The Two Tort Dit U Nonton Un Mountin

Total Page:16

File Type:pdf, Size:1020Kb

The Two Tort Dit U Nonton Un Mountin THETWO TORT DIT USU 20180010132A1NONTONUN MOUNTIN ( 19) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2018 / 0010132 A1 MAVRAKIS et al. ( 43 ) Pub . Date : Jan . 11 , 2018 ( 54 ) INHIBITION OF PRMT5 TO TREAT Publication Classification MTAP - DEFICIENCY- RELATED DISEASES (51 ) Int . CI. C12N 15 / 113 ( 2010 .01 ) (71 ) Applicant : NOVARTIS AG , Basel (CH ) A61K 45 / 06 ( 2006 . 01) ( 72 ) Inventors : Konstantinos John MAVRAKIS , A61K 31 / 7088 (2006 . 01 ) Boston , MA (US ) ; Earl Robert COZK 16 / 40 ( 2006 .01 ) MCDONALD , III , Wayland , MA (US ) ; A61K 39 /395 ( 2006 . 01 ) Frank Peter STEGMEIER , Acton , GOIN 33 /574 (2006 . 01 ) A61K 39 / 00 ( 2006 .01 ) MA (US ) (52 ) U . S . CI. CPC . .. C12N 15 / 1137 ( 2013 .01 ) ; A61K 39 /3955 ( 73 ) Assignee : Novartis AG , Basel (CH ) ( 2013 .01 ) ; A61K 45 / 06 ( 2013 .01 ) ; GOIN 33 /574 ( 2013. 01 ) ; C12Y 201/ 01 (2013 .01 ) ; ( 21 ) Appl. No. : 15 /510 , 542 A61K 31 /7088 (2013 .01 ) ; CO7K 16 / 40 ( 2013 .01 ) ; A61K 2039 /505 (2013 . 01 ) ; C12N ( 22 ) PCT Filed : Sep . 9 , 2015 2310 / 14 (2013 . 01 ) ; C12N 2320 / 31 ( 2013 .01 ) ; ( 86 ) PCT No .: PCT/ IB2015 /056902 CO7K 2317/ 76 ( 2013 .01 ) $ 371 (c ) ( 1 ) , (57 ) ABSTRACT ( 2 ) Date : Mar. 10 , 2017 The invention provides novel personalized therapies , kits , transmittable forms of information and methods for use in treating patients having cancer , wherein the cancer is Related U . S . Application Data MTAP - deficient and / or MTA -accumulating and thus ame (60 ) Provisional application No . 62/ 131 ,437 , filed on Mar . nable to therapeutic treatment with a PRMT5 inhibitor. Kits , 11 , 2015 , provisional application No . 62 /049 , 004 , methods of screening for candidate PRMT5 inhibitors, and filed on Sep . 11 , 2014 . associated methods of treatment are also provided . Patent Application Publication Jan . 11, 2018 Sheet 1 of 6 US 2018 / 0010132 A1 FIG . 1 . MTAPexpression . WWW . C . .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. '. .. .' . .. .. .. .. .. .. .. .. .. PRMT5 insensitive PRMT5 sensitive Patent Application Publication Jan 11 , 2018 Sheet 2 of 6 US 2018/ 0010132 A1 { {} ?.Y483 ?.33 ?? *.#H| ¥ÀAxxxxx?. * *{} XXX Y?ws { ??… " * * * * * ? * * “? * * -titstits , ???? tre * ????* * * ????? * ?? * ???? *#.* * ????? {} }} * - * * * # * * * * ; * * #Y * * * * w * * * {} { * ???????????????? * * * ? & * ## # ## * - FIG . 2 Patent Application Publication Jan . 11, 2018 Sheet 3 of 6 US 2018 / 0010132 A1 FIG . 3 OU 3902 dols-JoxeluUpsis Campoamud LOOK songsoon wwel ma MMMMMAMA ON tanpowoldfor 96LOH (+14AWW) me. OU Vzd-abu?qUessen SIWud WWW SCIO saga ???? OM wantino 4000ON BE fiffiffiffiffiffiffifin BOUQ10 ffffffffffffRRRRRRRRRRAAFFFFFFFFFFFF! Patent Application Publication Jan. 11, 2018 Sheet 4 of 6 US 2018 / 0010132 A1 FIG. 3 ? song a man ? ?? “ ?? ?,????????? ? ? ??“?????2013?????20% ???????????? AAAAAAAAAAAAAAyj- pMyAirity + Malving - MixRe : ????? * * ? ? ? ?«< ????????100% ????????2014 ???? ????????? ?????????? ????? ?????????? ????????? ????????????????????? «??&? ??? ? ??????? M ??4 ?? ??? 1988 ??? ?? ?? ???? ??“ ? ?? ???? ????????????????????????????????????????????????? ? Patent Application Publication Jan. 11, 2018 Sheet 5 of 6 US 2018 / 0010132 A1 FIG . 3 "-* .HI,"*| ? */ ": “ ? '" relliu *-;'/ … L | . 2012?0606010 yual. : *Wi' EFT":,tit ???? 2015 ; ,? 04/14 · |???-236 *" ? ?122018icial2012 "/ */ */ ; , ???????? ?? : finiiVillipFidtiidallilibi?? “” : " I " : w,, |??? " Irribe. 'le" ? : ??: i/ti ? " : : … … " “… ti/??i ????????? ??????????????? |?? : : * 2)-: ”? * /ite201227 / 2014-105/24·?, ?? ???????????????????????????????? ?????????? ?????????????? " ?? ??/filipid?????????ili“ ?“???13952? 2-212012 1993 Airiti/?? */ , ?2012 ???: ?????? /* SHI ? ? ??? ? ???????? ?? - - - tiriti |2012 ? 1"11. /di4f4iFi?? Lit: : ??,: ??, '* 2017 20 HET:wil“V" ::: 2011 )2 *: lulululiulinipinimultipliaWii :Stelease, "h ": : 017-12 , : : 365 i ?,2014? ? ?? : ? “??? 23:26)·???2012 iiiilibilibiliti , ??, "jiji/??????????????i????Lili??litidaltilitaid 2014?,“?”1989)2014 ? 9492016? ?: (2015-1226 #?, |???? “1996Livilibilibilituijill ????, ? ??????? ? : ; = = ? Patent Application Publication Jan . 11, 2018 Sheet 6 of 6 US 2018 / 0010132 A1 FIG . 3 PK1WT (MTAP + /* ") OMSO MTA 12 . 5 UM Hitttttt 50 PM PK1 (MTAP KO ) DMSO MTA 12 .5 PM9900 50 UM US 2018 / 0010132 A1 Jan . 11, 2018 INHIBITION OF PRMT5 TO TREAT 12 contiguous nucleotides (nt ) of the sequence of MTAP MTAP - DEFICIENCY - RELATED DISEASES provided in SEQ ID NO : 98 , wherein the primer is no longer than about 30 nt, about 50 nt, or about 100 nt in length . Cells TECHNICAL FIELD are determined to be MTA overproducing or MTA accumu [ 0001] The present invention provides novel composi lating by techniques known in the art; methods for detecting tions , as well as diagnostic and treatment methods for MTA include , as a non - limiting example , liquid chromatog diseases related to MTAP deficiency and / or MTA accumu raphy - electrospray ionization - tandem mass spectrometry ( LC - ESI -MS / MS ) . lation , including , but not limited to , types of cancer . [0009 ] In one embodiment, the invention provides use of a molecule that inhibits the cellular function of the PRMT5 BACKGROUND protein for the treatment of a disease associated with MTAP [ 0002 ] Many types of cancer are associated with a poor deficiency and /or MTA accumulation , including , but not prognosis . limited to , a cancer , including , for example , but not limited [ 0003 ] Pancreatic cancer is associated with a poor long to : glioblastoma , bladder cancer, pancreatic cancer , meso term survival rate of only 10 % to 15 % after resection . thelioma, melanoma, lung squamous, lung adenocarcinoma, Patients with positive microscopic resection margins have a diffuse large B -cell lymphoma, leukemia , head and neck worse survival. The median survival was 19 . 7 months with cancer, and cancers of the kidney, breast , endometrium , chemotherapy versus 14 . 0 months without. See , e . g ., Neop urinary tract, liver, soft tissue , pleura and large intestine . tolemos et al . 2001 Ann . Surg . 234 : 758 - 768 . [0010 ) Also provided is a use of a molecule that inhibits [0004 ] Mesothelioma is a rare form of cancer that devel the cellular function of the PRMT5 protein for the manu ops from cells of the mesothelium , the protective lining that facture of a medicament for treating a disease associated covers many of the internal organs of the body. Mesothe with MTAP deficiency and / or MTA accumulation , includ lioma is most commonly caused by exposure to asbestos . ing , but not limited to , a cancer, including , for example , but While mesothelioma is still relatively rare , rates have not limited to : glioblastoma , bladder cancer, pancreatic increased in the last twenty years . One study showed a cancer , mesothelioma , melanoma, lung squamous, lung survival rate of only 38 % at 2 years and 15 % at 5 years adenocarcinoma, diffuse large B - cell lymphoma , leukemia , (median 19 months ) . See , e . g ., Sugarbaker et al . 1999 J . head and neck cancer , and cancers of the kidney , breast , Thorac . Card . Surg. 117 : 54 -65 . endometrium , urinary tract, liver, soft tissue , pleura and [0005 ] Glioblastoma is the most common and most large intestine . aggressive malignant primary brain tumor in humans. It [ 0011 ] The PRMT5 inhibitor may be selected from the involves glial cells and accounts for half of all brain tumor group consisting of: a RNA inhibitor ( e . g ., a RNAi agent) , cases and a fifth of all intracranial tumors. Treatment can a CRISPR , a TALEN , a zinc finger nuclease , an mRNA , an involve surgery , radiation and chemotherapy . However , antibody or derivative thereof, a chimeric antigen receptor T median survival with treatment is only 15 months. cell (CART ) or a low molecular weight ( LMW ) compound . [0006 ] An unmet medical need exists for new treatments [0012 ] The PRMT5 inhibitor may be selected from the for these and other types of cancer . group consisting of: an antibody or derivative thereof, or a [0007 ] There is an increasing body of evidence that sug low molecular weight compound . In some embodiments , the gests a patient' s genetic profile can be determinative to a antibody or a derivative thereof binds to a HLA -peptide patient' s responsiveness to a therapeutic treatment. Given complex comprising a peptide having the sequence of any of the numerous therapies available to an individual having SEQ ID NOs : 101- 158 . cancer , a determination of the genetic factors that influence , [0013 ] According to an embodiment, the method accord for example , response to a particular drug , could be used to ing to the first aspect comprises administering to a subject in provide a patient with a personalized treatment regime. Such need thereof, a PRMT5 inhibitor in combination with a personalized treatment regimens offer the potential to maxi second therapeutic agent. mize therapeutic benefit to the patient while minimizing [ 0014 ] In an embodiment, the second therapeutic agent is related side effects that can be associated with alternative an anti - cancer agent, anti -allergic agent, anti - nausea agent and less effective treatment regimens . ( or anti - emetic ) , pain reliever , or cytoprotective agent. [00151 According to one embodiment, the second thera SUMMARY OF THE INVENTION peutic agent is an anti - cancer agent selected from the list [ 0008 ] According to a first aspect of the invention , meth consisting of: an HDAC
Recommended publications
  • Behavioural Brain Research 217 (2011) 271–281
    Behavioural Brain Research 217 (2011) 271–281 Contents lists available at ScienceDirect Behavioural Brain Research journal homepage: www.elsevier.com/locate/bbr Research report The telomeric part of the human chromosome 21 from Cstb to Prmt2 is not necessary for the locomotor and short-term memory deficits observed in the Tc1 mouse model of Down syndrome Arnaud Duchon a, Stéphanie Pothion b, Véronique Brault a, Andrew J. Sharp c, Victor L.J. Tybulewicz d, Elizabeth M.C. Fisher e, Yann Herault a,b,f,∗ a Institut de Génétique Biologie Moléculaire et Cellulaire, Translational Medicine and Neuroscience Program, IGBMC, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, 1 rue Laurent Fries, 67404 Illkirch, France b Transgenese et Archivage Animaux Modèles, TAAM, CNRS, UPS44, 3B rue de la Férollerie 45071 Orléans, France c Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, Room 14-75B, Box 1498, New York, NY 10029, USA d MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK e UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK f Institut Clinique de la Souris, ICS, 1 rue Laurent Fries, 67404 Illkirch, France article info abstract Article history: Trisomy 21 or Down syndrome (DS) is the most common form of human aneuploid disorder. Increase Received 5 September 2010 in the copy number of human chromosome 21 genes leads to several alterations including mental retar- Received in revised form 6 October 2010 dation, heart and skeletal dysmorphologies with additional physiological defects. To better understand Accepted 17 October 2010 the genotype and phenotype relationships, several mouse models have been developed, including the Available online 31 October 2010 transchromosomic Tc1 mouse, which carries an almost complete human chromosome 21, that displays several locomotor and cognitive alterations related to DS.
    [Show full text]
  • Imm Catalog.Pdf
    $ Gene Symbol A B 3 C 4 D 9 E 10 F 11 G 12 H 13 I 14 J. K 17 L 18 M 19 N 20 O. P 22 R 26 S 27 T 30 U 32 V. W. X. Y. Z 33 A ® ® Gene Symbol Gene ID Antibody Monoclonal Antibody Polyclonal MaxPab Full-length Protein Partial-length Protein Antibody Pair KIt siRNA/Chimera Gene Symbol Gene ID Antibody Monoclonal Antibody Polyclonal MaxPab Full-length Protein Partial-length Protein Antibody Pair KIt siRNA/Chimera A1CF 29974 ● ● ADAMTS13 11093 ● ● ● ● ● A2M 2 ● ● ● ● ● ● ADAMTS20 80070 ● AACS 65985 ● ● ● ADAMTS5 11096 ● ● ● AANAT 15 ● ● ADAMTS8 11095 ● ● ● ● AATF 26574 ● ● ● ● ● ADAMTSL2 9719 ● AATK 9625 ● ● ● ● ADAMTSL4 54507 ● ● ABCA1 19 ● ● ● ● ● ADAR 103 ● ● ABCA5 23461 ● ● ADARB1 104 ● ● ● ● ABCA7 10347 ● ADARB2 105 ● ABCB9 23457 ● ● ● ● ● ADAT1 23536 ● ● ABCC4 10257 ● ● ● ● ADAT2 134637 ● ● ABCC5 10057 ● ● ● ● ● ADAT3 113179 ● ● ● ABCC8 6833 ● ● ● ● ADCY10 55811 ● ● ABCD2 225 ● ADD1 118 ● ● ● ● ● ● ABCD4 5826 ● ● ● ADD3 120 ● ● ● ABCG1 9619 ● ● ● ● ● ADH5 128 ● ● ● ● ● ● ABL1 25 ● ● ADIPOQ 9370 ● ● ● ● ● ABL2 27 ● ● ● ● ● ADK 132 ● ● ● ● ● ABO 28 ● ● ADM 133 ● ● ● ABP1 26 ● ● ● ● ● ADNP 23394 ● ● ● ● ABR 29 ● ● ● ● ● ADORA1 134 ● ● ACAA2 10449 ● ● ● ● ADORA2A 135 ● ● ● ● ● ● ● ACAN 176 ● ● ● ● ● ● ADORA2B 136 ● ● ACE 1636 ● ● ● ● ADRA1A 148 ● ● ● ● ACE2 59272 ● ● ADRA1B 147 ● ● ACER2 340485 ● ADRA2A 150 ● ● ACHE 43 ● ● ● ● ● ● ADRB1 153 ● ● ACIN1 22985 ● ● ● ADRB2 154 ● ● ● ● ● ACOX1 51 ● ● ● ● ● ADRB3 155 ● ● ● ● ACP5 54 ● ● ● ● ● ● ● ADRBK1 156 ● ● ● ● ACSF2 80221 ● ● ADRM1 11047 ● ● ● ● ACSF3 197322 ● ● AEBP1 165 ● ● ● ● ACSL4 2182 ●
    [Show full text]
  • Methylthioadenosine Phosphorylase (MTAP) Is Frequent in High-Grade Gliomas; Nevertheless, It Is Not Associated with Higher Tumor Aggressiveness
    cells Article 0 Loss of 5 -Methylthioadenosine Phosphorylase (MTAP) is Frequent in High-Grade Gliomas; Nevertheless, it is Not Associated with Higher Tumor Aggressiveness Weder Pereira de Menezes 1, Viviane Aline Oliveira Silva 1 , Izabela Natália Faria Gomes 1 , Marcela Nunes Rosa 1 , Maria Luisa Corcoll Spina 1 , Adriana Cruvinel Carloni 1, Ana Laura Vieira Alves 1 , Matias Melendez 1, Gisele Caravina Almeida 2, Luciane Sussuchi da Silva 1 , Carlos Clara 3, Isabela Werneck da Cunha 4, Glaucia Noeli Maroso Hajj 4 , Chris Jones 5, Lucas Tadeu Bidinotto 1,6,7 and Rui Manuel Reis 1,8,9,* 1 Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14.784-400, Brazil; [email protected] (W.P.d.M.); [email protected] (V.A.O.S.); [email protected] (I.N.F.G.); [email protected] (M.N.R.); [email protected] (M.L.C.S.); [email protected] (A.C.C.); [email protected] (A.L.V.A.); [email protected] (M.M.); [email protected] (L.S.d.S.); [email protected] (L.T.B.) 2 Department of Pathology, Barretos Cancer Hospital, Barretos, São Paulo 14.784-400, Brazil; [email protected] 3 Department of Neurosurgery, Barretos Cancer Hospital, Barretos, São Paulo 14.784-400, Brazil; [email protected] 4 A.C Camargo Cancer Center, São Paulo, São Paulo 015.080-10, Brazil; [email protected] (I.W.d.C.); [email protected] (G.N.M.H.) 5 Institute of Cancer Research, London SW7 3RP, UK; [email protected] 6 Barretos School of Health Sciences, Dr.
    [Show full text]
  • An Animal Model with a Cardiomyocyte-Specific Deletion of Estrogen Receptor Alpha: Functional, Metabolic, and Differential Netwo
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2014 An animal model with a cardiomyocyte-specific deletion of estrogen receptor alpha: Functional, metabolic, and differential network analysis Sriram Devanathan Washington University School of Medicine in St. Louis Timothy Whitehead Washington University School of Medicine in St. Louis George G. Schweitzer Washington University School of Medicine in St. Louis Nicole Fettig Washington University School of Medicine in St. Louis Attila Kovacs Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Devanathan, Sriram; Whitehead, Timothy; Schweitzer, George G.; Fettig, Nicole; Kovacs, Attila; Korach, Kenneth S.; Finck, Brian N.; and Shoghi, Kooresh I., ,"An animal model with a cardiomyocyte-specific deletion of estrogen receptor alpha: Functional, metabolic, and differential network analysis." PLoS One.9,7. e101900. (2014). https://digitalcommons.wustl.edu/open_access_pubs/3326 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Sriram Devanathan, Timothy Whitehead, George G. Schweitzer, Nicole Fettig, Attila Kovacs, Kenneth S. Korach, Brian N. Finck, and Kooresh I. Shoghi This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/3326 An Animal Model with a Cardiomyocyte-Specific Deletion of Estrogen Receptor Alpha: Functional, Metabolic, and Differential Network Analysis Sriram Devanathan1, Timothy Whitehead1, George G. Schweitzer2, Nicole Fettig1, Attila Kovacs3, Kenneth S.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • The Role of Arginine Methylation of Hnrnpul1 in the DNA Damage Response Pathway Gayathri Gurunathan
    The role of arginine methylation of hnRNPUL1 in the DNA damage response pathway Gayathri Gurunathan Faculty of Medicine Division of Experimental Medicine McGill University, Montreal, Quebec, Canada August 2014 A Thesis Submitted to McGill University in Partial Fulfillment of the Requirements for the Degree of Master of Science © Gayathri Gurunathan 2014 Abstract Post-translational modifications play a key role in mediating the DNA damage response (DDR). It is well-known that serine/threonine phosphorylation is a major post-translational modification required for the amplification of the DDR; however, less is known about the role of other modifications, such as arginine methylation. It is known that arginine methylation of the DDR protein, MRE11, by protein arginine methyltransferase 1 (PRMT1) is essential for the response, as the absence of methylation of MRE11 in mice leads to hypersensitivity to DNA damage agents. Herein, we identify hnRNPUL1 as a substrate of PRMT1 and the methylation of hnRNPUL1 is required for DNA damage signalling. I show that several RGG/RG sequences of hnRNPUL1 are methylated in vitro by PRMT1. Recombinant glutathione S-transferase (GST) proteins harboring hnRNPUL1 RGRGRG, RGGRGG and a single RGG were efficient in vitro substrates of PRMT1. Moreover, I performed mass spectrometry analysis of Flag-hnRNPUL1 and identified the same sites methylated in vivo. PRMT1-depletion using RNA interference led to the hypomethylation of hnRNPUL1, consistent with PRMT1 being the only enzyme in vivo to methylate these sequences. We replaced the arginines with lysine in hnRNPUL1 (Flag- hnRNPUL1RK) such that this mutant protein cannot be methylated by PRMT1. Indeed Flag- hnRNPUL1RK was undetected using specific dimethylarginine antibodies.
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Análise Integrativa De Perfis Transcricionais De Pacientes Com
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas.
    [Show full text]
  • Heatmaps - the Gene Expression Edition
    Heatmaps - the gene expression edition Jeff Oliver 20 July, 2020 An application of heatmap visualization to investigate differential gene expression. Learning objectives 1. Manipulate data into a ‘tidy’ format 2. Visualize data in a heatmap 3. Become familiar with ggplot syntax for customizing plots Heatmaps for differential gene expression Heatmaps are a great way of displaying three-dimensional data in only two dimensions. But how can we easily translate tabular data into a format for heatmap plotting? By taking advantage of “data munging” and graphics packages, heatmaps are relatively easy to produce in R. Getting started We are going to start by isolating different types of information by imposing structure in our file managment. That is, we are going to put our input data in one folder and any output such as plots or analytical results in a different folder. We can use the dir.create to create these two folders: dir.create("data") dir.create("output") For this lesson, we will use a subset of data on a study of gene expression in cells infected with the influenza virus (doi: 10.4049/jimmunol.1501557). The study infected human plasmacytoid dendritic cells with the influenza virus, and compared gene expression in those cells to gene expression in uninfected cells. Thegoal was to see how the flu virus affected the function of these immune system cells. The data for this lesson is available at: http://tinyurl.com/flu-expression-data or https://jcoliver.github.io/ learn-r/data/GSE68849-expression.csv. Download this comma separated file and put it in the data folder.
    [Show full text]