Le Lettere Di Enrico Betti (Dal 1860 Al 1886)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E
BOOK REVIEW Einstein’s Italian Mathematicians: Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E. Rowe Einstein’s Italian modern Italy. Nor does the author shy away from topics Mathematicians: like how Ricci developed his absolute differential calculus Ricci, Levi-Civita, and the as a generalization of E. B. Christoffel’s (1829–1900) work Birth of General Relativity on quadratic differential forms or why it served as a key By Judith R. Goodstein tool for Einstein in his efforts to generalize the special theory of relativity in order to incorporate gravitation. In This delightful little book re- like manner, she describes how Levi-Civita was able to sulted from the author’s long- give a clear geometric interpretation of curvature effects standing enchantment with Tul- in Einstein’s theory by appealing to his concept of parallel lio Levi-Civita (1873–1941), his displacement of vectors (see below). For these and other mentor Gregorio Ricci Curbastro topics, Goodstein draws on and cites a great deal of the (1853–1925), and the special AMS, 2018, 211 pp. 211 AMS, 2018, vast secondary literature produced in recent decades by the world that these and other Ital- “Einstein industry,” in particular the ongoing project that ian mathematicians occupied and helped to shape. The has produced the first 15 volumes of The Collected Papers importance of their work for Einstein’s general theory of of Albert Einstein [CPAE 1–15, 1987–2018]. relativity is one of the more celebrated topics in the history Her account proceeds in three parts spread out over of modern mathematical physics; this is told, for example, twelve chapters, the first seven of which cover episodes in [Pais 1982], the standard biography of Einstein. -
Algebraic Research Schools in Italy at the Turn of the Twentieth Century: the Cases of Rome, Palermo, and Pisa
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Historia Mathematica 31 (2004) 296–309 www.elsevier.com/locate/hm Algebraic research schools in Italy at the turn of the twentieth century: the cases of Rome, Palermo, and Pisa Laura Martini Department of Mathematics, University of Virginia, PO Box 400137, Charlottesville, VA 22904-4137, USA Available online 28 January 2004 Abstract The second half of the 19th century witnessed a sudden and sustained revival of Italian mathematical research, especially in the period following the political unification of the country. Up to the end of the 19th century and well into the 20th, Italian professors—in a variety of institutional settings and with a variety of research interests— trained a number of young scholars in algebraic areas, in particular. Giuseppe Battaglini (1826–1892), Francesco Gerbaldi (1858–1934), and Luigi Bianchi (1856–1928) defined three key venues for the promotion of algebraic research in Rome, Palermo, and Pisa, respectively. This paper will consider the notion of “research school” as an analytic tool and will explore the extent to which loci of algebraic studies in Italy from the second half of the 19th century through the opening decades of the 20th century can be considered as mathematical research schools. 2003 Elsevier Inc. All rights reserved. Sommario Nella seconda metà dell’Ottocento, specialmente dopo l’unificazione del paese, la ricerca matematica in Italia conobbe una vigorosa rinascita. Durante gli ultimi decenni del diciannovesimo secolo e i primi del ventesimo, matematici italiani appartenenti a diverse istituzioni e con interessi in diversi campi di ricerca, formarono giovani studiosi in vari settori dell’algebra. -
HOMOTECIA Nº 11-15 Noviembre 2017
HOMOTECIA Nº 11 – Año 15 Miércoles, 1º de Noviembre de 2017 1 En una editorial anterior, comentamos sobre el consejo que le dio una profesora con años en el ejercicio del magisterio a un docente que se iniciaba en la docencia, siendo que ambos debían enseñar matemática: - Si quieres obtener buenos resultados en el aprendizaje de los alumnos que vas a atender, para que este aprendizaje trascienda debes cuidar el lenguaje, el hablado y el escrito, la ortografía, la redacción, la pertinencia. Desde la condición humana, promover la cordialidad y el respeto mutuo, el uso de la terminología correcta de nuestro idioma, que posibilite la claridad de lo que se quiere exponer, lo que se quiere explicar, lo que se quiere evaluar. Desde lo específico de la asignatura, ser lexicalmente correcto. El hecho de ser docente de matemática no significa que eso te da una licencia para atropellar el lenguaje. En consecuencia, cuando utilices los conceptos matemáticos y trabajes la operatividad correspondiente, utiliza los términos, definiciones, signos y símbolos que esta disciplina ha dispuesto para ellos. Debes esforzarte en hacerlo así, no importa que los alumnos te manifiesten que no entienden. Tu preocupación es que aprendan de manera correcta lo que se les enseña. Es una prevención para evitarles dificultades en el futuro . Traemos a colación lo de este consejo porque consideramos que es un tema que debe tratarse con mucha amplitud. El problema de hablar y escribir bien no es solamente característicos en los alumnos sino que también hay docentes que los presentan. Un alumno, por más que asista continuamente a la escuela, es afectado por el entorno cultural familiar en el que se desenvuelve. -
The Bianchi Classification in the Schü
P1: FLT General Relativity and Gravitation (GERG) PP736-GERG-459711 February 7, 2003 18:36 Style file version May 27, 2002 General Relativity and Gravitation, Vol. 35, No. 3, March 2003 (C 2003) The Bianchi Classification in the Sch¨ucking-Behr Approach1 A. Krasi´nski,2 Christoph G. Behr,3 Engelbert Sch¨ucking,4 Frank B. Estabrook,5 Hugo D. Wahlquist,6 George F. R. Ellis,7 Robert Jantzen,8 and Wolfgang Kundt9 Received July 15, 2002 The historical development of the Bianchi classification of homogeneous cosmological models is described with special emphasis on the contributions by Sch¨ucking and Behr. KEY WORDS: Bianchi models; Lie algebra; cosmology.3 1. INTRODUCTION Today, the Bianchi classification of 3-dimensional Lie algebras is no longer pre- sented by the original Bianchi method [4]. The now-common approach is usually credited to C. G. Behr, but one never sees any reference to a paper by him. Tracing the references back in time one is most often led either to the paper by Ellis and 1 Written collectively as “Golden Oldie XXX; each author is signed under his segment. 2 Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland; e-mail: [email protected] 3 Eduard-Steinle-Strae 19, 70 619 Stuttgart, Germany. 4 29 Washington Square West, New York, NY 10011, USA; e-mail: [email protected] 5 Jet Propulsion Laboratory, Mail Stop 169-327, 4800 Oak Grove Drive, Pasadena, California 91109, USA 6 Jet Propulsion Laboratory, Mail Stop 169-327, 4800 Oak Grove Drive, Pasadena, California 91109, USA; e-mail: [email protected] 7 Mathematics -
Bianchi, Luigi.Pdf 141KB
Centro Archivistico BIANCHI, LUIGI Elenco sommario del fondo 1 Indice generale Introduzione.....................................................................................................................................................2 Carteggio (1880-1923)......................................................................................................................................2 Carteggio Saverio Bianchi (1936 – 1954; 1975)................................................................................................4 Manoscritti didattico scientifici........................................................................................................................5 Fascicoli............................................................................................................................................................6 Introduzione Il fondo è pervenuto alla Biblioteca della Scuola Normale Superiore di Pisa per donazione degli eredi nel 1994-1995; si tratta probabilmente solo di una parte della documentazione raccolta da Bianchi negli anni di ricerca e insegnamento. Il fondo era corredato di un elenco dattiloscritto a cura di Paola Piazza, in cui venivano indicati sommariamente i contenuti delle cartelle. Il materiale è stato ordinato e descritto da Sara Moscardini e Manuel Rossi nel giugno 2014. Carteggio (1880-1923) La corrispondenza presenta oltre 100 lettere indirizzate a L. B. dal 1880 al 1923, da illustri studiosi del XIX-XX secolo come Eugenio Beltrami, Enrico Betti, A. von Brill, Francesco Brioschi, -
On the Role Played by the Work of Ulisse Dini on Implicit Function
On the role played by the work of Ulisse Dini on implicit function theory in the modern differential geometry foundations: the case of the structure of a differentiable manifold, 1 Giuseppe Iurato Department of Physics, University of Palermo, IT Department of Mathematics and Computer Science, University of Palermo, IT 1. Introduction The structure of a differentiable manifold defines one of the most important mathematical object or entity both in pure and applied mathematics1. From a traditional historiographical viewpoint, it is well-known2 as a possible source of the modern concept of an affine differentiable manifold should be searched in the Weyl’s work3 on Riemannian surfaces, where he gave a new axiomatic description, in terms of neighborhoods4, of a Riemann surface, that is to say, in a modern terminology, of a real two-dimensional analytic differentiable manifold. Moreover, the well-known geometrical works of Gauss and Riemann5 are considered as prolegomena, respectively, to the topological and metric aspects of the structure of a differentiable manifold. All of these common claims are well-established in the History of Mathematics, as witnessed by the work of Erhard Scholz6. As it has been pointed out by the Author in [Sc, Section 2.1], there is an initial historical- epistemological problem of how to characterize a manifold, talking about a ‘’dissemination of manifold idea’’, and starting, amongst other, from the consideration of the most meaningful examples that could be taken as models of a manifold, precisely as submanifolds of a some environment space n, like some projective spaces ( m) or the zero sets of equations or inequalities under suitable non-singularity conditions, in this last case mentioning above all of the work of Enrico Betti on Combinatorial Topology [Be] (see also Section 5) but also that of R. -
Science and Fascism
Science and Fascism Scientific Research Under a Totalitarian Regime Michele Benzi Department of Mathematics and Computer Science Emory University Outline 1. Timeline 2. The ascent of Italian mathematics (1860-1920) 3. The Italian Jewish community 4. The other sciences (mostly Physics) 5. Enter Mussolini 6. The Oath 7. The Godfathers of Italian science in the Thirties 8. Day of infamy 9. Fascist rethoric in science: some samples 10. The effect of Nazism on German science 11. The aftermath: amnesty or amnesia? 12. Concluding remarks Timeline • 1861 Italy achieves independence and is unified under the Savoy monarchy. Venice joins the new Kingdom in 1866, Rome in 1870. • 1863 The Politecnico di Milano is founded by a mathe- matician, Francesco Brioschi. • 1871 The capital is moved from Florence to Rome. • 1880s Colonial period begins (Somalia, Eritrea, Lybia and Dodecanese). • 1908 IV International Congress of Mathematicians held in Rome, presided by Vito Volterra. Timeline (cont.) • 1913 Emigration reaches highest point (more than 872,000 leave Italy). About 75% of the Italian popu- lation is illiterate and employed in agriculture. • 1914 Benito Mussolini is expelled from Socialist Party. • 1915 May: Italy enters WWI on the side of the Entente against the Central Powers. More than 650,000 Italian soldiers are killed (1915-1918). Economy is devastated, peace treaty disappointing. • 1921 January: Italian Communist Party founded in Livorno by Antonio Gramsci and other former Socialists. November: National Fascist Party founded in Rome by Mussolini. Strikes and social unrest lead to political in- stability. Timeline (cont.) • 1922 October: March on Rome. Mussolini named Prime Minister by the King. -
Atlas on Our Shoulders
BOOKS & ARTS NATURE|Vol 449|27 September 2007 Atlas on our shoulders The Body has a Mind of its Own: How They may therefore be part of the neural basis Body Maps in Your Brain HelpYou Do of intention, promoting learning by imitation. (Almost) Everything Better The authors explain how mirror neurons could by Sandra Blakeslee and Matthew participate in a wide range of primate brain Blakeslee functions, for example in shared perception Random House: 2007. 240 pp. $24.95 and empathy, cultural transmission of knowl- edge, and language. At present we have few, if any, clues as to how mirror neurons compute or Edvard I. Moser how they interact with other types of neuron, Like an atlas, the brain contains maps of the but the Blakeslees draw our attention to social internal and external world, each for a dis- neuroscience as an emerging discipline. tinct purpose. These maps faithfully inform It is important to keep in mind that the map the brain about the structure of its inputs. The concept is not explanatory. We need to define JOPLING/WHITE CUBE & J. OF THE ARTIST COURTESY body surface, for example, is mapped in terms what a map is to understand how perception of its spatial organization, with the same neural and cognition are influenced by the spatial arrangement flashed through successive levels arrangement of neural representations. The of processing — from the sensory receptors in classical maps of the sensory cortices are topo- the periphery to the thalamus and cortex in graphical, with neighbouring groups of neurons the brain. Meticulous mapping also takes into Sculptor Antony Gormley also explores how the representing neighbouring parts of the sensory account the hat on your head and the golf club body relates to surrounding space. -
Betti Enrico
Centro Archivistico Betti Enrico Elenco sommario del fondo 1 Indice generale Introduzione.....................................................................................................................................................2 Carteggio .........................................................................................................................................................3 Manoscritti didattico – scientifici.....................................................................................................................4 Onoranze a Enrico Betti..................................................................................................................................17 Materiale a stampa.........................................................................................................................................18 Allegato A - elenco dei corrispondenti di Enrico Betti...................................................................................19 Introduzione Nel 1893, un anno dopo la morte del Betti, il carteggio, vari manoscritti e la biblioteca dell'illustre matematico vennero donati dagli eredi alla Scuola Normale. Da allora numerosi sono stati gli interventi di riordino che tuttavia hanno interessato soprattutto la serie del carteggio. Nel giugno 2014 il fondo è stato parzialmente rinumerato, ricondizionato e descritto da Sara Moscardini e Manuel Rossi. Il fondo Betti presenta due nuclei prevalenti: carteggio e manoscritti didattico - scientifici. A questi si possono inoltre affiancare -
Considerations Based on His Correspondence Rossana Tazzioli
New Perspectives on Beltrami’s Life and Work - Considerations Based on his Correspondence Rossana Tazzioli To cite this version: Rossana Tazzioli. New Perspectives on Beltrami’s Life and Work - Considerations Based on his Correspondence. Mathematicians in Bologna, 1861-1960, 2012, 10.1007/978-3-0348-0227-7_21. hal- 01436965 HAL Id: hal-01436965 https://hal.archives-ouvertes.fr/hal-01436965 Submitted on 22 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. New Perspectives on Beltrami’s Life and Work – Considerations based on his Correspondence Rossana Tazzioli U.F.R. de Math´ematiques, Laboratoire Paul Painlev´eU.M.R. CNRS 8524 Universit´ede Sciences et Technologie Lille 1 e-mail:rossana.tazzioliatuniv–lille1.fr Abstract Eugenio Beltrami was a prominent figure of 19th century Italian mathematics. He was also involved in the social, cultural and political events of his country. This paper aims at throwing fresh light on some aspects of Beltrami’s life and work by using his personal correspondence. Unfortunately, Beltrami’s Archive has never been found, and only letters by Beltrami - or in a few cases some drafts addressed to him - are available. -
Bianchi 121 Bianchi
BIANCHI BIANCHI interpretation of quantum-theory foundations . He Upon his return to Italy in 1881, Bianchi was initiated and was elected chairman of the inter- appointed professor at the Scuola Normale Superiore national scientific conference in Warsaw (1938) where of Pisa, and after having taught differential geometry this problem was discussed by many famous theorists . at the University of Pisa, in 1886 he was appointed During World War 11, Biaaobrzeski prepared a three- extraordinary professor of projective geometry on the volume work to be entitled Podstawy poznawcze fizvki basis of a competitive examination . During the same twiala atomowego ("Epistemological Foundations of year he was also made professor of analytic geometry, the Physics of the Atomic World"), in which he a post he held for the rest of his life . By special developed his philosophical interpretation of the appointment Bianchi also taught higher mathematics quantum theory . Unfortunately, the manuscripts of and analysis. After 1918 he was director of the Scuola the first two volumes were burned during the Warsaw Normale Superiore . He was a member of many Ital- Insurrection (1944) . After the war Biajobrzeski re- ian and foreign academies, and a senator of the king- turned to Warsaw University and started to recon- dom of Italy . struct the book . The work, limited to one volume, was Bianchi concentrated on studies and research in finished in 1951 and published in 1956 . metric differential geometry. Among his major results was his discovery of all the geometries of Riemann that allow for a continuous group of movements, that BIBLIOGRAPHY is, those in which a figure may move continuously without undergoing any deformation . -
A CRITICAL EVALUATION of MODERN PHYSICS by Claudio Voarino
A CRITICAL EVALUATION OF MODERN PHYSICS By Claudio Voarino A Few Words of Introduction In his article, Science and the Mountain Peak, Professor Isaac Asimov wrote: “There has been at least one occasion in history, when Greek secular and rational thought bowed to the mystical aspect of Christianity, and what followed was a Dark Age. We can’t afford another!” I don’t think I am exaggerating when I say that, when it comes to Modern Physics (also known as New Physics), we have indeed been in some sort of intellectual dark age, whether we can afford it or not. In fact, we have been in it since the end of the 19 th Century; and this is when Classical Physics started to be substituted with Modern Physics. This despite the fact there were lots of instances that clearly show the absurdity and science-fictional character of most of the theories of this kind of physics, which I will be discussing in details further on in this article. But for now, the following few examples should prove the correctness of my opinion on this topic. Incidentally, for the purpose of this article, the word ‘physics’ means mostly ‘astrophysics’. Also, whenever referring to modern physicists, I think it is more accurate to add the adjective ‘theoretical’ before the word ‘physicists’. I am saying that because I just cannot associate the main tenets of Relativity and Quantum Physics theories with physical reality. The following example should attest the truth of my statement. Back on September 10, 1989, the Australian newspaper Sunday Telegraph carried the following bizarre article entitled Keep Looking or the Moon May Vanish.