toxicological sciences 138(1), 175–190 2014 doi:10.1093/toxsci/kft276 Advance Access publication December 12, 2013 Transcriptome Profiling of the Newborn Mouse Lung Response to Acute Ozone Exposure Kelsa Gabehart,* Kelly A. Correll,* Jing Yang,* Maureen L. Collins,* Joan E. Loader,*,1, Sonia Leach,† Carl W. White,*,1 and Azzeddine Dakhama*,2 *Department of Pediatrics and †Department of Medicine, National Jewish Health, Denver, Colorado 80206 1Present address: Department of Pediatrics, Children’s Hospital, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado 80206. 2To whom correspondence should be addressed at Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206. Fax: (303) 270-2182. E-mail:
[email protected]. Received August 21, 2013; accepted December 3, 2013 respiratory health, including alterations in the structure of the Ozone pollution is associated with adverse effects on respira- airway epithelium, increased sensitivity to inhaled allergens, tory health in adults and children but its effects on the neonatal increased airway inflammation, and altered lung function (Mar lung remain unknown. This study was carried out to define the and Koenig, 2009; Romieu et al., 2002; Strickland et al., 2010). effect of acute ozone exposure on the neonatal lung and to pro- file the transcriptome response. Newborn mice were exposed to Young children are particularly vulnerable to developing ozone or filtered air for 3 h. Total RNA was isolated from lung adverse respiratory health effects from O3 exposure due to higher tissues at 6 and 24 h after exposure and was subjected to micro- ventilation rates, potentially leading to higher doses of inhaled O3 array gene expression analysis.