Gain-Of-Function Effects of Mutant P53 Explored Using a Three

Total Page:16

File Type:pdf, Size:1020Kb

Gain-Of-Function Effects of Mutant P53 Explored Using a Three Gain-of-Function Effects of Mutant p53 Explored Using a Three- Dimensional Culture Model of Breast Cancer William A. Freed-Pastor Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2012 © 2011 William A. Freed-Pastor All Rights Reserved ABSTRACT Gain-of-Function Effects of Mutant p53 Explored Using a Three-Dimensional Culture Model of Breast Cancer William A. Freed-Pastor p53 is the most frequent target for mutation in human tumors and mutation at this locus is a common and early event in breast carcinogenesis. Breast tumors with mutated p53 often contain abundant levels of this mutant protein, which has been postulated to actively contribute to tumorigenesis by acquiring pro-oncogenic (“gain- of-function”) properties. To elucidate how mutant p53 might contribute to mammary carcinogenesis, we employed a three-dimensional (3D) culture model of breast cancer. When placed in a laminin-rich extracellular matrix, non-malignant mammary epithelial cells form structures highly reminiscent for many aspects of acinar structures found in vivo. On the other hand, breast cancer cells, when placed in the same environment, form highly disorganized and sometimes invasive structures. Modulation of critical oncogenic signaling pathways has been shown to phenotypically revert breast cancer cells to a more acinar-like morphology. We examined the role of mutant p53 in this context by generating stable, regulatable p53 shRNA derivatives of mammary carcinoma cell lines to deplete endogenous mutant p53. We demonstrated that, depending on the cellular context, mutant p53 depletion is sufficient to significantly reduce invasion or in some cases actually induce a phenotypic reversion to more acinar-like structures in breast cancer cells grown in 3D culture. Additionally, using stable overexpression of a panel of tumor-derived p53 mutants in non-malignant mammary epithelial cells, we found that mutant p53 is sufficient to disrupt normal acinar morphogenesis. Genome-wide expression analysis identified the mevalonate pathway as significantly upregulated by mutant p53. Statins and sterol biosynthesis intermediates revealed that this pathway is both necessary and sufficient for the phenotypic effects of mutant p53 on mammary tissue architecture. We then showed that mutant p53 associates with sterol gene promoters at least partly via SREBP transcription factors. Finally, p53 mutation correlates with highly expressed mevalonate pathway genes in human breast tumors and elevated expression of the mevalonate pathway correlates with a poor prognosis in breast cancer. We also queried a number of pathways/proteins that had previously been implicated in breast cancer and shown to be sufficient to bring about a phenotypic reversion in 3D culture to search for additional mechanisms by which mutant p53 might contribute to mammary carcinogenesis. Using this approach, we identified integrin β4 as a novel target of mutant p53 in breast cancer cells and demonstrated that stable knockdown of integrin β4 is sufficient to dramatically reduce invasive processes in breast cancer cells grown in 3D culture. We also show that mutant p53 associates with the promoter of ITGB4, the gene encoding integrin β4. Finally, we demonstrated that inhibition of NF-κB, a downstream mediator of integrin β4signaling, can mimic the phenotypic effects of mutant p53 depletion. These findings contribute to our understanding of breast carcinogenesis and may offer novel prognostic indicators and therapeutic targets for tumors bearing mutations in p53. TABLE OF CONTENTS CHAPTER 1: INTRODUCTION....................................................................................... 1 THE DISCOVERY OF THE P53 “PROTO-ONCOGENE” ............................................................... 2 P53 AND TUMOR SUPPRESSION ............................................................................................. 3 P53 AND THERAPEUTIC APPROACHES ................................................................................... 5 FUNCTION OF WILD-TYPE P53............................................................................................... 7 GAIN-OF-FUNCTION HYPOTHESIS.......................................................................................... 9 Pro-Oncogenic Roles of Mutant p53.......................................................................... 12 Mutant p53 interacting partners ................................................................................ 14 The p53 family: p63 and p73...................................................................................... 14 Mutant p53 and transcription .................................................................................... 17 What can we learn from mutational spectra of TP53 ................................................ 22 Mutant p53: One name, many proteins...................................................................... 24 Stabilization of Mutant p53 in Tumors....................................................................... 25 P53 AND METABOLISM ....................................................................................................... 27 TP53 AND BREAST CANCER................................................................................................. 28 MODELING THE MAMMARY GLAND: FROM 2D TO 3D CULTURE ........................................... 30 MODELING BREAST TUMORIGENESIS IN 3D CULTURE.......................................................... 32 Luminal Clearance..................................................................................................... 33 DRIVING TUMORIGENESIS: EFFECTS ON MAMMARY TISSUE ARCHITECTURE........................ 35 Extracellular Factors ................................................................................................. 35 Cell Adhesion Molecules............................................................................................ 38 Receptor Tyrosine Kinases......................................................................................... 41 i Intracellular Signal Transduction.............................................................................. 43 Nuclear Proteins ........................................................................................................ 47 3D CULTURE AND METABOLISM ......................................................................................... 49 THE HISTORY OF CHOLESTEROL.......................................................................................... 50 THE MEVALONATE PATHWAY (ISOPRENOID/STEROL BIOSYNTHETIC PATHWAY) ................. 51 Non-sterol products of the mevalonate pathway........................................................ 53 Regulation of the mevalonate pathway ...................................................................... 54 MEVALONATE PATHWAY INHIBITORS ................................................................................. 57 THE MEVALONATE PATHWAY AND CANCER........................................................................ 59 CONCLUDING REMARKS ..................................................................................................... 60 REFERENCES ..................................................................................................................... 62 FIGURE LEGENDS ............................................................................................................... 90 FIGURES............................................................................................................................. 91 TABLES............................................................................................................................... 93 CHAPTER 2: MUTANT P53 DISRUPTS MAMMARY ACINAR MORPHOGENESIS VIA THE MEVALONATE PATHWAY......................................................................... 98 SUMMARY........................................................................................................................ 100 INTRODUCTION ................................................................................................................ 101 RESULTS .......................................................................................................................... 103 DISCUSSION ..................................................................................................................... 118 EXPERIMENTAL PROCEDURES .......................................................................................... 124 ACKNOWLEDGEMENTS..................................................................................................... 137 REFERENCES .................................................................................................................... 138 ii FIGURE LEGENDS............................................................................................................. 149 SUPPLEMENTAL FIGURE LEGENDS ................................................................................... 159 FIGURES........................................................................................................................... 168 SUPPLEMENTAL FIGURES ................................................................................................. 175 SUPPLEMENTAL TABLES .................................................................................................. 182 CHAPTER 3: MUTANT P53 REGULATES INTEGRIN
Recommended publications
  • Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
    Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent
    [Show full text]
  • Tissue-Specific Pathways and Networks Underlying Sexual
    Kurt et al. Biology of Sex Differences (2018) 9:46 https://doi.org/10.1186/s13293-018-0205-7 RESEARCH Open Access Tissue-specific pathways and networks underlying sexual dimorphism in non- alcoholic fatty liver disease Zeyneb Kurt1, Rio Barrere-Cain1, Jonnby LaGuardia1, Margarete Mehrabian2, Calvin Pan2, Simon T Hui2, Frode Norheim2, Zhiqiang Zhou2, Yehudit Hasin2, Aldons J Lusis2* and Xia Yang1* Abstract Background: Non-alcoholic fatty liver disease (NAFLD) encompasses benign steatosis and more severe conditions such as non-alcoholic steatohepatitis (NASH), cirrhosis, and liver cancer. This chronic liver disease has a poorly understood etiology and demonstrates sexual dimorphisms. We aim to examine the molecular mechanisms underlying sexual dimorphisms in NAFLD pathogenesis through a comprehensive multi-omics study. We integrated genomics (DNA variations), transcriptomics of liver and adipose tissue, and phenotypic data of NAFLD derived from female mice of ~ 100 strains included in the hybrid mouse diversity panel (HMDP) and compared the NAFLD molecular pathways and gene networks between sexes. Results: We identified both shared and sex-specific biological processes for NAFLD. Adaptive immunity, branched chain amino acid metabolism, oxidative phosphorylation, and cell cycle/apoptosis were shared between sexes. Among the sex-specific pathways were vitamins and cofactors metabolism and ion channel transport for females, and phospholipid, lysophospholipid, and phosphatidylinositol metabolism and insulin signaling for males. Additionally, numerous lipid and insulin-related pathways and inflammatory processes in the adipose and liver tissue appeared to show more prominent association with NAFLD in male HMDP. Using data-driven network modeling, we identified plausible sex-specific and tissue-specific regulatory genes as well as those that are shared between sexes.
    [Show full text]
  • Supplementary Data
    SUPPLEMENTARY DATA A cyclin D1-dependent transcriptional program predicts clinical outcome in mantle cell lymphoma Santiago Demajo et al. 1 SUPPLEMENTARY DATA INDEX Supplementary Methods p. 3 Supplementary References p. 8 Supplementary Tables (S1 to S5) p. 9 Supplementary Figures (S1 to S15) p. 17 2 SUPPLEMENTARY METHODS Western blot, immunoprecipitation, and qRT-PCR Western blot (WB) analysis was performed as previously described (1), using cyclin D1 (Santa Cruz Biotechnology, sc-753, RRID:AB_2070433) and tubulin (Sigma-Aldrich, T5168, RRID:AB_477579) antibodies. Co-immunoprecipitation assays were performed as described before (2), using cyclin D1 antibody (Santa Cruz Biotechnology, sc-8396, RRID:AB_627344) or control IgG (Santa Cruz Biotechnology, sc-2025, RRID:AB_737182) followed by protein G- magnetic beads (Invitrogen) incubation and elution with Glycine 100mM pH=2.5. Co-IP experiments were performed within five weeks after cell thawing. Cyclin D1 (Santa Cruz Biotechnology, sc-753), E2F4 (Bethyl, A302-134A, RRID:AB_1720353), FOXM1 (Santa Cruz Biotechnology, sc-502, RRID:AB_631523), and CBP (Santa Cruz Biotechnology, sc-7300, RRID:AB_626817) antibodies were used for WB detection. In figure 1A and supplementary figure S2A, the same blot was probed with cyclin D1 and tubulin antibodies by cutting the membrane. In figure 2H, cyclin D1 and CBP blots correspond to the same membrane while E2F4 and FOXM1 blots correspond to an independent membrane. Image acquisition was performed with ImageQuant LAS 4000 mini (GE Healthcare). Image processing and quantification were performed with Multi Gauge software (Fujifilm). For qRT-PCR analysis, cDNA was generated from 1 µg RNA with qScript cDNA Synthesis kit (Quantabio). qRT–PCR reaction was performed using SYBR green (Roche).
    [Show full text]
  • The Incretin Receptors for GLP-1 and GIP Are Essential for the Sustained Metabolic Actions of Vildagliptin in Mice
    Diabetes Publish Ahead of Print, published online August 29, 2007 The incretin receptors for GLP-1 and GIP are essential for the sustained metabolic actions of vildagliptin in mice Grace Flock, Laurie L. Baggio, Christine Longuet and Daniel J. Drucker The Samuel Lunenfeld Research Institute, Department of Medicine, Mount Sinai Hospital and the Banting and Best Diabetes Center, University of Toronto, Toronto, Canada. Running title: Incretin receptors and mechanisms of DPP-4 action Address correspondence to: Dr. Daniel J. Drucker Mount Sinai Hospital SLRI Room 975C 600 University Avenue Toronto Ontario M5G 1X5 Received for publication 22 May 2007 and accepted in revised form 20 August 2007. Additional information can be found in an online appendix at http://diabetes.diabetesjournls.org. Copyright American Diabetes Association, Inc., 2007 Incretin receptors and mechanisms of DPP-4 action Abstract Objective: DPP4 inhibitors (DPP-4i) lower blood glucose in diabetic subjects however the mechanism of action through which these agents improve glucose homeostasis remains incompletely understood. Although GLP-1 and GIP represent important targets for DPP4 activity, whether additional substrates are important for the glucose-lowering actions of DPP4 inhibitors remains uncertain. Research Design and Methods: We examined the efficacy of continuous vildagliptin administration in wildtype (WT) and dual incretin receptor knockout (DIRKO) mice after 8 weeks of a high fat (HF)-diet. Results: Vildagliptin had no significant effect on food intake, energy expenditure, body composition, body weight gain or insulin sensitivity in WT or DIRKO mice. However glycemic excursion after oral glucose challenge was significantly reduced in WT but not in DIRKO mice after vildagliptin treatment.
    [Show full text]
  • No Haven for the Oppressed
    No Haven for the Oppressed NO HAVEN for the Oppressed United States Policy Toward Jewish Refugees, 1938-1945 by Saul S. Friedman YOUNGSTOWN STATE UNIVERSITY Wayne State University Press Detroit 1973 Copyright © 1973 by Wayne State University Press, Detroit, Michigan 48202. All material in this work, except as identified below, is licensed under a Creative Commons Attribution-NonCommercial 3.0 United States License. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc/3.0/us/. Excerpts from Arthur Miller’s Incident at Vichy formerly copyrighted © 1964 to Penguin Publishing Group now copyrighted to Penguin Random House. All material not licensed under a Creative Commons license is all rights reserved. Permission must be obtained from the copyright owner to use this material. Published simultaneously in Canada by the Copp Clark Publishing Company 517 Wellington Street, West Toronto 2B, Canada. Library of Congress Cataloging in Publication Data Friedman, Saul S 1937– No haven for the oppressed. Originally presented as the author’s thesis, Ohio State University. Includes bibliographical references. 1. Refugees, Jewish. 2. Holocaust, Jewish (1939–1945) 3. United States— Emigration and immigration. 4. Jews in the United States—Political and social conditions. I. Title. D810.J4F75 1973 940.53’159 72-2271 ISBN 978-0-8143-4373-9 (paperback); 978-0-8143-4374-6 (ebook) Publication of this book was assisted by the American Council of Learned Societies under a grant from the Andrew W. Mellon Foundation. The publication of this volume in a freely accessible digital format has been made possible by a major grant from the National Endowment for the Humanities and the Mellon Foundation through their Humanities Open Book Program.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • Plasma Cells in Vitro Generation of Long-Lived Human
    Downloaded from http://www.jimmunol.org/ by guest on September 24, 2021 is online at: average * The Journal of Immunology , 32 of which you can access for free at: 2012; 189:5773-5785; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication November 2012; doi: 10.4049/jimmunol.1103720 http://www.jimmunol.org/content/189/12/5773 In Vitro Generation of Long-lived Human Plasma Cells Mario Cocco, Sophie Stephenson, Matthew A. Care, Darren Newton, Nicholas A. Barnes, Adam Davison, Andy Rawstron, David R. Westhead, Gina M. Doody and Reuben M. Tooze J Immunol cites 65 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/11/16/jimmunol.110372 0.DC1 This article http://www.jimmunol.org/content/189/12/5773.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 24, 2021. The Journal of Immunology In Vitro Generation of Long-lived Human Plasma Cells Mario Cocco,*,1 Sophie Stephenson,*,1 Matthew A.
    [Show full text]
  • David Rittenberg 1906–1970
    NATIONAL ACADEMY OF SCIENCES DAVID RITTENBERG 1906–1970 A Biographical Memoir by DAVID SHEMIN AND RONALD BENTLEY Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 80 PUBLISHED 2001 BY THE NATIONAL ACADEMY PRESS WASHINGTON, D.C. Courtesy of Dr. Ronald Bentley DAVID RITTENBERG November 11, 1906–January 24, 1970 BY DAVID SHEMIN AND RONALD BENTLEY AVID RITTENBERG WAS a leader in the development of the D isotopic tracer technique for the study of biochemical reactions in intermediary metabolism. In a brief but his- toric paper published in Science in 1935, Rittenberg and Rudolph Schoenheimer described work at the Department of Biochemistry at Columbia University’s College of Physicians and Surgeons. Their pioneering experiments used deuterium, 2H, the heavy, stable isotope of hydrogen, to trace the fate of various compounds in the animal body. The metabolites containing 2H had properties essentially indistinguishable from their natural analogs by the methods commonly used. Nevertheless, the presence of the isotope made it possible to trace their metabolic fate. Thus, if a 2H-containing com- pound, B, was isolated after feeding the 2H-labeled com- pound, A, to an animal, the metabolic conversion A → B was established. Prophetically, these authors noted that “the number of possible applications of this method appears to be almost unlimited.” Subsequent developments have shown that they were true prophets. In the mid-1930s little was known about the chemical reactions used by living systems to synthesize and degrade cellular components. One difficulty was that methods for the isolation and purification of carbohydrates, lipids, and 3 4 BIOGRAPHICAL MEMOIRS proteins were primitive and methods for the detailed study of enzymes were lacking.
    [Show full text]
  • Gene Expression Analysis of Mevalonate Kinase Deficiency
    International Journal of Environmental Research and Public Health Article Gene Expression Analysis of Mevalonate Kinase Deficiency Affected Children Identifies Molecular Signatures Related to Hematopoiesis Simona Pisanti * , Marianna Citro , Mario Abate , Mariella Caputo and Rosanna Martinelli * Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Via Salvatore Allende, 84081 Baronissi (SA), Italy; [email protected] (M.C.); [email protected] (M.A.); [email protected] (M.C.) * Correspondence: [email protected] (S.P.); [email protected] (R.M.) Abstract: Mevalonate kinase deficiency (MKD) is a rare autoinflammatory genetic disorder charac- terized by recurrent fever attacks and systemic inflammation with potentially severe complications. Although it is recognized that the lack of protein prenylation consequent to mevalonate pathway blockade drives IL1β hypersecretion, and hence autoinflammation, MKD pathogenesis and the molecular mechanisms underlaying most of its clinical manifestations are still largely unknown. In this study, we performed a comprehensive bioinformatic analysis of a microarray dataset of MKD patients, using gene ontology and Ingenuity Pathway Analysis (IPA) tools, in order to identify the most significant differentially expressed genes and infer their predicted relationships into biological processes, pathways, and networks. We found that hematopoiesis linked biological functions and pathways are predominant in the gene ontology of differentially expressed genes in MKD, in line with the observed clinical feature of anemia. We also provided novel information about the molecular Citation: Pisanti, S.; Citro, M.; Abate, M.; Caputo, M.; Martinelli, R. mechanisms at the basis of the hematological abnormalities observed, that are linked to the chronic Gene Expression Analysis of inflammation and to defective prenylation.
    [Show full text]
  • European Patent Office
    (19) & (11) EP 2 380 989 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 26.10.2011 Bulletin 2011/43 C12Q 1/26 (2006.01) C12N 1/20 (2006.01) C12N 9/02 (2006.01) (21) Application number: 10731334.8 (86) International application number: (22) Date of filing: 19.01.2010 PCT/JP2010/050565 (87) International publication number: WO 2010/082665 (22.07.2010 Gazette 2010/29) (84) Designated Contracting States: (72) Inventor: MATSUOKA, Takeshi AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Tokyo 101-8101 (JP) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR (74) Representative: Forstmeyer, Dietmar et al BOETERS & LIECK (30) Priority: 19.01.2009 JP 2009009177 Oberanger 32 80331 München (DE) (71) Applicant: Asahi Kasei Pharma Corporation Tokyo 101-8101 (JP) (54) METHOD AND REAGENT FOR DETERMINING MEVALONIC ACID, 3- HYDROXYMETHYLGLUTARYL-COENZYME A AND COENZYME A (57) The present invention provides a method for taryl coenzyme A in the presence of a hydrogen acceptor measuring the concentration of an analyte in a test so- X, a hydrogen donor Y, and coenzyme A; and (q) a step lution wherein the analyte is mevalonic acid and/or 3- of measuring an amount of: a reduced hydrogen acceptor hydroxymethylglutaryl coenzyme A, comprising the fol- X that is produced; or an oxidized hydrogen donor Y that lowing steps (p) and (q): (p) a step of allowing an enzyme is produced; or a hydrogen acceptor X that is decreased; that catalyzes a reaction represented by Reaction For- or a hydrogen donor Y that is decreased, wherein the mula 1 and an enzyme that catalyzes a reaction repre- hydrogen donor Y and the reduced hydrogen acceptor sented by Reaction Formula 2 to act on a test solution X are not the same.
    [Show full text]
  • Supplemental Information
    Supplemental Figures Supplemental Figure 1. 1 Supplemental Figure 1. (A) Fold changes in the mRNA expression levels of genes involved in glucose metabolism, pentose phosphate pathway (PPP), lipid biosynthesis and beta cell markers, in sorted beta cells from MIP-GFP adult mice (P25) compared to beta cells from neonatal MIP-GFP mice (P4). (N=1; pool of cells sorted from 6-8 mice in each group). (B) Fold changes in the mRNA expression levels of genes involved in glucose metabolism, pentose phosphate pathway (PPP), lipid biosynthesis and beta cell markers, in quiescent MEFs compared to proliferating MEFs. (N=1). (C) Expression Glut2 (red) in representative pancreatic sections from wildtype mice at indicated ages, by immunostaining. DAPI (blue) counter-stains the nuclei. (D) Bisulfite sequencing analysis for the Ldha and AldoB loci at indicated regions comparing sorted beta cells from P4 and P25 MIP-GFP mice (representative clones from N=3 mice). Each horizontal line with dots is an independent clone and 10 clones are shown here. These regions are almost fully DNA methylated (filled circles) in beta cells from P25 mice, but largely hypomethylated (open circles) in beta cells from P4 mice. For all experiments unless indicated otherwise, N=3 independent experiments. 2 Supplemental Figure 2. 3 Supplemental Figure 2. (A) Expression profile of Dnmt3a in representative pancreatic sections from wildtyype mice at indicated ages (P1 to 6 weeks) using immunostaining for Dnmt3a (red) and insulin (Ins; green). DAPI (blue) counter-stains the nuclei. (B) Representative pancreatic sections from 2 weeks old 3aRCTom-KO and littermate control 3aRCTom-Het animals, immunostained for Dnmt3a (red) and GFP (green).
    [Show full text]
  • S41598-021-85062-3.Pdf
    www.nature.com/scientificreports OPEN Genetic dissection of down syndrome‑associated alterations in APP/amyloid‑β biology using mouse models Justin L. Tosh1,2, Elena R. Rhymes1, Paige Mumford3, Heather T. Whittaker1, Laura J. Pulford1, Sue J. Noy1, Karen Cleverley1, LonDownS Consortium*, Matthew C. Walker4, Victor L. J. Tybulewicz2,5, Rob C. Wykes4,6, Elizabeth M. C. Fisher1* & Frances K. Wiseman3* Individuals who have Down syndrome (caused by trisomy of chromosome 21), have a greatly elevated risk of early‑onset Alzheimer’s disease, in which amyloid‑β accumulates in the brain. Amyloid‑β is a product of the chromosome 21 gene APP (amyloid precursor protein) and the extra copy or ‘dose’ of APP is thought to be the cause of this early‑onset Alzheimer’s disease. However, other chromosome 21 genes likely modulate disease when in three‑copies in people with Down syndrome. Here we show that an extra copy of chromosome 21 genes, other than APP, infuences APP/Aβ biology. We crossed Down syndrome mouse models with partial trisomies, to an APP transgenic model and found that extra copies of subgroups of chromosome 21 gene(s) modulate amyloid‑β aggregation and APP transgene‑associated mortality, independently of changing amyloid precursor protein abundance. Thus, genes on chromosome 21, other than APP, likely modulate Alzheimer’s disease in people who have Down syndrome. Down syndrome (DS), which occurs in approximately 1 in 1000 births, is the most common cause of early-onset Alzheimer’s disease-dementia (AD-DS)1. Approximately 6 million people have DS world-wide and by the age of 65 two-thirds of these individuals will have a clinical dementia diagnosis.
    [Show full text]