SWEET CHERRIES: Production, Marketing, and Processing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cherries Grow on Trees and Can Be Found in Orchards
FUN FACES OF WISCONSIN AGRICULTURE BERRY BUNCH’S CHERRY FAST FACTS Production Information Wisconsin Production Cherries grow on trees and can be found in orchards. Door County cherries account for over They prefer sandy soil because of the better drainage. It 95% of all tart cherries produced in usually will take 4-5 years before a tree can produce Wisconsin. In 2005, Wisconsin produced enough cherries for harvest. about 7.2 million pounds of tart cherries. There are over 2,000 acres of Red tart cherry trees are very hardy. The roots will store Montmorency tart cherries and 50 acres the nutrients over the winter so that is when cherry of sweet cherries grown in Door County. farmers will prune the trees. If you don’t prune regularly, the cherry trees will get very thick in the middle and its Why Door County? The quantity and difficult for sunlight to reach the cherries. Cherry blossom quality of fruit depends on the climatic time (early May) is a beautiful time to visit a cherry conditions. Lake Michigan tempers the orchard. The blossoms will leave behind the green buds winter winds and cools the orchards in which will become the red cherry that is later harvested. the summer. Trees are fertilized in the spring and grass is cut in the orchard and weeds control is necessary. New trees are also planted in the spring. Trees need to be sprayed Career Information regularly to prevent pests from damaging the fruit. Orchard owners must know how to prune trees, fertilize and watch for Most trees are mechanically harvested using a “shaker” diseases and pests. -
Tomorrow's Harverst Variety Info Common Name
Tomorrow's Harverst Variety Info Common Name Botanical Name Variety Description Chill Pollinator Ripens Flesh Ornamental citrus tree with distinctive aroma under dense canopy of leaves. AKA the Key Lime Citrus aurantiifolia Bartender's lime. No chill required No pollinator required Classic aromatic, green fruit grows well in contianers. Excellent specimen plant. Fragrant Mexican Lime Citrus aurantiifolia Unlikespring blooms.other citrus fruit, the sweetest part of the kumquat is the peel. Ripe fruit is stored No chill required No pollinator required on the tree! Pick whenever you feel like a great tasting snack. Yields little fruits to pop Nagami Kumquat Citrus fortunella 'Nagami' right into your mouth. No chill required No pollinator required Kaffir Lime Citrus hystrix Unique bumpy fruits are used in Thai cooking. Zest of rind or leaves are used. No chill required No pollinator required Best in patio containers, evergreen foliage and fragrant flowers. Harvest year round in Kaffir Dwarf Lime Citrus hystrix Dwarf frost free areas. No chill required No pollinator required Bearss Lime Citrus latifolia Juicy, seedless fruit turns yellow when ripe. Great for baking and juicing. No chill required No pollinator required Yellow flesh Eureka Lemon Citrus limon 'Eureka' Reliable, consistent producer is most common market lemon. Highly acidic, juicy flesh. No chill required No pollinator required Classic market lemon, tart flavor, evergreen foliage and fragrant flowers. Vigorous Eureka Dwarf Lemon Citrus limon 'Eureka' Dwarf productive tree. No chill required No pollinator required Lisbon Lemon Citrus limon 'Lisbon' Productive, commercial variety that is heat and cold tolerant. Harvest fruit year round. No chill required No pollinator required Meyer Improved Lemon Citrus limon 'Meyer Improved' Hardy, ornamental fruit tree is prolific regular bearer. -
CHERRY Training Systems
PNW 667 CHERRY training systems L. Long, G. Lang, S. Musacchi, M. Whiting A Pacific Northwest Extension Publication OREGON STATE UNIVERSITY n WASHINGTON STATE UNIVERSITY n UNIVERSITY OF IDAHO in cooperation with MICHIGAN STATE UNIVERSITY CHERRY training systems Contents Understanding the Natural Tree....................................................................................................................................................... 3 Training System Options.......................................................................................................................................................................... 4 Rootstock Options.......................................................................................................................................................................................... 5 Pruning and Training Techniques.....................................................................................................................................................5 Kym Green Bush............................................................................................................................................................................................ 10 Spanish Bush.....................................................................................................................................................................................................18 Steep Leader......................................................................................................................................................................................................25 -
The Invasiveness of Crataegus Monogyna and Prunus Mahaleb, at Armidale, New South Wales, Australia
THE INVASIVENESS OF CRATAEGUS MONOGYNA AND PRUNUS MAHALEB, AT ARMIDALE, NEW SOUTH WALES, AUSTRALIA By DAVID ANDREW BASS A Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy at the University of New England, Armidale. Department of Geography and Planning University of New England, Armidale New South Wales, Australia 30 March 1994 TABLE OF CONTENTS Page TITLE PAGE CONTENTS ii LIST OF TABLES vii LIST OF FIGURES xii LIST OF PLATES xv CERTIFICATE xvi ACKNOWLEDGEMENTS xvii ABSTRACT xx CHAPTER 1: INTRODUCTION 1 1.1 Biological invasions: introduction and literature 1 review. 1.1.1 Terminology of biological invasions 4 1.1.2 Characteristics of biological invasions with 9 reference to Australia 1.1.3 Ornamental plant invasions in Australia 18 1.1.4 Impacts of invasive plants 21 1.1.5 Focus of biological invasion research 23 1.1.6 Attributes of biological invaders 25 1.1.7 Attributes of invaded environments 27 1.1.8 Safe sites and biological invasions 29 1.2 The project 31 1.3 Study region 33 1.4 Study sites 35 1.4.1 Armidale State Forest (ASF) 35 1.4.2 Saleyards site 37 1.4.3 University of New England site (UNE) 38 ii CHAPTER 2: TAXONOMY, MORPHOLOGY, PHENOLOGY 40 AND REPRODUCTIVE ECOLOGY OF CRATAEGUS MONOGYNA AND PR UNUS MAHALEB 2.1 Crataegus monogyna 40 2.1.1 Uses of Crataegus monogyna 41 2.1.2 Taxonomy 42 2.1.3 Morphology 45 2.1.4 Phenology 46 2.1.5 Reproductive ecology 48 2.1.6 Distribution 48 2.2 Prunus mahaleb 51 2.2.1 Taxonomy 51 2.2.2 Morphology 52 2.2.3 Phenology 53 2.2.4 Reproductive ecology 54 2.2.5 Distribution 54 CHAPTER 3: HISTORY OF INTRODUCTION AND RATES 56 OF SPREAD OF CRATAEGUS MONOGYNA AND PRUNUS MAHALEB IN AUSTRALIA 3.1. -
Chemical Constituents and Ovicidal Effects of Mahlab, Prunus Mahaleb L. Kernels Oil on Cotton Leafworm, Spodoptera Littoralis (Boisd.) Eggs
JOURNAL OF PLANT PROTECTION RESEARCH Vol. 56, No. 3 (2016) Chemical constituents and ovicidal effects of mahlab, Prunus mahaleb L. kernels oil on cotton leafworm, Spodoptera littoralis (Boisd.) eggs Hala M. Mead*, Samah N. El-Shafiey, Hend M. Sabry Plant Protection Research Institute, Agricultural Research Center, Dokki, 44516 Giza, Egypt Received: April 1, 2016 Accepted: August 19, 2016 Abstract: The carried out investigations evaluated ovicidal activity of mahlab, Prunus mahaleb L. kernel oil against cotton leafworm, Spodoptera littoralis (Boisd.). The chemical constituents of the fixed oil of mahlab were analyzed using gas-liquid chromatography (GLC). Timnodonic (33.07%), oleic (28.71%) and linoleic (24.35%) were the basic fatty acids, while the major hydrocarbon and sterol were found to be heneicosane (62.57%) and β-sitosterol (10.57%). The LC50 values for the one-day-old egg masses were found to be more susceptible than 3-day-old ones. Moreover, the leaf dip technique occurred to be more efficient than spraying technique. The results also showed abnormalities in the external morphology of egg shell, chorion surface, shell imprints and aeropyles of S. littora- lis eggs treated with mahlab and KZ oils as compared to a control by using scanning electron microscope. Generally, the tested oils significantly reduced the activities of transaminase enzymes (AST and ALT), acid and alkaline phosphatases and total soluble protein except mahlab oil on acid phosphatase as compared to a control. Additionally, the oils of both mahlab and KZ oil affected some bio- logical aspects such as incubation period, larval duration, larval mortality and pupal weight comparing to a control. -
Flowering and Fruiting of "Burlat" Sweet Cherry on Size-Controlling Rootstock
HORTSCIENCE 29(6):611–612. 1994. chart uses eight color chips to assess fruit color: 1 = light red to 8 = very dark, mahogany red. At the end of the growing season, all Flowering and Fruiting of ‘Burlat’ current-season’s shoot growth, >2.5 cm, was measured on each branch unit. Sweet Cherry on Size-controlling We analyzed the data as a factorial, ar- ranged in a completely randomized design, Rootstock with rootstock and age of branch portions as main effects. The least significant difference Frank Kappel was used for mean separation of main effects. Agriculture Canada, Research Station, Summerland, B.C. VOH IZO, Canada Results Jean Lichou The sample branches had similar BCSA, Ctifl, Centre de Balandran, BP 32, 30127 Bellegarde, France with the mean ranging from 3 to 3.7 cm2 for the Additional index words. Prunus avium, Prunus cerasus, Prunus mahaleb, fruit size, fruit branch units of the trees on the three root- stock. The mean for the branch units’ total numbers, dwarfing, Edabriz, Maxma 14, F12/1 shoot length ranged from 339 to 392 cm. Abstract. The effect of rootstock on the flowering and fruiting response of sweet cherries ‘Burlat’ branches on Edabriz had more (Prunus avium L.) was investigated using 4-year-old branch units. The cherry rootstock flowers than ‘Burlat’ branches on F1 2/1 or Edabriz (Prunus cerasus L.) affected the flowering and fruiting response of ‘Burlat’ sweet Maxma 14 when expressed as either total cherry compared to Maxma 14 and F12/1. Branches of trees on Edabriz had more flowers, number of flowers or number standardized by more flowers per spur, more spurs, more fruit, higher yields, smaller fruit, and a reduced shoot length (Table 1). -
Botanical Name Common Name
Approved Approved & as a eligible to Not eligible to Approved as Frontage fulfill other fulfill other Type of plant a Street Tree Tree standards standards Heritage Tree Tree Heritage Species Botanical Name Common name Native Abelia x grandiflora Glossy Abelia Shrub, Deciduous No No No Yes White Forsytha; Korean Abeliophyllum distichum Shrub, Deciduous No No No Yes Abelialeaf Acanthropanax Fiveleaf Aralia Shrub, Deciduous No No No Yes sieboldianus Acer ginnala Amur Maple Shrub, Deciduous No No No Yes Aesculus parviflora Bottlebrush Buckeye Shrub, Deciduous No No No Yes Aesculus pavia Red Buckeye Shrub, Deciduous No No Yes Yes Alnus incana ssp. rugosa Speckled Alder Shrub, Deciduous Yes No No Yes Alnus serrulata Hazel Alder Shrub, Deciduous Yes No No Yes Amelanchier humilis Low Serviceberry Shrub, Deciduous Yes No No Yes Amelanchier stolonifera Running Serviceberry Shrub, Deciduous Yes No No Yes False Indigo Bush; Amorpha fruticosa Desert False Indigo; Shrub, Deciduous Yes No No No Not eligible Bastard Indigo Aronia arbutifolia Red Chokeberry Shrub, Deciduous Yes No No Yes Aronia melanocarpa Black Chokeberry Shrub, Deciduous Yes No No Yes Aronia prunifolia Purple Chokeberry Shrub, Deciduous Yes No No Yes Groundsel-Bush; Eastern Baccharis halimifolia Shrub, Deciduous No No Yes Yes Baccharis Summer Cypress; Bassia scoparia Shrub, Deciduous No No No Yes Burning-Bush Berberis canadensis American Barberry Shrub, Deciduous Yes No No Yes Common Barberry; Berberis vulgaris Shrub, Deciduous No No No No Not eligible European Barberry Betula pumila -
Plantlist Master 09 15 09
Bareroot Fruit,Trees, Shrubs, and Vines 2010 Fruit Harcot Apricot Excellent flavor and quality. Large, sweet, juicy, rich Apples flavor. Brown rot resistant. Mid-June. Trees range from dwarf to very large. Most are narrow and upright. White to pale pink flowers are showy in late March - early April. Fruit on short spurs which take 3 - 4 years to form. Cherries Prune for size control, remove suckers and crossing Very upright growing trees to 10’ - 30’. Can be trained branches. smaller, but avoid heavy pruning of mature trees. Tolerant of heavy soils, drought, or lawn watering. Showy pure white flowers in March. Braeburn Apple Fruit on short spurs, which take 3 - 4 years to form. Prune only for size control, if at all. Late season, crisp and tangy, similar to Granny Smith Moderately tolerant of drought. No lawn watering. but richer flavor. Excellent keeper. Green with dark red blush. October-November harvest. Self-fruitful. Bada Bing Cherry Self-fruitful version of the commercial sweet cherry. Late May - early June harvest. Fuji Apple Sweet, crisp and flavorful, excellent keeper. Late September. Excellent pollenizer for other apple varieties. Self-fruitful. Lapins Cherry Large dark red, firm, sweet fruit like Bing. “Self- fertile Bing”. Resists cracking. Early to mid June. Granny Smith Apple Bright green skin, tart/sweet flavor, great texture. For eating, cooking, sauce. October - November harvest. Rainier Cherry Yellow with red blush. Very sweet, fine texture, very firm. Resists cracking. Pollenizer needed. Late May to Red Gravenstein Apple early June. Red variant of the applesauce apple, also great for cooking. Fine for fresh eating if picked a little underripe. -
Anomalous Dark Growth Rings in Black Cherry
FIELD NOTE Anomalous Dark Growth Rings in Black Cherry Robert P. Long, David W. Trimpey, Michael C. Wiemann, and Susan L. Stout Anomalous dark growth rings have been observed in black cherry (Prunus serotina) sawlogs from northwestern Pennsylvania making the logs unsuitable for veneer products. Thirty-six cross sections with dark rings, each traceable to one of ten stands, were obtained from a local mill and sections were dated and annual ring widths were measured. One or more dark rings were found in 30 of the 36 cross sections. The most frequent years in which dark rings formed were 1994, on 55% of cross sections, and 1995, on 72% of cross sections. Both years were coincident with widespread cherry scallop shell moth (Hydria prunivorata) outbreaks. GIS layers and maps obtained from the Allegheny National Forest were used to document cherry scallop shell moth defoliations in these stands. These rings show a darkened discoloration through all or portions of the annual ring without characteristics typical of gum spots or gum defects caused ABSTRACT by traumatic injury from bark beetles or cambium miners. Microscopic examination of the rings revealed darkened fiber cell walls, but no other cellular abnormalities. Dark rings are more common in stands with a high proportion of the total basal area composed of black cherry. These stands also are more susceptible to repeated defoliations from cherry scallop shell moth. lack cherry (Prunus serotina) is one of the most valuable east- Methods ern hardwood timber species, and some of the highest quality Thirty-six cross sections or partial cross sections from nine dif- Bcherry originates in northwestern Pennsylvania (Wieden- ferent stands were obtained from a private industrial landowner in beck et al. -
FSC Public Search
CERTIFICATE Information from 2018/08/28 - 14:26 UTC Certificate Code CU-COC-816023 License Code FSC-C102167 MAIN ADDRESS Name Timber Link International Ltd. Address The Timber Office,Hazelwood Cottage,Maidstone Road,Hadlow Tonbridge TN11 0JH Kent UNITED KINGDOM Website http://www.timberlinkinternational.com CERTIFICATE DATA Status Valid First Issue Date 2010-10-16 Last Issue Date 2017-01-12 Expiry Date 2022-01-11 Standard FSC-STD-40-004 V3-0 GROUP MEMBER/SITES No group member/sites found. PRODUCTS Product Trade Species Primary Secondary Main Type Name Activity Activity Output Category W5 Solid Acer spp.; Alnus rubra var. pinnatisecta Starker; Alnus brokers/traders FSC wood serrulata; Apuleia leiocarpa; Betula spp.; Castanea sativa without physical Mix;FSC (sawn, P.Mill.; Cedrela odorata; Cedrus libani A. Rich.; Chlorocardium posession 100% chipped, rodiei (R.Schomb.) R.R.W.; Cylicodiscus gabunensis (Taub.) peeled) Harms; Dicorynia guianensis Amsh., D. paraensis Benth.; W5.2 Solid Dipterocarpus spp; Dipteryx odorata; Dryobalanops spp.; wood Dyera costulata (Miq.) Hook.f.; Entandrophragma cylindricum; boards Entandrophragma spp.; Entandrophragma utile; Eucalyptus spp; Fagus sylvatica L.; Fraxinus excelsior; Fraxinus americana; Gonystylus bancanus; Guibourtia spp.; Hymenaea courbaril; Intsia bijuga; Juglans nigra L.; Juglans regia L.; Khaya spp.; Larix sibirica; Liriodendron tulipifera L.; Lophira alata; Manilkara bidentata (A.DC.) A.Chev.; Microberlinia spp.; Milicia excelsa; Millettia laurentii; Nauclea diderrichii; Parashorea spp. (Urat mata, white seraya, gerutu); Peltogyne spp.*; Pinus rigida; Platanus occidentalis L; Prunus avium; Prunus serotina Ehrh.; Pseudotsuga menziesii; Pterocarpus soyauxii; Quercus alba; Quercus petraea; Quercus robur; Robinia pseudoacacia L.; Shorea balangeran; Shorea laevis Ridl.; Shorea spp.; Swietenia macrophylla; Tabebuia spp.; Tectona grandis; Terminalia ivorensis A. -
In Crop Science and Horticulture
IN CROP SCIENCE AND HORTICULTURE ¬¬ Genetic diversity and relatedness of sweet cherry (Prunus avium L.) ¬ cultivars based on single nucleotide polymorphic (SNP) markers ¬ Angel Fernandez, Blessing Athanson, Tyson Koepke, Caroline Font, Amit Dhingra and Nnadozie Oraguzie Journal Name: Frontiers in Plant Science ISSN: 1664-462X Article type: Original Research Article Received on: 27 Apr 2012 Accepted on: 15 May 2012 Provisional PDF published on: 15 May 2012 Frontiers website link: www.frontiersin.org Citation: Fernandez A, Athanson B, Koepke T, Font C, Dhingra A and Oraguzie N(2012) Genetic diversity and relatedness of sweet cherry (Prunus avium L.) cultivars based on single nucleotide polymorphic (SNP) markers. 3:116. doi:10.3389/fpls.2012.00116 Article URL: http://www.frontiersin.org/Journal/Abstract.aspx?s=1202& name=crop%20science%20and%20horticulture&ART_DOI=10.3389 /fpls.2012.00116 (If clicking on the link doesn't work, try copying and pasting it into your browser.) Copyright statement: © 2012 Fernandez, Athanson, Koepke, Font, Dhingra and Oraguzie. This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited. ¬ This Provisional PDF corresponds to the article as it appeared upon acceptance, after rigorous peer-review. Fully formatted PDF and full text (HTML) versions will be made available soon. ¬ Genetic diversity and relatedness of sweet cherry (Prunus avium L.) cultivars based on single nucleotide polymorphic (SNP) markers Angel Fernandez i Marti A1,2, Blessing Athanson3 , Tyson Koepke4, Carolina Font i Forcada5, Amit Dhingra4 and Nnadozie Oraguzie3* 1Departamento Biología Molecular, Parque Científico Tecnológico Aula Dei. -
Occurrence and Distribution of Stem Pitting of Sweet Cherry Trees in Washington
ACKNOWLEDGMENTS 4. BOTHAST, R. J., and D. I. FENNELL. 1974. A purpose medium for fungi and bacteria. We wish to thank E. B. Lillehoj and his staff at the medium for rapid identification and enumeration Phytopathology 45:461-462. Northern Regional Research Center, SEA-USDA, of Aspergillus flavus and related organisms. 9. RAMBO, G. W., J. TUITE, and P. CRANE. Peoria, Mycologia IL, for aflatoxin analyses of these five 66:365-369. 1974. Preharvest inoculation and infection of 5. CHRISTENSEN, Aspergillus cultures. C. M., and H. H. KAUFMANN. dent corn ears with Aspergillus flavus and 1965. Deterioration of stored grains by fungi. Aspergillus parasiticus. Phytopathology Annu. Rev. Phytopathol. 3:69-84. 64:797-800. 6. LILLEHOJ, LITERATURE CITED E. B., D. I. FENNELL, and W. F. 10. SHOTWELL, 0. L., M. L. GOULDEN, and C. KWOLEK. 1976. Aspergillus flavus and W. HESSELTINE. 1974. Aflatoxin: 1. ANDERSON, H. W., E. W. NEHRING, and W. Distribu- aflatoxin in Iowa corn before harvest. Science tion in contaminated R. WICHSER. 1975. Aflatoxin contamination corn. Cereal Chem. 193:495-496. 51:492-499. of corn in the field. J. Agric. Food Chem. 7. LILLEHOJ, E. B., W. F. KWOLEK, E. E. 11. TAUBENHAUS, 23:775-782. J. J. 1920. A study of the black VANDERGRAF, M. S. ZUBER, 0. H. and the yellow molds of ear 2. ANONYMOUS. 1972. Changes in official corn. Tex. Agric. CALVERT, N. WIDSTROM, M. C. FUTRELL, Exp. Stn. Bull. 270. method of analysis. Natural Poisons 26. B01-26. and A. J. BOCKHOLT. 1975. Aflatoxin 12. ZUBER, M. S., 0. B03.