 2012/19/EU • Restriction of Hazardous Substances (RoHS) Directive 2011/65/EU Both of these directives are covered by UK Statutory Instruments – The Waste Electrical and Electronic Equipment Regulations 2013 and The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012. CE Marking Virtually all products made in, or entering, the European Union market, are required to be CE Marked under the CE Marking Directive 93/68/EEC. The CE mark is the manufacturer’s self declaration that any given product conforms to all the relevant EU Directives applicable to its manufacture and function. All lamps are subject to at least one of the Directives identified above and must, therefore, be CE marked. As a result for each lamp it is required that its manufacturer holds a Declaration of Conformity and a Technical File that demonstrates compliance with all the relevant directives and the applicable harmonised standards. Commentary and clarification All of the EU Directives, Commission Regulations and UK Statutory Instruments mentioned above are readily available as free downloads from the relevant EU and UK Government websites. In the following section the guide provides additional information and clarification of key parts of the legislation directly affecting lamps. The EcoDesign Framework Directive for Energy Related Products – 2009/125/EC The EcoDesign Directive covers a wide range of energy using and related products including lighting. Its intention is to force the phase-out of products
Recommended publications
  • Technology Brief: Light Emitting Plasma
    Energy Research & Development presents… Technology Brief: Light Emitting Plasma December 21, 2011 Report # ET11SMUD1018 Introduction • Emitter: the plasma lamp is housed within an aluminum By now, I’m certain most people in the lighting industry assembly specifically designed are familiar with LEDs – especially for outdoor lighting. to concentrate radio frequency But have you heard of Light Emitting Plasma? SMUD energy within the lamp. has been working with LUXIM Lighting and our customers to test this cutting edge technology. • Radio frequency (RF) Source: Luxim driver: connected to the Light Emitting Plasma (LEP) is a very intense, energy emitter via a coax cable and produces the efficient, white light source that could be used in a radio frequency energy needed to ignite and variety of outdoor lighting applications. operate the plasma lamp. What is Light Emitting Plasma? • AC/ DC power supply: converts incoming line voltage to DC and supplies power to the radio The Light Emitting Plasma system consists of the frequency driver. components listed below. These components are housed within a light fixture (a.k.a. luminaire). The Potential Benefits of Light Emitting Plasma luminaire also includes an optical assembly to distribute the light produced by the lamp. Light Emitting Plasma offers the following advantages over conventional high intensity discharge lamps: • Better reliability: conventional metal halide lamps require electrodes within the arc tube. These electrodes are usually made of tungsten and require a mechanical seal - which can lead to premature lamp failure. As the tungsten degrades, it darkens the walls of the lamp and reduces the light output. • Rapid start: 45 seconds to reach 80% of full brightness LEP System Components Source: LUXIM • Faster re-strike: when the power is turned off to high • Lamp: consists of a very small intensity discharge lamps Source: LUXIM quartz tube (3/4” long), which (e.g.
    [Show full text]
  • PLS(Plasma Lighting System)
    Outdoor Floodlight, Indoor Light, Light Pipe, Image Pole can be applied for each usage. PLS Products Plasma Lighting System Flood Lighting PSF 1032A Indoor Lighting PSH 0731B Another natural light, the PLS The ideal lamp for the next generation, the PLS, with LG digital technology giving you a supreme lighting environment. P l a s m a L i g h t i n g S y s t e m Providing light from a non-electrode plasma lamp, the PLS! Almost like sunlight, with the full spectrum of natural white light, good for eyesight preservation without fluorescent substances, and comfortable and eco-friendly in any location with minimized Ultraviolet and Infrared radiation. Enjoy the finest natural lighting with the PLS. Why choose the PLS? Plasma Lighting System More Natural, More More Environmentally-Friendly Light Source Another Sun! The artificial light that can imitate sunlight the best provides the most pleasant lighting. Long lasting! Non-electrode technology makes it possible to preserve the light's initial brightness, for a longer product lifetime. High efficiency! Reduction in energy consumption and cost, with high luminous flux and lumen maintenance Optimal for Human Visual Sensitivity! Helps improve recognition of contrast and motion in the dark Eco-friendly! Contains no mercury, for a better environment and your better health PLS is... The PLS (Plasma Lighting System) is a new concept of lighting utilizing the principle of plasma light emission through microwaves. Its core aim is to provide a lighting sensation worldwide, using the new and different technology of the light source. LG Electronics have successfully paved the way to the commercialization of this PLS through their previous accomplishments with microwave-applied technology and persistent research.
    [Show full text]
  • A High-Power Source of Optical Radiation with Microwave Excitation
    ISBN: 978-84-9048-719-8 DOI: http://dx.doi.org/10.4995/Ampere2019.2019.9761 A HIGH-POWER SOURCE OF OPTICAL RADIATION WITH MICROWAVE EXCITATION G. Churyumov1, 2, A. Denisov1, T. Frolova2, N. Wang1, J. Qiu1 11Harbin Institute of Technology, 92, West Dazhi Street, Nan Gang District, Harbin, China 2 Kharkiv National University of Radio Electronics, 14, Nauky Ave., 61166, Kharkiv, Ukraine [email protected] Keywords: microwave heating, magnetron, electrodeless sulfur lamp, plasma, microwave excitation 1. Introduction For more than 50 years, interest to the microwave heating technology has not weakened. In addition to the traditional areas of its application, which described in detail in [1], recently there has been an expansion of technological possibilities for the use of microwave energy associated with the impact of electromagnetic waves of the microwave range on various materials (sintering of metal and ceramic powders) and media, including plasma [2]. One such new direction is the creation of high-power and environmentally friendly sources of optical radiation on the basis of the electrodeless sulfur lamp with microwave excitation [2, 3]. As it is known, Michael Ury and his associates at Fusion Systems invented this radically new lamp in 1990, but the lamp was not ideal because of the complexity of its design [4]. Therefore, it was not put into production. However, every year the scientific interest was growing. An analysis of scientific publications shows that every 5 years a new country is joined to this issue. Now more than in 10 countries of all would including USA, Great Britain, South Korea, Netherlands, Germany, Russia, and so on where there are research teams that are carried out an investigation concerning the electrodeless lamps with microwave excitation.
    [Show full text]
  • Energy Efficient Landscape Lighting
    energy efficient landscape lighting OPTIONS FOR COMMERCIAL & RESIDENTIAL SITES June 2008. Casey Gates energy efficient landscape lighting OPTIONS FOR COMMERCIAL & RESIDENTIAL SITES June 2008. A Senior Project Presented to the Faculty of the Landscape Architecture Department University of California, Davis in Partial Fulfillment of the Requirement for the Degree of Bachelors of Science of Landscape Architecture Accepted and Approved by: __________________________ Faculty Committee Member, Byron McCulley _____________________________ Committee Member, Bart van der Zeeuw _____________________________ Committee Member, Jocelyn Brodeur _____________________________ Faculty Senior Project Advisor, Rob Thayer Casey Gates Acknowledgements THANK YOU Committee Members: Byron McCulley, Jocelyn Brodeur, Bart Van der zeeuw, Rob Thayer Thank you for guiding me through this process. You were so helpful in making sense of my ideas and putting it all together. You are great mentors. Family: Mom, Dad, Kelley, Rusty You inspire me every day. One of my LDA projects 2007 One of my LDA projects 2007, Walker Hall The family Acknowledgements Abstract ENERGY EFFICIENT LANDSCAPE LIGHTING IN COMMERCIAL AND LARGE SCALE RESIDENTIAL SITES Summary Landscape lighting in commercial and large scale residential sites is an important component to the landscape architecture industry. It is a concept that is not commonly covered in university courses but has a significant impact on the success of a site. This project examines the concepts of landscape lighting and suggests ideas to improve design standards while maintaining energy efficiency. This project will discuss methods and ideas of landscape lighting to improve energy efficiency. Designers should know lighting techniques and their energy efficient alternatives. This project demonstrates how design does not have to be compromised for the sake of energy efficiency.
    [Show full text]
  • Compact Fluorescent Lighting in America: Lessons Learned on the Way to Market
    Compact Fluorescent Lighting in America: Lessons Learned on the Way to Market Prepared by Pacific Northwest National Laboratory for U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Building Technologies Program June 2006 PNNL-15730 Compact Fluorescent Lighting in America: Lessons Learned on the Way to Market LJ Sandahl TL Gilbride MR Ledbetter HE Steward C Calwell(a) June, 2006 Prepared for The U.S. Department of Energy Under Contract DE-AC05-76RLO 1830 Pacific Northwest National Laboratory Richland, Washington 99352 _________________ (a)Ecos Consulting DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O.
    [Show full text]
  • Compact Fluorescent Light Bulbs Vs
    Florida 4-H Youth Manual SENIORS Consumer Choices 2008 The 2008 Teaching Guides and Youth Pieces were prepared by Selena Garrison, Graduate Assistant and Michael Gutter, Assistant Professor, with editing, layout and design by Jessica Kochert and Joy Jordan, Department of Family, Youth and Community Sciences, IFAS, University of Florida. Content reviewers for this document included Linda Bobroff, Hyun-Jeong Lee, Dale Pracht, Department of Family, Youth and Community Sciences, IFAS, University of Florida. COOPERATIVE EXTENSION SERVICE, UNIVERSITY OF FLORIDA, INSTITUTE OF FOOD AND AGRICULTURAL SCIENCES, Larry R. Arrington, Director, in cooperation with the United States Department of Agriculture, publishes this information to further the purpose of the May 8 and June 30, 1914 Acts of Congress; and is authorized to provide research, educational information, and other services only to individuals and institutions that function with non- discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions, or affiliations. Single copies of extension publications (excluding 4-H and youth publications) are available free to Florida residents from county extension offices. Additional information and copies are available at the 4-H curriculum website: http://florida4h.org. Original publication date September 2007. Consumer Choices: Energy Bars Introduction and Background Have you or your friends ever eaten an energy bar? If so, did it make you feel more energetic? Grocery stores, health food stores, and even vending machines market a variety of energy bars as quick snacks, meal replacements, or workout supplements. Their claim is that eating one bar will increase your level of energy.
    [Show full text]
  • Lifetime and Reliability of Polymer Solar Cells A
    LIFETIME AND RELIABILITY OF POLYMER SOLAR CELLS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Craig Homer Peters November 2011 © 2011 by Craig H Peters. All Rights Reserved. Re-distributed by Stanford University under license with the author. This dissertation is online at: http://purl.stanford.edu/fs540ky3123 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Michael McGehee, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Reinhold Dauskardt I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Alan Sellinger Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract The power conversion efficiency of organic photovoltaic (OPV) cells has increased from 4-5% in 2005 to 8.3% in 2010. The goal of a 10% single junction OPV device seems attainable making the commercialization of OPV more realistic.
    [Show full text]
  • USB Plasma Ball Instruction Manual
    English USB Plasma Ball Instruction Manual Features Small plasma ball for your desk Electric discharge creates an amazing optical spectacle Power supply via USB cable (included) or 5 V DC adaptor (not included) Reacts to touches on the glass Visible rays of light come together where the glass ball is touched On/Off switch Included in the delivery Plasma ball USB cable (length: 0.95 m) Instruction manual How to get started 1. Remove the USB Plasma Ball from the packaging. 2. Position the USB Plasma Ball on a flat, solid surface. 3. Connect the USB cable with a free USB port on your computer. 4. Switch on the USB Plasma Ball. 5. Touch the glass ball with your hand or a conducting metal item e.g. a metal spoon. The rays of light come together where the glass ball is touched. 6. Make a noise (e.g. clap, sing or shout) and watch the spectacle inside the USB Plasma Ball as flashes of light are created to the sound. 7. If not being used, switch off the USB Plasma Ball. 1 English USB Plasma Ball Instruction Manual Additional information about the Plasma Ball The Plasma Ball or Plasma Lamp goes back to an invention by the physicist and electrical engineer Nikola Tesla in 1904. He called this invention an inert gas discharge tube. The Plasma Ball as we know it today is often demonstrated in school, universities or museums. It is found as a decorative accessory in many homes, too. However, it still functions in the same manner as Tesla’s discharge tube.
    [Show full text]
  • How Do Plasma Lamps Work
    Out of the Wood BY MIKE WOOD How do Plasma lamps work? I HAD SUCH A POSITIVE RESPONSE to my articles last year on where the similarities end. In fact, the current breed of LEP lamps how LEDs work that I thought I’d continue this as an occasional arguably have more in common with the high intensity discharge series and look at how light is produced in other sources. With the lamps we use in follow spots and automated lights. world’s push towards energy efficiency we have seen significant Note: I know of at least three current manufacturers of microwave R&D investment over the last few years in both the development energized high efficiency plasma lamps, Luxim, Tonanaga, and of new light sources, and in improvements to existing ones. LEDs, Ceravision. However, at the time of writing, it is Luxim who seem to of course, are the most prominent example, but there are other have made the largest inroads into the entertainment lighting industry new sources such as OLEDs and plasma lamps as well as notable in this country so much of this article is based around their technology. efficiency improvements to our old friends the incandescent and The main concern of the article is with general principles of operation HID lamps. “ only and, as I understand it, the basic theory behind the lamps from all three manufacturers is very similar. They differ in the specific construction, operation and the secret sauces embodied by their distinct . it’s the oldest form of lighting in existence . devices. There is no short name in common use for the technology at the moment so I’m using the initials LEP as a generic term referring to this particular technology and not to any particular manufacturer.
    [Show full text]
  • Outdoor Lighting, New Technologies
    Outdoor Lighting, New Technologies Eric Strandberg LC Presented to: Current state of the exterior lighting Dominated by HPS Why? What are the limitations of MH? What about other light sources? 2 1 At a crossroads of technology LED Induction Metal Halide High Pressure Sodium 3 Light source characteristics HPS Metal Plasma Induction Inc CFL LED Halide Lumens per watt Life Optics Lumen maintenance High CCT option CRI Controllability First cost 4 2 Light source efficacy (Lumens per Watt) for common exterior light sources HPS- 70 - 145 MH- 68- 120 Induction- 48- 75 Incandescent- 8- 13 Halogen- 10- 36(HIR) CFL- 50- 80 Plasma- 85- 110 LED- 100+ 5 Stuck on Lumens Lighting is about seeing …not just measured lumens Luminance, measured in candela/m sq. (footlamberts) Lamp output in lumens* Illuminance, measured in footcandles or lux 6 *With LED systems the “lamp lumens” and fixture output are the same. This is called absolute photometry. 3 Light source life for common exterior light sources HPS- 16K – 30K MH- 10K – 30K Induction- 60K - 100K Incandescent- 1K- 1.5K Halogen- 3K- 5K (HIR) CFL- 10K- 16K Plazma- 50K LED- 25K – 100K 7 Rated Lamp Life “The life value assigned to a particular type lamp. This is commonly a statistically determined estimate of average or of median operational life.” IESNA Other life definitions Reduced light output. Color shift. Efficacy reduction. Lamp starts to cycle. Lamp becomes unstable. Probability of failure increases. (Group re-lamping) 8 4 Lamp Lumen Depreciation “The fractional loss of lamp lumens at rated operating conditions that progressively occurs during lamp operation.” IESNA Mean Lumens T5 100 95 T8 (265 mA) 90 Incandescnt 85 T12 (430 mA) Lumens 80 75 HPS Percent of Initial 0 20406080100 Mercury Vapor Percent of Average Rated Life 9 Service life vs time to failure ~L92 L70 100 70 % light output 0 50KTime in ~85K Failure Hours L70 is the point in time when the light source (LED) has lost 30% of its light.
    [Show full text]
  • Pros and Cons Controversy on Molecular Imaging and Dynamic
    Open Access Archives of Biotechnology and Biomedicine Research Article Pros and Cons Controversy on Molecular Imaging and Dynamics of Double- ISSN Standard DNA/RNA of Human Preserving 2639-6777 Stem Cells-Binding Nano Molecules with Androgens/Anabolic Steroids (AAS) or Testosterone Derivatives through Tracking of Helium-4 Nucleus (Alpha Particle) Using Synchrotron Radiation Alireza Heidari* Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA *Address for Correspondence: Dr. Alireza Abstract Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, In the current study, we have investigated pros and cons controversy on molecular imaging and dynamics USA, Email: of double-standard DNA/RNA of human preserving stem cells-binding Nano molecules with Androgens/ [email protected]; Anabolic Steroids (AAS) or Testosterone derivatives through tracking of Helium-4 nucleus (Alpha particle) using [email protected] synchrotron radiation. In this regard, the enzymatic oxidation of double-standard DNA/RNA of human preserving Submitted: 31 October 2017 stem cells-binding Nano molecules by haem peroxidases (or heme peroxidases) such as Horseradish Peroxidase Approved: 13 November 2017 (HPR), Chloroperoxidase (CPO), Lactoperoxidase (LPO) and Lignin Peroxidase (LiP) is an important process from Published: 15 November 2017 both the synthetic and mechanistic point of view. Copyright: 2017 Heidari A. This is an open access article distributed under the Creative
    [Show full text]
  • And Energy-Efficient (LED, Induction and Plasma) Roadway Lighting Shuo Li Indiana Department of Transportation, [email protected]
    Purdue University Purdue e-Pubs JTRP Technical Reports Joint Transportation Research Program 2013 Cost- and Energy-Efficient (LED, Induction and Plasma) Roadway Lighting Shuo Li Indiana Department of Transportation, [email protected] Yi Jiang Purdue University, [email protected] Bowen Guan Purdue University, [email protected] Guangyuan Zhao Purdue University, [email protected] Aaron Thompson Indiana Department of Transportation Recommended Citation Li, S., Y. Jiang, B. Guan, G. Zhao, and A. Thompson. Cost- and Energy-Efficient (LED, Induction and Plasma) Roadway Lighting. Publication FHWA/IN/JTRP-2013/19. Joint Transportation Research Program, Indiana Department of Transportation and Purdue University, West Lafayette, Indiana, 2013. doi: 10.5703/1288284315221. This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. JOINT TRANSPORTATION RESEARCH PROGRAM INDIANA DEPARTMENT OF TRANSPORTATION AND PURDUE UNIVERSITY Cost- and Energy-Effi cient (LED, Induction and Plasma) Roadway Lighting Shuo Li Yi Jiang Bowen Guan Guangyuan Zhao Aaron Thompson SPR-3613 • Report Number: FHWA/IN/JTRP-2013/19 • DOI: 10.5703/1288284315221 RECOMMENDED CITATION Li, Shuo, Y. Jiang, B. Guan, G. Zhao, and A. Thompson. Cost- and Energy-Efficient (LED, Induction and Plasma) Roadway Lighting. Publication FHWA/IN/JTRP-2013/19. Joint Transportation Research Program, Indiana Department of Transportation and Purdue University, West Lafayette, Indiana, 2013. doi:
    [Show full text]