Extreme Phylogeography in Carex (Cyperaceae)

Total Page:16

File Type:pdf, Size:1020Kb

Extreme Phylogeography in Carex (Cyperaceae) View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by idUS. Depósito de Investigación Universidad de Sevilla 58 INFORMATORE BOTANICO ITALIANO , 44 SUPPL. 2, 2012 Atti Riunione Scientifica Sezione Piemonte - Valle d’Aosta Extreme phylogeography in Carex (Cyperaceae) T. VILLAVERDE, S. MARTÍN-BRAVO, M. ESCUDERO and M. LUCEÑO RIASSUNTO - Filogeografia di estremità di areale in Carex (Cyperaceae) - Le disgiunzioni negli areali di distribuzione dei taxa hanno suscitato l’interesse dei naturalisti sin dall’inizio del XIX secolo. Sono note solo trenta specie aventi distribu- zione bipolare e Carex risulta il genere con il maggior numero di specie bipolari. Una disciplina emergente, la filogeogra- fia, dovrebbe essere usata per testare le ipotesi sulle specie bipolari poiché tenta di spiegare le cause e i processi di evolu- zione relativi alla distribuzione delle specie e alle loro relazioni genetiche. Sono proposte diverse ipotesi per spiegare le dis- giunzioni bipolari: vicarianza, parallelismo, convergenza, dispersione a lunga distanza e spostamento a balzi sui rilievi. Key words: bipolar disjunctions, Carex, long distance dispersal, mountain hopping, parallelism, phylogeography, vicariance INTRODUCTION DARWIN committed two chapters of The Origin of these hypotheses without even knowing the existence the Species (1872) to explain the past and present dis- of the genetic material. tribution of the species. He stated that patterns of Phylogeography is a rising discipline that tries to species distribution may often be seen as clear foot- understand the reasons for the distribution of species steps of their evolution and diversification. Thus, and closely related genetic lineages, over time and the present-day taxa distribution may be frequently evolutionary processes involved (A VISE et al. , 1987; explained by a combination of historical events (cli- AVISE, 2000). This discipline emerged in a multidis- matic oscillations like aridifications or glaciations; ciplinary context and it integrates methods and con- geological movements like plate tectonics or oroge- cepts from population genetics (microevolution) and nies) and evolutionary processes (extinction, vicari- from systematics (macroevolution). ance, dispersal...). Bipolar biogeography is still the focus of numerous One of the most fascinating distribution patterns is studies after Darwin’s first approach based on organ- range disjunction. The largest and most challenging ism migrations (D U RIETZ, 1940; W ILSON, 1986; disjunction for biologists, the bipolar distribution, MOORE, C HATER , 1971; M OORE, 1972; S MITH, already captivated HUMBOLDT (1817) and DARWIN 1986; BALL, 1990 ). Researchers have proposed dif- (1859) who realized the existence of common plant ferent hypotheses to unravel the evolutionary history species in the flora of remotely distant areas (Tierra of bipolar taxa based on molecular and morphologi- del Fuego in the southern hemisphere and Northern cal data (E SCUDERO et al., 2010; P OPP et al., 2011). Europe/North America in the northern). D ARWIN The objective of this work is to briefly review the (1872) tried to explain this disjunction as a forced hypotheses suggested to explain bipolar disjunctions migration of species due to climate change. During and how to test them with molecular techniques. glacial periods, the advance of the ice-sheet in the northern hemisphere might have pushed arctic species towards lower latitudes; then, a remigration BIPOLAR DISTRIBUTIONS IN CAREX would have occurred on the returning warmth, since MOORE, CHATER (1971) termed bipolar species fol- those lowland areas are too warm for their existence. lowing a single and simple criterion: such species Some species might have found a refugium in moun- must reach latitudes as high as the European Arctic tain summits in southern latitudes in stead of mov- or Alaska (c. 55º N. lat.) in the northern hemisphere ing northward. DARWIN (1859) then thought that and the Straight of Magellan (c. 52º S. lat.) in the there were few species identically the same in both southern hemisphere, regardless of their occurrences hemispheres and on the mountains of intermediate elsewhere. Under this criterion, they pointed 30 tropical regions, whose mutual relations will not species belonging to 12 families (Tab. 1) and 23 gen- have been much disturbed. Admirably, he stated all era, 6 of them (20%) corresponding to the genus Atti Riunione Scientifica Sezione Piemonte - Valle d’Aosta 59 Carex L. (Cyperaceae ). Although Poaceae family has 8 HYPOTHESES TO TEST bipolar species, they are belonging to three different Once the taxonomy of the bipolar species has been genera (Phleum , Poa and Deschampsia ). Then, Carex clearly solved, it is possible to study their biogeogra- is the genus with more bipolar species. Why such a phy and evolutionary relationships. The geographi- striking pattern is so commonly found within Carex ? cal separation found in bipolar species might be con- This is not only the largest genus within the sidered as a major factor disrupting the pattern of Cyperaceae family, with more than 2.000 species gene flow. If genetic isolation allows northern and (K ÜKENTHAL, 1909) distributed across all floristic southern populations to diverge separately, it may regions (R EZNICEK, 1990), but also the most diverse lead to the accumulation of molecular and morpho- angiosperm genus of the northern temperate zone logical differences to clearly distinguish them. (E SCUDERO et al., 2012). It contains many cold- Different degrees of differentiation may account for adapted species that are eligible to have reached different hypotheses. extreme latitudes in both hemispheres and, therefore, the bipolar distribution. Amphitropical species of lower latitudes might not be considered as bipolar VICARIANCE, PARALLELISM AND CONVERGENCE because their environmental and biological histories Molecular differences between Northern and are likely to separate them from the arctic-alpine Southern Hemisphere populations might be due to flora when investigating the factors involved in the their dissimilar evolution. Populations might have patterns of their distributions (R AVEN , 1963). rested genetically isolated or fragmented, allowing a distinct molecular divergence but not a morphologi- cal one. TABLE 1 To reject vicariance hypothesis, estimation of diver- Number of bipolar species in vascular plants families gence times may help to test the congruence between (M OORE, C HATER , 1971). phylogenetic splits and ecological requirements. The Numero delle specie bipolari nell’ambito delle famiglie di relative age of this disjunction was evaluated through piante vascolari (M OORE , C HATER , 1971). estimation of divergence times and fossil evidences. Family Number Parallelism or convergence hypotheses imply the accumulation of evolutionary steps in the same fash- Lycopodiaceae P. Beauv. ex Mirb. 1 ion in northern and southern populations of distant- Plumbaginaceae Juss. 1 ly related lineages, in this case populations would Gentianaceae Juss. 1 belong to polyphyletic groups. Therefore, to reject Scrophulariaceae Juss. 1 these hypotheses, extreme edges populations must be Juncaginaceae Rich. 1 shown as together monophyletic. Hymenophyllaceae Mart. 2 Polygonaceae Juss. 2 DIRECT LONG DISTANCE DISPERSAL Ranunculaceae Juss. 2 If there are no observed molecular differences Plantaginaceae Juss. 2 between populations, it might be possible to consid- Caryophyllaceae Juss. 3 er a long distance dispersal hypothesis, occurred in Cyperaceae Juss. 6 recent times. To reject this hypothesis, populations at Poaceae Barnhart 8 the extremes of the distribution must belong to ancient monophyletic divergent groups. ESCUDERO et al. (2010) sampled five of the six bipo- lar Carex species (C. arctogena was not included) for Carex is divided in four sub-genera based on morpho- a molecular approach and suggested long-distant dis- logical and molecular data (S TARR , F ORD , 2009). persal, sensu lato, as the most plausible cause of bipo- Three of them have at least one bipolar species: C. lar disjunction for C. canescens, C. macloviana, C. arctogena H.Sm. and C. microglochin Wahlenb. in magellanica and C. maritima. Although alternative subgenus Psyllophora (Degl.) Peterm .; C. canescens L., dispersal hypotheses (e.g. direct long-distant disper- C. macloviana D’Urv. and C. maritima Gunn. in sub- sal) could not be tested due to their sampling genus Vignea (P. Beauv. ex Lestib.f.) Peterm.; C. mag- mrthod, genealogical relationships of chloroplast ellanica Lam. in subgenus Carex L. All these species haplotypes indicated a southwards direction of dis- are present in Tierra del Fuego (Patagonia, Argentina) persal for C. canescens, C. macloviana and C. magel- and in arctic-alpine areas of Eurasia and North lanica (E SCUDERO et al., 2010). America. Carex canescens is also present in Australia. A detailed taxonomic study of each bipolar species MOUNTAIN HOPPING encompassing populations across its range should be The mountain-hopping hypothesis (B ALL, 1990) mandatory before further steps towards elucidating relies on the idea that species have progressively the origin of such disjunctions. For example, some migrated from one mountain chain to the next (as populations of C. microglochin in South America were stepping-stones) through the low latitude regions to found to belong to a different species, C. camp- achieve such distribution (M OORE, C HATER , 1971; toglochin (W HEELER , G UAGLIANONE , 2003). VOLLAN et al., 2006).
Recommended publications
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2016
    Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate.
    [Show full text]
  • Lecture 24: "Graminoid" Monocots IB 168, Spring 2006
    Lecture 24: "Graminoid" monocots IB 168, Spring 2006 Graminoid monocots: A clade in Poales of usually wind-pollinated taxa, sister to Bromeliaceae and without showy flowers. Three families of graminoid monocots have a worldwide distribution and are prominent members of north temperate and boreal regions of the world: (1) Cyperaceae (sedges, tules, papyrus, and relatives), (2) Juncaceae (rushes and wood-rushes), and, especially, (3) Poaceae (grasses). All three families share conspicuous attributes (and appear superficially similar): Narrow, elongate leaves (parallel venation) with sheath (basal) and blade Perianth reduced or absent (not showy) Nectaries lacking (wind-pollinated) In Cyperaceae and Poaceae, seeds are only 1 per ovary (Ovaries superior, with 1--3 locules, 2--3 stigmas) (Stamens 3 or 6) Family attributes: (1) Poaceae (grasses), also called Gramineae (conserved name) - Highly diverse (ca. 10,000 species in 600--650 genera), but not quite as many species as Compositae/Asteraceae, Orchidaceae, Fabaceae, or Rubiaceae - Worldwide distribution (except Antarctica) - Ecologically of critical importance in African savannas and veldt, Asian steppes, South American paramo/puna and pampas, and North American plains/prairie - Economically the most important plant family because it includes the grain or cereal crops [rice (Oryza), wheat (Triticum), corn or maize (Zea), rye (Secale), barley (Hordeum), oats (Avena), sorghum (Sorghum), millet (Panicum)] and sugar cane (Saccharum) -- all but corn/maize from Old World - Also economically critical because of importance for livestock fodder, soil conservation, wildlife habitat, and turf (intercalary growth allows for grazing or mowing without killing the plant), in addition to building materials (bamboos) Fossil record of grasses goes back ca.
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Cyperaceae of Puerto Rico. Arturo Gonzalez-Mas Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1964 Cyperaceae of Puerto Rico. Arturo Gonzalez-mas Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Gonzalez-mas, Arturo, "Cyperaceae of Puerto Rico." (1964). LSU Historical Dissertations and Theses. 912. https://digitalcommons.lsu.edu/gradschool_disstheses/912 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been 64—8802 microfilmed exactly as received GONZALEZ—MAS, Arturo, 1923- CYPERACEAE OF PUERTO RICO. Louisiana State University, Ph.D., 1964 B o ta n y University Microfilms, Inc., Ann Arbor, Michigan CYPERACEAE OF PUERTO RICO A Dissertation I' Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Botany and Plant Pathology by Arturo Gonzalez-Mas B.S., University of Puerto Rico, 1945 M.S., North Carolina State College, 1952 January, 1964 PLEASE NOTE: Not original copy. Small and unreadable print on some maps. Filmed as received. UNIVERSITY MICROFILMS, INC. ACKNOWLEDGMENT The author wishes to express his sincere gratitude to Dr. Clair A. Brown for his interest, guidance, and encouragement during the course of this investigation and for his helpful criticism in the preparation of the manuscript and illustrations.
    [Show full text]
  • Saddle Bag Mountain Research Natural Area Guidebook
    United States Department of Agriculture Saddle Bag Mountain Forest Service Research Natural Area Pacific Northwest Research Station General Technical Report Guidebook Supplement 34 PNW-GTR-731 September 2007 Reid Schuller and Ronald L. Exeter D E E R P A U RT LT MENT OF AGRICU D E E P R A U R LT TMENTOFAGRICU The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and National Grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.
    [Show full text]
  • Maine Coefficient of Conservatism
    Coefficient of Coefficient of Scientific Name Common Name Nativity Conservatism Wetness Abies balsamea balsam fir native 3 0 Abies concolor white fir non‐native 0 Abutilon theophrasti velvetleaf non‐native 0 3 Acalypha rhomboidea common threeseed mercury native 2 3 Acer ginnala Amur maple non‐native 0 Acer negundo boxelder non‐native 0 0 Acer pensylvanicum striped maple native 5 3 Acer platanoides Norway maple non‐native 0 5 Acer pseudoplatanus sycamore maple non‐native 0 Acer rubrum red maple native 2 0 Acer saccharinum silver maple native 6 ‐3 Acer saccharum sugar maple native 5 3 Acer spicatum mountain maple native 6 3 Acer x freemanii red maple x silver maple native 2 0 Achillea millefolium common yarrow non‐native 0 3 Achillea millefolium var. borealis common yarrow non‐native 0 3 Achillea millefolium var. millefolium common yarrow non‐native 0 3 Achillea millefolium var. occidentalis common yarrow non‐native 0 3 Achillea ptarmica sneezeweed non‐native 0 3 Acinos arvensis basil thyme non‐native 0 Aconitum napellus Venus' chariot non‐native 0 Acorus americanus sweetflag native 6 ‐5 Acorus calamus calamus native 6 ‐5 Actaea pachypoda white baneberry native 7 5 Actaea racemosa black baneberry non‐native 0 Actaea rubra red baneberry native 7 3 Actinidia arguta tara vine non‐native 0 Adiantum aleuticum Aleutian maidenhair native 9 3 Adiantum pedatum northern maidenhair native 8 3 Adlumia fungosa allegheny vine native 7 Aegopodium podagraria bishop's goutweed non‐native 0 0 Coefficient of Coefficient of Scientific Name Common Name Nativity
    [Show full text]
  • Timing and Ecological Priority Shaped the Diversification of Sedges in the Himalayas
    Timing and ecological priority shaped the diversification of sedges in the Himalayas Uzma1,2,3, Pedro Jiménez-Mejías4, Rabia Amir1, Muhammad Qasim Hayat1 and Andrew L. Hipp2,3 1 Plant Systematics and Evolution Laboratory, Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan 2 Herbarium, The Morton Arboretum, Lisle, IL, United States of America 3 Pritzker DNA laboratory, The Field Museum, Chicago, IL, United States of America 4 Department of Biology (Botany), Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Calle Francisco Tomás y Valiente, Madrid, Spain ABSTRACT Background. Diversification patterns in the Himalayas have been important to our understanding of global biodiversity. Despite recent broad-scale studies, the most diverse angiosperm genus of the temperate zone—Carex L. (Cyperaceae), with ca. 2100 species worldwide—has not yet been studied in the Himalayas, which contains 189 Carex species. Here the timing and phylogenetic pattern of lineage and ecological diversification were inferred in this ecologically significant genus. We particularly investigated whether priority, adaptation to ecological conditions, or both explain the highly successful radiation of the Kobresia clade (ca. 60 species, of which around 40 are present in the Himalayas) of Himalayan Carex. Methods. Phylogenetic relationships were inferred using maximum likelihood analysis of two nuclear ribosomal DNA (nrDNA) regions (ITS and ETS)
    [Show full text]
  • Saddle Bag Mountain Research Natural Area: Guidebook Supplement 34
    United States Department of Agriculture Saddle Bag Mountain Forest Service Research Natural Area Pacific Northwest Research Station General Technical Report Guidebook Supplement 34 PNW-GTR-731 September 2007 Reid Schuller and Ronald L. Exeter D E E R P A U RT LT MENT OF AGRICU D E E P R A U R LT TMENTOFAGRICU The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and National Grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.
    [Show full text]
  • Carex of New England
    Field Guide to Carex of New England Lisa A. Standley A Special Publication of the New England Botanical Club About the Author: Lisa A. Standley is an environmental consultant. She obtained a B.S, and M.S. from Cornell University and Ph.D. from the University of Washington. She has published several articles on the systematics of Carex, particularly Section Phacocystis, and was the author of several section treatments in the Flora of North America. Cover Illustrations: Pictured are Carex pensylvanica and Carex intumescens. Field Guide to Carex of New England Lisa A. Standley Special Publication of the New England Botanical Club Copyright © 2011 Lisa A. Standley Acknowledgements This book is dedicated to Robert Reed, who first urged me to write a user-friendly guide to Carex; to the memory of Melinda F. Denton, my mentor and inspiration; and to Tony Reznicek, for always sharing his expertise. I would like to thank all of the people who helped with this book in so many ways, particularly Karen Searcy and Robert Bertin for their careful editing; Paul Somers, Bruce Sorrie, Alice Schori, Pam Weatherbee, and others who helped search for sedges; Arthur Gilman, Melissa Dow Cullina, and Patricia Swain, who carefully read early drafts of the book; and to Emily Wood, Karen Searcy, and Ray Angelo, who provided access to the herbaria at Harvard University, the University of Massachusetts, and the New England Botanical Club. CONTENTS Introduction .......................................................................................................................1
    [Show full text]
  • Microscopic Features of Monocotyledonous Plants Features of Culms, Flower Stalks, Stems and Rhizomes
    Microscopic features of monocotyledonous plants Features of culms, flower stalks, stems and rhizomes Vol. IV Fritz H. Schweingruber Hugo Berger 1 Coverphoto Eriophorum scheuchzeri Species on the cover Top: Agropyron cristatum Middle (left to right): Luzula alpina-pilosa, Potamogeton pectinatus Base (left to right): Carex acutiformis, Carex pseudocyperus, Carex appropinquata Prof. Dr. Fritz H. Schweingruber Swiss Federal Research Institute WSL Zürichstrasse 111 8903 Birmensdorf Switzerland Email: [email protected] Hugo Berger Email: [email protected] Barbara Berger Design and layout Email: [email protected] Verlag Dr. Kessel Eifelweg 37 D-53424 Remagen Tel.: 0049-2228-493 www.forestrybooks.com www.forstbuch.de ISBN: 978-3-945941-52-2 2 Content 1 Introduction. 5 2 Material .............................................................. 6 3 Preparation ........................................................... 6 4 Features of culms, flower stalks and stems .................... 7 5 Rhizome features of Cyperaceae ............................... 41 6 References ......................................................... 60 7 Index ............................................................... 62 3 4 1. Introduction The list of monocotyledonous culms, flower stalks, rhizomes and stem-features is a result of the studies published in tree volumes: - Vol.I Anatomy of grass culms (Schweingruber and Berger 2017) - Vol. II Anatomy of culms and rhizomes of sedges (Schweingruber and Berger 2018) - Vol. III Anatomy of culms and flower stalks of monocotyledonous plants (Schweingruber and Berger 2018) Here we present the first time a list of features which is applicable on the whole spectrum of monocotyledonous plants in temperate zones of the northern hemisphere. The definition of features is primarily based on double stained microscopic slides from recently collected material. The origin of some feature-characterization originates from monographs of Schenk 1886 and Evans 2003, Seago et al.
    [Show full text]
  • Introduction to Florida's Graminoids
    CENTRAL FLORIDA GRAMINOID IDENTIFICATION WORKSHOP Introduction to Florida’s Graminoids Erick A. Revuelta St. Johns River Water Management District October 2019 GRAMINOIDS Graminoids: grass and grass-like plants. Specifically: grasses (GRAMINEAE/POACEAE), sedges (CYPERACEAE) and rushes (JUNCACEAE). Adapted to a wide range of conditions: • Anaerobic soil conditions (wetlands) • Xeric conditions • Saline environments (saltmarshes) • Fire Erick Revuelta 2019 FLORIDAFLORIDA GRAMINOIDSGRAMINOIDS Graminoids account for nearly 16% of species in Florida POACEAE – 446 species CYPERACEAE – 276 species JUNCACEAE – 24 species Graminoid-dominated communities represent • 30% of Florida’s natural communities • 18% of Florida’s land mass Erick Revuelta 2019 FLORIDA GRAMINOIDS Notable species: Aristida stricta (POACEAE) • Wet flatwoods • Mesic flatwoods • Scrubby flatwoods • Sandhill • Upland pine Spartina alterniflora (POACEAE) • Saltmarsh Cladium jamaicense (CYPERACEAE) • Everglades marsh • Freshwater marsh • Floodplain marsh Juncus roemerianus (JUNCACEAE) • Juncus marsh Erick Revuelta 2019 AA grass,grass, asedge sedge or or rush? a rush? Sedges have edges, rushes are round, grasses have joints all the way to the ground USUALLY! Some sedges don’t have obvious edges Rushes are always round but so are many grasses and sedges Grass nodes or joints are not always easy to find Diminutive parts and superficial similarities make graminoid identification difficult… Does it really matter? A grass, a sedge or a rush? Take time and work through each of these questions.
    [Show full text]