Standard Runtime Library API for Linux Operating Systems Programming Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Using the Intel® LXT973 Ethernet Transceiver Application Note
Intel® IXP42X Product Line and IXC1100 Control Plane Processor: Using the Intel® LXT973 Ethernet Transceiver Application Note July 2004 Document Number: 253429-002 Intel® IXP42X Product Line and IXC1100 Control Plane Processor: Using the Intel® LXT973 Ethernet Transceiver INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. -
Intel® Processor Graphics: Architecture & Programming
Intel® Processor Graphics: Architecture & Programming Jason Ross – Principal Engineer, GPU Architect Ken Lueh – Sr. Principal Engineer, Compiler Architect Subramaniam Maiyuran – Sr. Principal Engineer, GPU Architect Agenda 1. Introduction (Jason) 2. Compute Architecture Evolution (Jason) 3. Chip Level Architecture (Jason) Subslices, slices, products 4. Gen Compute Architecture (Maiyuran) Execution units 5. Instruction Set Architecture (Ken) 6. Memory Sharing Architecture (Jason) 7. Mapping Programming Models to Architecture (Jason) 8. Summary 2 Compute Applications * “The Intel® Iris™ Pro graphics and the Intel® Core™ i7 processor are … allowing me to do all of this while the graphics and video * never stopping” Dave Helmly, Solution Consulting Pro Video/Audio, Adobe Adobe Premiere Pro demonstration: http://www.youtube.com/watch?v=u0J57J6Hppg “We are very pleased that Intel is fully supporting OpenCL. DirectX11.2 We think there is a bright future for this technology.” Michael Compute Shader Bryant, Director of Marketing, Sony Creative Software Vegas* Software Family by Sony* * Optimized with OpenCL and Intel® Processor Graphics http://www.youtube.com/watch?v=_KHVOCwTdno * “Implementing [OpenCL] in our award-winning video editor, * PowerDirector, has created tremendous value for our customers by enabling big gains in video processing speed and, consequently, a significant reduction in total video editing time.” Louis Chen, Assistant Vice President, CyberLink Corp. * "Capture One Pro introduces …optimizations for Haswell, enabling remarkably -
Intel Corporation 2000 Annual Report
silicon is in 2000 Annual Report i n t e l .c o m i n t c . c o m Intel facts and figures Net revenues Diluted earnings per share Dollars in billions Dollars, adjusted for stock splits 35 1.6 33.7 1.51 30 29.4 1.2 26.3 25 25.1 Intel revenues 1.05 20.8 20 grew 15% in 2000, 0.97 0.86 0.8 giving us our 14th 16.2 15 0.73 consecutive year of 11.5 10 0.50 0.4 8.8 revenue growth. 0.33 0.33 5.8 5 4.8 0.12 0.16 0 0 91 92 93 94 95 9697 98 99 00 91 92 93 94 95 9697 98 99 00 Geographic breakdown of 2000 revenues Return on average stockholders’ equity Percent Percent 100 40 38.4 35.5 35.6 33.3 North America 41% Intel has 30 75 30.2 experienced strong 27.3 28.4 26.2 international growth, 21.6 20 50 with 59% of revenues 20.4 Asia-Pacific 26% outside North America in 2000. 10 25 Europe 24% 0 Japan 9% 91 92 93 94 95 9697 98 99 00 0 Capital additions to property, Stock price trading ranges by fiscal year plant and equipment † Dollars, adjusted for stock splits Dollars in millions 75 8,000 Capital invest- 6,674 ments reflect Intel’s 6,000 50 commitment to building leading-edge manu- 4,501 4,000 4,032 facturing capacity for 3,550 3,403 25 3,024 state-of-the-art 2,441 2,000 silicon products. -
X86 Assembly Language Syllabus for Subject: Assembly (Machine) Language
VŠB - Technical University of Ostrava Department of Computer Science, FEECS x86 Assembly Language Syllabus for Subject: Assembly (Machine) Language Ing. Petr Olivka, Ph.D. 2021 e-mail: [email protected] http://poli.cs.vsb.cz Contents 1 Processor Intel i486 and Higher – 32-bit Mode3 1.1 Registers of i486.........................3 1.2 Addressing............................6 1.3 Assembly Language, Machine Code...............6 1.4 Data Types............................6 2 Linking Assembly and C Language Programs7 2.1 Linking C and C Module....................7 2.2 Linking C and ASM Module................... 10 2.3 Variables in Assembly Language................ 11 3 Instruction Set 14 3.1 Moving Instruction........................ 14 3.2 Logical and Bitwise Instruction................. 16 3.3 Arithmetical Instruction..................... 18 3.4 Jump Instructions........................ 20 3.5 String Instructions........................ 21 3.6 Control and Auxiliary Instructions............... 23 3.7 Multiplication and Division Instructions............ 24 4 32-bit Interfacing to C Language 25 4.1 Return Values from Functions.................. 25 4.2 Rules of Registers Usage..................... 25 4.3 Calling Function with Arguments................ 26 4.3.1 Order of Passed Arguments............... 26 4.3.2 Calling the Function and Set Register EBP...... 27 4.3.3 Access to Arguments and Local Variables....... 28 4.3.4 Return from Function, the Stack Cleanup....... 28 4.3.5 Function Example.................... 29 4.4 Typical Examples of Arguments Passed to Functions..... 30 4.5 The Example of Using String Instructions........... 34 5 AMD and Intel x86 Processors – 64-bit Mode 36 5.1 Registers.............................. 36 5.2 Addressing in 64-bit Mode.................... 37 6 64-bit Interfacing to C Language 37 6.1 Return Values.......................... -
Panel PC 670 Computing Unit Connecting and Switching on the Computing Unit 3
Preface, Contents Product Overview SIMATIC PC 1 Starting Up the Computing Unit 2 Panel PC 670 Computing Unit Connecting and Switching on the Computing Unit 3 Equipment Manual Maintaining and Extending the Computing Unit 4 Configuring the Computing Unit in BIOS Setup 5 Fault Diagnosis 6 Hardware Information 7 Distributed Configuration 8 A Appendices C Glossary, Index This manual is only valid for computing units with Order No. 6AV77xx-... Release 04/02 Safety Guidelines This manual contains notices which you should observe to ensure your own personal safety, as well as to protect the product and connected equipment. These notices are marked as follows according to the level of danger: Danger ! indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury. Warning ! indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury. Caution ! used with the safety alert symbol indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. Caution used without the safety alert symbol indicates a potentially hazardous situation which, if not avoided, may result in property damage. Notice indicates that unwanted events or status can occur if the relevant information is not observed. Note draws your attention to particularly important information on the product, handling the product, or to a particular part of the documentation. Qualified Personnel Equipment may be commissioned and operated only by qualified personnel. Quali- fied personnel within the meaning of the safety notices in this manual are persons who are authorized to commission, ground and identify equipment, systems and circuits in accordance with safety engeneering standards. -
Multiprocessing Contents
Multiprocessing Contents 1 Multiprocessing 1 1.1 Pre-history .............................................. 1 1.2 Key topics ............................................... 1 1.2.1 Processor symmetry ...................................... 1 1.2.2 Instruction and data streams ................................. 1 1.2.3 Processor coupling ...................................... 2 1.2.4 Multiprocessor Communication Architecture ......................... 2 1.3 Flynn’s taxonomy ........................................... 2 1.3.1 SISD multiprocessing ..................................... 2 1.3.2 SIMD multiprocessing .................................... 2 1.3.3 MISD multiprocessing .................................... 3 1.3.4 MIMD multiprocessing .................................... 3 1.4 See also ................................................ 3 1.5 References ............................................... 3 2 Computer multitasking 5 2.1 Multiprogramming .......................................... 5 2.2 Cooperative multitasking ....................................... 6 2.3 Preemptive multitasking ....................................... 6 2.4 Real time ............................................... 7 2.5 Multithreading ............................................ 7 2.6 Memory protection .......................................... 7 2.7 Memory swapping .......................................... 7 2.8 Programming ............................................. 7 2.9 See also ................................................ 8 2.10 References ............................................. -
IXP400 Software's Programmer's Guide
Intel® IXP400 Software Programmer’s Guide June 2004 Document Number: 252539-002c Intel® IXP400 Software Contents INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. The Intel® IXP400 Software v1.2.2 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECs, or MPEG enabled platforms may require licenses from various entities, including Intel Corporation. This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. -
Intel Corporation Annual Report 1999
clients networking and communications intel.com 1999 annual report the building blocks of the internet economy intc.com server platforms solutions and services 29.4 30 2.25 90 2.11 26.3 1.93 25.1 1.73 20.8 20 1.45 1.50 60 16.2 1.01 11.5 10 0.75 30 8.8 0.65 0.65 High 5.8 4.8 3.9 0.31 Close 0.24 0.20 Low INTEL CORPORATION 1999 0 0 0 90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99 Net revenues Diluted earnings per share Stock price trading ranges (Dollars in billions) (Dollars, adjusted for stock splits) by fiscal year (Dollars, adjusted for stock splits) 3,111 1999 facts and figures 3,000 45 2,509 Intel’s stock 38.4 2,347 35.5 35.6 price has risen 33.3 2,000 28.4 30 1,808 27.3 at a 48% 26.2 21.2 21.6 20.4 1,296 1,111 970 compound 1,000 15 780 618 517 annual growth 0 rate in the 0 90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99 Research and development Return on average (Dollars in millions, excluding purchased last 10 years. stockholders’ equity in-process research and development) (Percent) 9.76 4,501 9 Japan 4,500 7% 4,032 7.05 3,550 3,403 3,024 5.93 6 Asia- 3,000 Pacific North 5.14 23% America 2,441 43% 1,9 33 3.69 2.80 3 1,500 1,228 2.24 Machinery 948 & equipment 1.63 1.35 Europe 680 1.12 27% Land, buildings & improvements 0 0 90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99 Book value per share Geographic breakdown of 1999 revenues Capital additions to property, at year-end (Percent) plant and equipment† (Dollars, adjusted for stock splits) (Dollars in millions) Past performance does not guarantee future results. -
The Future of the Microprocessor Industry”
MASSACHUSETTS INSTITUTE OF TECHNOLOGY SLOAN SCHOOL OF MANAGEMENT 15.912 Technology Strategy Professor Rebecca Henderson “The Future of the Microprocessor Industry” Final Paper Juan Chaia Paulo Marchesan Bernardo Neves Cambridge, Massachusetts. May 11th, 2005 15.912 Technology Strategy Massachusetts Institute of Technology Professor Rebecca Henderson Sloan School of Management EXECUTIVE SUMMARY Intel has been one of the most successful companies in modern corporate history. They are the clear leader in the microprocessor industry, in which they have set the pace of technological advance in the past three decades. They were able to do this because of the uniqueness of its technology at the beginning, and the development of strong complementary assets, namely manufacturing expertise and branding, later on. As a consequence, Intel has been able to capture a significant portion of the value created by the microprocessor industry. However, the electronic microprocessor technology is reaching maturity, and may be subject to a disruption within the next two decades. In this paper, we predict that such disruption may come from microphotonics. Microphotonics technology, which very crudely uses photons for the transmission and processing of data, has been on the spotlight for at least a decade. According to experts from MIT, it may be ready to be used on commercial chips in a decade. Some large companies around the world, such as Pirelli, IBM, Lucent and others, are already making big bets that this will be the next chip technology. Our paper microphotonics analyzes different scenarios that the industry leader, Intel, may face if indeed microphotonics turns out to be the disruptive technology in the microprocessor industry. -
The Intel X86 Microarchitectures Map Version 2.0
The Intel x86 Microarchitectures Map Version 2.0 P6 (1995, 0.50 to 0.35 μm) 8086 (1978, 3 µm) 80386 (1985, 1.5 to 1 µm) P5 (1993, 0.80 to 0.35 μm) NetBurst (2000 , 180 to 130 nm) Skylake (2015, 14 nm) Alternative Names: i686 Series: Alternative Names: iAPX 386, 386, i386 Alternative Names: Pentium, 80586, 586, i586 Alternative Names: Pentium 4, Pentium IV, P4 Alternative Names: SKL (Desktop and Mobile), SKX (Server) Series: Pentium Pro (used in desktops and servers) • 16-bit data bus: 8086 (iAPX Series: Series: Series: Series: • Variant: Klamath (1997, 0.35 μm) 86) • Desktop/Server: i386DX Desktop/Server: P5, P54C • Desktop: Willamette (180 nm) • Desktop: Desktop 6th Generation Core i5 (Skylake-S and Skylake-H) • Alternative Names: Pentium II, PII • 8-bit data bus: 8088 (iAPX • Desktop lower-performance: i386SX Desktop/Server higher-performance: P54CQS, P54CS • Desktop higher-performance: Northwood Pentium 4 (130 nm), Northwood B Pentium 4 HT (130 nm), • Desktop higher-performance: Desktop 6th Generation Core i7 (Skylake-S and Skylake-H), Desktop 7th Generation Core i7 X (Skylake-X), • Series: Klamath (used in desktops) 88) • Mobile: i386SL, 80376, i386EX, Mobile: P54C, P54LM Northwood C Pentium 4 HT (130 nm), Gallatin (Pentium 4 Extreme Edition 130 nm) Desktop 7th Generation Core i9 X (Skylake-X), Desktop 9th Generation Core i7 X (Skylake-X), Desktop 9th Generation Core i9 X (Skylake-X) • Variant: Deschutes (1998, 0.25 to 0.18 μm) i386CXSA, i386SXSA, i386CXSB Compatibility: Pentium OverDrive • Desktop lower-performance: Willamette-128 -
Technical Product Summary Classic/PCI I486 Baby-AT Motherboard
INTEL OEM PRODUCTS AND SERVICES DIVISION PRELIMINARY - REV 0.1 ® Technical Product Summary Classic/PCI i486TM Baby-AT Motherboard Models: BP4S33AT BP4D33AT BP4D266AT Preliminary Version 0.1 April, 1993 Order Number PRELIMINARY Classic/PCI i486 Baby-AT Motherboard Technical Product Summary · Page 1 INTEL OEM PRODUCTS AND SERVICES DIVISION PRELIMINARY - REV 0.1 Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this document nor does it make a commitment to update the information contained herein. Intel Corporation retains the right to make changes to these specifications at any time, without notice. Contact your local sales office to obtain the latest specifications before placing your order. The following are trademarks of Intel Corporation and may only be used to identify Intel products: 376Ô i750â MAPNETÔ AboveÔ i860Ô MatchedÔ ActionMediaâ i960â MCSâ BITBUSÔ Intel287Ô Media MailÔ Code BuilderÔ Intel386Ô NetPortÔ DeskWareÔ Intel387Ô NetSentryÔ Digital StudioÔ Intel486Ô OpenNETÔ DVIâ Intel487Ô OverDriveÔ EtherExpressÔ Intelâ ParagonÔ ETOXÔ intel inside.Ô PentiumÔ ExCAÔ Intellecâ ProSolverÔ Exchange and GoÔ iPSCâ READY-LANÔ FaxBACKÔ iRMXâ Reference Pointâ FlashFileÔ iSBCâ RMX/80Ô Grand ChallengeÔ iSBXÔ RxServerÔ iâ iWARPÔ SatisFAXtionâ ICEÔ LANDeskÔ SnapIn 386Ô iLBXÔ LANPrintâ Storage BrokerÔ InboardÔ LANProtectÔ SuperTunedÔ i287Ô LANSelectâ The Computer Inside.Ô i386Ô LANShellâ TokenExpressÔ i387Ô LANSightÔ Visual EdgeÔ i486Ô LANSpaceâ WYPIWYFâ i487Ô LANSpoolâ IntelTechDirectÔ MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of Mohawk Data Sciences Corporation. CHMOS and HMOS are patented processes of Intel Corp. Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. -
Embedded Intel486™ Processor Hardware Reference Manual
Embedded Intel486™ Processor Hardware Reference Manual Release Date: July 1997 Order Number: 273025-001 The embedded Intel486™ processors may contain design defects known as errata which may cause the products to deviate from published specifications. Currently characterized errata are available on request. Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or oth- erwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel retains the right to make changes to specifications and product descriptions at any time, without notice. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from: Intel Corporation P.O. Box 7641 Mt. Prospect, IL 60056-7641 or call 1-800-879-4683 or visit Intel’s web site at http:\\www.intel.com Copyright © INTEL CORPORATION, July 1997 *Third-party brands and names are the property of their respective owners. CONTENTS CHAPTER 1 GUIDE TO THIS MANUAL 1.1 MANUAL CONTENTS ..................................................................................................