S41598-021-85062-3.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cystatins in Immune System
Journal of Cancer 2013, Vol. 4 45 Ivyspring International Publisher Journal of Cancer 2013; 4(1): 45-56. doi: 10.7150/jca.5044 Review Cystatins in Immune System Špela Magister1 and Janko Kos1,2 1. Jožef Stefan Institute, Department of Biotechnology, Ljubljana, Slovenia; 2. University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia. Corresponding author: Janko Kos, Ph. D., Department of Biotechnology, Jožef Stefan Institute, &Faculty of Pharmacy, University of Ljubljana, Slovenia; [email protected]; Phone+386 1 4769 604, Fax +3861 4258 031. © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/ licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2012.10.22; Accepted: 2012.12.01; Published: 2012.12.20 Abstract Cystatins comprise a large superfamily of related proteins with diverse biological activities. They were initially characterised as inhibitors of lysosomal cysteine proteases, however, in recent years some alternative functions for cystatins have been proposed. Cystatins pos- sessing inhibitory function are members of three families, family I (stefins), family II (cystatins) and family III (kininogens). Stefin A is often linked to neoplastic changes in epithelium while another family I cystatin, stefin B is supposed to have a specific role in neuredegenerative diseases. Cystatin C, a typical type II cystatin, is expressed in a variety of human tissues and cells. On the other hand, expression of other type II cystatins is more specific. Cystatin F is an endo/lysosome targeted protease inhibitor, selectively expressed in immune cells, suggesting its role in processes related to immune response. -
Anti-Cystatin B / Stefin B Antibody (ARG56897)
Product datasheet [email protected] ARG56897 Package: 100 μl anti-Cystatin B / Stefin B antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes Cystatin B / Stefin B Tested Reactivity Hu Tested Application ICC/IF, IHC-P, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name Cystatin B / Stefin B Antigen Species Human Immunogen Recombinant fusion protein corresponding to aa. 1-98 of Human Cystatin B / Stefin B (NP_000091.1). Conjugation Un-conjugated Alternate Names Liver thiol proteinase inhibitor; EPM1; CPI-B; EPM1A; Cystatin-B; Stefin-B; PME; CST6; ULD; STFB Application Instructions Application table Application Dilution ICC/IF 1:50 - 1:200 IHC-P 1:50 - 1:200 WB 1:500 - 1:2000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control MCF7 and DU145 Calculated Mw 11 kDa Observed Size 14 kDa Properties Form Liquid Purification Affinity purified. Buffer PBS (pH 7.3), 0.02% Sodium azide and 50% Glycerol. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/3 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol CSTB Gene Full Name cystatin B (stefin B) Background The cystatin superfamily encompasses proteins that contain multiple cystatin-like sequences. -
Behavioural Brain Research 217 (2011) 271–281
Behavioural Brain Research 217 (2011) 271–281 Contents lists available at ScienceDirect Behavioural Brain Research journal homepage: www.elsevier.com/locate/bbr Research report The telomeric part of the human chromosome 21 from Cstb to Prmt2 is not necessary for the locomotor and short-term memory deficits observed in the Tc1 mouse model of Down syndrome Arnaud Duchon a, Stéphanie Pothion b, Véronique Brault a, Andrew J. Sharp c, Victor L.J. Tybulewicz d, Elizabeth M.C. Fisher e, Yann Herault a,b,f,∗ a Institut de Génétique Biologie Moléculaire et Cellulaire, Translational Medicine and Neuroscience Program, IGBMC, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, 1 rue Laurent Fries, 67404 Illkirch, France b Transgenese et Archivage Animaux Modèles, TAAM, CNRS, UPS44, 3B rue de la Férollerie 45071 Orléans, France c Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, Room 14-75B, Box 1498, New York, NY 10029, USA d MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK e UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK f Institut Clinique de la Souris, ICS, 1 rue Laurent Fries, 67404 Illkirch, France article info abstract Article history: Trisomy 21 or Down syndrome (DS) is the most common form of human aneuploid disorder. Increase Received 5 September 2010 in the copy number of human chromosome 21 genes leads to several alterations including mental retar- Received in revised form 6 October 2010 dation, heart and skeletal dysmorphologies with additional physiological defects. To better understand Accepted 17 October 2010 the genotype and phenotype relationships, several mouse models have been developed, including the Available online 31 October 2010 transchromosomic Tc1 mouse, which carries an almost complete human chromosome 21, that displays several locomotor and cognitive alterations related to DS. -
Dynamics of Plasma Biomarkers in Down Syndrome: the Relative Levels of Aβ42 Decrease with Age, Whereas NT1 Tau and Nfl Increase
Dynamics of plasma biomarkers in Down syndrome: the relative levels of Aβ42 decrease with age, whereas NT1 tau and NfL increase David Mengel University of Tuebingen Wen Liu Brigham and Women's Hospital Robert J. Glynn Brigham and Women's Hospital Dennis J. Selkoe Brigham and Women's Hospital Andre Strydom King's College London Florence Lai Massachusetts General Hospital H. Diana Rosas Massachusetts General Hospital Amy Torres Massachusetts General Hospital Vasiliki Patsiogiannis Massachusetts General Hospital Brian Skotko Massachusetts General Hospital Dominic Walsh ( [email protected] ) Brigham and Women's Hospital and Harvard Medical School Research Keywords: Alzheimer’s disease, amyloid, Down syndrome, dementia, neurolament light, Simoa Posted Date: January 29th, 2020 DOI: https://doi.org/10.21203/rs.2.18106/v2 Page 1/23 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Alzheimer's Research and Therapy on March 19th, 2020. See the published version at https://doi.org/10.1186/s13195-020-00593-7. Page 2/23 Abstract Background Down syndrome (DS) is the most common genetic cause of Alzheimer’s Disease (AD), but diagnosis of AD in DS is challenging due to the intellectual disability which accompanies DS. When disease-modifying agents for AD are approved, reliable biomarkers will be required to identify when and how long people with DS should undergo treatment. Three cardinal neuropathological features characterize AD, and AD in DS – Aβ amyloid plaques, tau neurobrillary tangles, and neuronal loss. Here, we quantied plasma biomarkers of all 3 neuropathological features in a large cohort of people with DS aged from 3 months to 68 years. -
Stefin B (CSTB) Mouse Monoclonal Antibody [Clone ID: OTI1E8] Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA813046 Stefin B (CSTB) Mouse Monoclonal Antibody [Clone ID: OTI1E8] Product data: Product Type: Primary Antibodies Clone Name: OTI1E8 Applications: IHC, WB Recommended Dilution: WB 1:500, IHC 1:500 Reactivity: Human Host: Mouse Isotype: IgG1 Clonality: Monoclonal Immunogen: Human recombinant protein fragment corresponding to amino acids 1-98 of human CSTB (NP_000091) produced in E.coli. Formulation: PBS (PH 7.3) containing 1% BSA, 50% glycerol and 0.02% sodium azide. Concentration: 1 mg/ml Purification: Purified from mouse ascites fluids or tissue culture supernatant by affinity chromatography (protein A/G) Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 11 kDa Gene Name: cystatin B Database Link: NP_000091 Entrez Gene 1476 Human P04080 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 Stefin B (CSTB) Mouse Monoclonal Antibody [Clone ID: OTI1E8] – TA813046 Background: The cystatin superfamily encompasses proteins that contain multiple cystatin-like sequences. Some of the members are active cysteine protease inhibitors, while others have lost or perhaps never acquired this inhibitory activity. There are three inhibitory families in the superfamily, including the type 1 cystatins (stefins), type 2 cystatins and kininogens. This gene encodes a stefin that functions as an intracellular thiol protease inhibitor. -
An Animal Model with a Cardiomyocyte-Specific Deletion of Estrogen Receptor Alpha: Functional, Metabolic, and Differential Netwo
Washington University School of Medicine Digital Commons@Becker Open Access Publications 2014 An animal model with a cardiomyocyte-specific deletion of estrogen receptor alpha: Functional, metabolic, and differential network analysis Sriram Devanathan Washington University School of Medicine in St. Louis Timothy Whitehead Washington University School of Medicine in St. Louis George G. Schweitzer Washington University School of Medicine in St. Louis Nicole Fettig Washington University School of Medicine in St. Louis Attila Kovacs Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Devanathan, Sriram; Whitehead, Timothy; Schweitzer, George G.; Fettig, Nicole; Kovacs, Attila; Korach, Kenneth S.; Finck, Brian N.; and Shoghi, Kooresh I., ,"An animal model with a cardiomyocyte-specific deletion of estrogen receptor alpha: Functional, metabolic, and differential network analysis." PLoS One.9,7. e101900. (2014). https://digitalcommons.wustl.edu/open_access_pubs/3326 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Sriram Devanathan, Timothy Whitehead, George G. Schweitzer, Nicole Fettig, Attila Kovacs, Kenneth S. Korach, Brian N. Finck, and Kooresh I. Shoghi This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/3326 An Animal Model with a Cardiomyocyte-Specific Deletion of Estrogen Receptor Alpha: Functional, Metabolic, and Differential Network Analysis Sriram Devanathan1, Timothy Whitehead1, George G. Schweitzer2, Nicole Fettig1, Attila Kovacs3, Kenneth S. -
Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen, -
Modelling Down Syndrome
UPDATES GENetICS AND COGNITIVE NeuROSCIENCE Modelling Down syndrome Frank Buckley Animal models are extensively used in genetics, neuroscience and biomedical research. Recent studies illustrate the usefulness and the challenges of research utilising genetically engineered mice to explore the developmental biology of Down syndrome. These studies highlight many of the issues at the centre of what we understand about Down syndrome, and may one day point to useful ways to improve quality of life for people living with Down syndrome. All people diagnosed with Down syn- drome have an extra copy of at least part of chromosome 21 in at least some of their cells. Most have a complete additional copy of chromosome 21 in every cell (BOX 1). These extra copies of genes, present from the point of conception, begin a complex cascade of consequences that depend (among other things) on the addi- tional genes from chromosome 21, other genes on other chromosomes, anatomical location, developmental progress and the environment. The precise details of how these processes work and interact are not clearly understood. Such questions lie at the heart of modern genetics and cogni- tive neuroscience research. Complex systems The organism of choice for much of modern biomedical research is The molecular biology of just a single cell the mouse. Several genetically engineered strains have been made to is complicated (FIGURE 1) and modelling complex systems is difficult[1,2]. Describing study the biology of Down syndrome. how disruptions in gene ‘doses’ at the cel- lular level in people with Down syndrome Box 1 | The genetics of Down syndrome contribute to (for example) particular dif- ficulties in verbal short-term memory[3] or Approximately 95% of people with Down syndrome have an additional copy of comparatively slower progress in language a whole chromosome 21 in every cell [4] development than reading development (trisomy 21). -
1 Supporting Information for a Microrna Network Regulates
Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia. -
Tissue-Specific Pathways and Networks Underlying Sexual
Kurt et al. Biology of Sex Differences (2018) 9:46 https://doi.org/10.1186/s13293-018-0205-7 RESEARCH Open Access Tissue-specific pathways and networks underlying sexual dimorphism in non- alcoholic fatty liver disease Zeyneb Kurt1, Rio Barrere-Cain1, Jonnby LaGuardia1, Margarete Mehrabian2, Calvin Pan2, Simon T Hui2, Frode Norheim2, Zhiqiang Zhou2, Yehudit Hasin2, Aldons J Lusis2* and Xia Yang1* Abstract Background: Non-alcoholic fatty liver disease (NAFLD) encompasses benign steatosis and more severe conditions such as non-alcoholic steatohepatitis (NASH), cirrhosis, and liver cancer. This chronic liver disease has a poorly understood etiology and demonstrates sexual dimorphisms. We aim to examine the molecular mechanisms underlying sexual dimorphisms in NAFLD pathogenesis through a comprehensive multi-omics study. We integrated genomics (DNA variations), transcriptomics of liver and adipose tissue, and phenotypic data of NAFLD derived from female mice of ~ 100 strains included in the hybrid mouse diversity panel (HMDP) and compared the NAFLD molecular pathways and gene networks between sexes. Results: We identified both shared and sex-specific biological processes for NAFLD. Adaptive immunity, branched chain amino acid metabolism, oxidative phosphorylation, and cell cycle/apoptosis were shared between sexes. Among the sex-specific pathways were vitamins and cofactors metabolism and ion channel transport for females, and phospholipid, lysophospholipid, and phosphatidylinositol metabolism and insulin signaling for males. Additionally, numerous lipid and insulin-related pathways and inflammatory processes in the adipose and liver tissue appeared to show more prominent association with NAFLD in male HMDP. Using data-driven network modeling, we identified plausible sex-specific and tissue-specific regulatory genes as well as those that are shared between sexes. -
Single-Cell Expression Profiling Of
Edinburgh Research Explorer Single-cell expression profiling of dopaminergic neurons combined with association analysis identifies pyridoxal kinase as Parkinson's disease gene Citation for published version: Elstner, M, Morris, CM, Heim, K, Lichtner, P, Bender, A, Mehta, D, Schulte, C, Sharma, M, Hudson, G, Goldwurm, S, Giovanetti, A, Zeviani, M, Burn, DJ, McKeith, IG, Perry, RH, Jaros, E, Krueger, R, Wichmann, H-E, Schreiber, S, Campbell, H, Wilson, JF, Wright, AF, Dunlop, M, Pistis, G, Toniolo, D, Chinnery, PF, Gasser, T, Klopstock, T, Meitinger, T, Prokisch, H & Turnbull, DM 2009, 'Single-cell expression profiling of dopaminergic neurons combined with association analysis identifies pyridoxal kinase as Parkinson's disease gene', Annals of Neurology, vol. 66, no. 6, pp. 792-798. https://doi.org/10.1002/ana.21780 Digital Object Identifier (DOI): 10.1002/ana.21780 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Annals of Neurology Publisher Rights Statement: Published in final edited form as: Ann Neurol. 2009 December ; 66(6): 792–798. doi:10.1002/ana.21780. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. -
Evaluation of Antioxidant Activity in the Erythrocytes in Patients with Down Syndrome
PRACA ORYGINALNA/ORIGINAL ARTICLE Evaluation of antioxidant activity in the erythrocytes in patients with Down syndrome Ocena aktywności antyoksydacyjnej w erytocytach u pacjentów z zespołem Downa Magdalena Cholewa, Joanna Śmigielska-Kuzia, Krzysztof Sendrowski, Beata Olchowik, Anna Jakubiuk-Tomaszuk, Marta Nędzi Klinika Neurologii i Rehabilitacji Dziecięcej Uniwersytetu Medycznego w Białymstoku, STRESZCZENIE ABSTRACT Celem pracy byla ocena aktywności enzymów antyoksyda- The aim of this study was to evaluate the activity of antioxi- cyjnch: dysmutazy ponadtlenkowej (SOD), peroksydazy glu- dant enzymes: superoxide dismutase (SOD), glutathione per- tationowej (GSH-Px), reduktazy glutationowej (GSSG-R) oraz oxidase (GSH-Px), glutathione reductase (GSSG-R) and serum stężenia dialdehydu malonowego (MDA) w erytrocytach osób malondialdehyde (MDA) levels in the erythrocytes in patients z zespołem Downa (ZD). Materiał i metody. Badaniem objęto with Down syndrome (DS). Materials and methods. The study grupę 66 pacjentów (24 dzieci i 42 dorosłych )z trisomią 21 pary included 66 patients (24 children and 42 adults) with Trisomy chromosomów. Grupę kontrolną stanowiło 59 osób zdrowych 21. The control group consisted of 59 healthy individuals (24 (24 dzieci i 35 dorosłych). Aktywność SOD, GSH-Px, GSSG-R children and 35 adults). The activity of SOD, GSH-Px, GSSG-R oraz stężenie MDA w erytrocytach oznaczono metodami spek- and MDA levels in erythrocytes were determined spectro- trofotometrycznymi. Wyniki. Wykazano wyższą aktywność photometrically. Results. We found a greater activity, which enzymów antyoksydacyjnych: SOD, GSH-Px, GSSG-R u osób decreased with age, of antioxidant enzymes: SOD, GSH-Px, z ZD w porównaniu do grupy kontrolnej, która malała wraz GSSG-R in patients with DS compared with the control group.