GOLDEN OLDIE 18 on the Three-Dimensional Spaces Which
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E
BOOK REVIEW Einstein’s Italian Mathematicians: Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E. Rowe Einstein’s Italian modern Italy. Nor does the author shy away from topics Mathematicians: like how Ricci developed his absolute differential calculus Ricci, Levi-Civita, and the as a generalization of E. B. Christoffel’s (1829–1900) work Birth of General Relativity on quadratic differential forms or why it served as a key By Judith R. Goodstein tool for Einstein in his efforts to generalize the special theory of relativity in order to incorporate gravitation. In This delightful little book re- like manner, she describes how Levi-Civita was able to sulted from the author’s long- give a clear geometric interpretation of curvature effects standing enchantment with Tul- in Einstein’s theory by appealing to his concept of parallel lio Levi-Civita (1873–1941), his displacement of vectors (see below). For these and other mentor Gregorio Ricci Curbastro topics, Goodstein draws on and cites a great deal of the (1853–1925), and the special AMS, 2018, 211 pp. 211 AMS, 2018, vast secondary literature produced in recent decades by the world that these and other Ital- “Einstein industry,” in particular the ongoing project that ian mathematicians occupied and helped to shape. The has produced the first 15 volumes of The Collected Papers importance of their work for Einstein’s general theory of of Albert Einstein [CPAE 1–15, 1987–2018]. relativity is one of the more celebrated topics in the history Her account proceeds in three parts spread out over of modern mathematical physics; this is told, for example, twelve chapters, the first seven of which cover episodes in [Pais 1982], the standard biography of Einstein. -
University of Groningen the Bianchi Classification of Maximal D = 8 Gauged Supergravities Bergshoeff, Eric; Gran, Ulf; Linares
University of Groningen The Bianchi classification of maximal D = 8 gauged supergravities Bergshoeff, Eric; Gran, Ulf; Linares, Román; Nielsen, Mikkel; Ortín, Tomás; Roest, Diederik Published in: Classical and Quantum Gravity IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2003 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Bergshoeff, E., Gran, U., Linares, R., Nielsen, M., Ortín, T., & Roest, D. (2003). The Bianchi classification of maximal D = 8 gauged supergravities. Classical and Quantum Gravity, 20, 3997-4014. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 24-09-2021 INSTITUTE OF PHYSICS PUBLISHING CLASSICAL AND QUANTUM GRAVITY Class. Quantum Grav. 20 (2003) 3997–4014 -
Algebraic Research Schools in Italy at the Turn of the Twentieth Century: the Cases of Rome, Palermo, and Pisa
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Historia Mathematica 31 (2004) 296–309 www.elsevier.com/locate/hm Algebraic research schools in Italy at the turn of the twentieth century: the cases of Rome, Palermo, and Pisa Laura Martini Department of Mathematics, University of Virginia, PO Box 400137, Charlottesville, VA 22904-4137, USA Available online 28 January 2004 Abstract The second half of the 19th century witnessed a sudden and sustained revival of Italian mathematical research, especially in the period following the political unification of the country. Up to the end of the 19th century and well into the 20th, Italian professors—in a variety of institutional settings and with a variety of research interests— trained a number of young scholars in algebraic areas, in particular. Giuseppe Battaglini (1826–1892), Francesco Gerbaldi (1858–1934), and Luigi Bianchi (1856–1928) defined three key venues for the promotion of algebraic research in Rome, Palermo, and Pisa, respectively. This paper will consider the notion of “research school” as an analytic tool and will explore the extent to which loci of algebraic studies in Italy from the second half of the 19th century through the opening decades of the 20th century can be considered as mathematical research schools. 2003 Elsevier Inc. All rights reserved. Sommario Nella seconda metà dell’Ottocento, specialmente dopo l’unificazione del paese, la ricerca matematica in Italia conobbe una vigorosa rinascita. Durante gli ultimi decenni del diciannovesimo secolo e i primi del ventesimo, matematici italiani appartenenti a diverse istituzioni e con interessi in diversi campi di ricerca, formarono giovani studiosi in vari settori dell’algebra. -
Anisotropic, Nonsingular Early Universe Model Leading to a Realistic Cosmology
This is a repository copy of Anisotropic, nonsingular early universe model leading to a realistic cosmology. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/85582/ Version: Accepted Version Article: Dechant, Pierre-Philippe orcid.org/0000-0002-4694-4010, Lasenby, Anthony and Hobson, Michael (2009) Anisotropic, nonsingular early universe model leading to a realistic cosmology. Physical Review D. 043524. ISSN 1550-2368 https://doi.org/10.1103/PhysRevD.79.043524 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ An anisotropic, non-singular early universe model leading to a realistic cosmology † ‡ Pierre-Philippe Dechant,∗ Anthony N. Lasenby, and Michael P. Hobson Astrophysics Group, Cavendish Laboratory, J J Thomson Avenue, University of Cambridge, CB3 0HE, UK (Dated: February 18, 2013) Abstract We present a novel cosmological model in which scalar field matter in a biaxial Bianchi IX geometry leads to a non-singular ‘pancaking’ solution: the hypersurface volume goes to zero instantaneously at the ‘Big Bang’, but all physical quantities, such as curvature invariants and the matter energy density remain finite, and continue smoothly through the Big Bang. -
Classification of Six-Dimensional Leibniz Algebras ${\Mathcal E} 3
Classification of six-dimensional Leibniz algebras E3 Ladislav Hlavatý∗ Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Czech Republic May 11, 2020 Abstract Leibniz algebras En were introduced as algebraic structure under- lying U-duality. Algebras E3 derived from Bianchi three-dimensional Lie algebras are classified here. Two types of algebras are obtained: Six-dimensional Lie algebras that can be considered extension of semi- Abelian four-dimensional Drinfel’d double and unique extensions of non-Abelian Bianchi algebras. For all of the algebras explicit forms of generalized frame fields are given. 1 Introduction arXiv:2003.06164v4 [hep-th] 8 May 2020 Extensions of Poisson–Lie T-dualities to non-perturbative symmetries of string theories are so called U-dualities (for review see e.g.[1]). Algebraic structures underlying U-duality were suggested in [2] and [3] as Leibniz algebras En obtained as extensions of n-dimensional Lie algebra defining non-symmetric product ◦ in [n + n(n − 1)/2]-dimensional vector space1 that satisfies Leibniz identity X ◦ (Y ◦ Z))=(X ◦ Y ) ◦ Z + Y ◦ (X ◦ Z). (1) ∗hlavaty@fjfi.cvut.cz 1for n ≤ 4 1 In those papers examples of these Leibniz algebras derived from two-dimensional and four-dimensional Lie algebras are given. Goal of the present note is to write down all algebras that can be derived from three dimensional Lie alge- bras whose classification given by Bianchi is well known. a1a2 a2a1 a1a2 Namely, let (Ta, T ), a, a1, a2 ∈ 1,...,n, T = −T is a basis of [n + n(n − 1)/2]-dimensional vector space. -
The Bianchi Classification in the Schü
P1: FLT General Relativity and Gravitation (GERG) PP736-GERG-459711 February 7, 2003 18:36 Style file version May 27, 2002 General Relativity and Gravitation, Vol. 35, No. 3, March 2003 (C 2003) The Bianchi Classification in the Sch¨ucking-Behr Approach1 A. Krasi´nski,2 Christoph G. Behr,3 Engelbert Sch¨ucking,4 Frank B. Estabrook,5 Hugo D. Wahlquist,6 George F. R. Ellis,7 Robert Jantzen,8 and Wolfgang Kundt9 Received July 15, 2002 The historical development of the Bianchi classification of homogeneous cosmological models is described with special emphasis on the contributions by Sch¨ucking and Behr. KEY WORDS: Bianchi models; Lie algebra; cosmology.3 1. INTRODUCTION Today, the Bianchi classification of 3-dimensional Lie algebras is no longer pre- sented by the original Bianchi method [4]. The now-common approach is usually credited to C. G. Behr, but one never sees any reference to a paper by him. Tracing the references back in time one is most often led either to the paper by Ellis and 1 Written collectively as “Golden Oldie XXX; each author is signed under his segment. 2 Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland; e-mail: [email protected] 3 Eduard-Steinle-Strae 19, 70 619 Stuttgart, Germany. 4 29 Washington Square West, New York, NY 10011, USA; e-mail: [email protected] 5 Jet Propulsion Laboratory, Mail Stop 169-327, 4800 Oak Grove Drive, Pasadena, California 91109, USA 6 Jet Propulsion Laboratory, Mail Stop 169-327, 4800 Oak Grove Drive, Pasadena, California 91109, USA; e-mail: [email protected] 7 Mathematics -
Bianchi, Luigi.Pdf 141KB
Centro Archivistico BIANCHI, LUIGI Elenco sommario del fondo 1 Indice generale Introduzione.....................................................................................................................................................2 Carteggio (1880-1923)......................................................................................................................................2 Carteggio Saverio Bianchi (1936 – 1954; 1975)................................................................................................4 Manoscritti didattico scientifici........................................................................................................................5 Fascicoli............................................................................................................................................................6 Introduzione Il fondo è pervenuto alla Biblioteca della Scuola Normale Superiore di Pisa per donazione degli eredi nel 1994-1995; si tratta probabilmente solo di una parte della documentazione raccolta da Bianchi negli anni di ricerca e insegnamento. Il fondo era corredato di un elenco dattiloscritto a cura di Paola Piazza, in cui venivano indicati sommariamente i contenuti delle cartelle. Il materiale è stato ordinato e descritto da Sara Moscardini e Manuel Rossi nel giugno 2014. Carteggio (1880-1923) La corrispondenza presenta oltre 100 lettere indirizzate a L. B. dal 1880 al 1923, da illustri studiosi del XIX-XX secolo come Eugenio Beltrami, Enrico Betti, A. von Brill, Francesco Brioschi, -
Dynamics of Bianchi Spacetimes
Dynamics of Bianchi spacetimes Fran¸coisB´eguin Universit´eParis-Sud 11 & ENS´ Febuary 9th, 2012 Raisons d'^etre: I natural finite dimensional class of spacetimes ; I BKL conjecture : generic spacetimes \behave like" spatially homogeneous spacetimes close to their initial singularity. Bianchi cosmological models : presentation Bianchi spacetimes are spatially homogeneous (not isotropic) cosmological models. Bianchi cosmological models : presentation Bianchi spacetimes are spatially homogeneous (not isotropic) cosmological models. Raisons d'^etre: I natural finite dimensional class of spacetimes ; I BKL conjecture : generic spacetimes \behave like" spatially homogeneous spacetimes close to their initial singularity. I A Bianchi spacetime is a spacetime (M; g) with 2 M ' I × G g = −dt + ht where I = (t−; t+) ⊂ R, G is 3-dimensional Lie group, ht is a left-invariant riemannian metric on G. I A Bianchi spacetime amounts to a one-parameter family of left-invariant metrics (ht )t2I on a 3-dimensional Lie group G. Bianchi cosmological models : definitions I A Bianchi spacetime is a globally hyperbolic spatially homogeneous (but not isotropic) spacetime. I A Bianchi spacetime amounts to a one-parameter family of left-invariant metrics (ht )t2I on a 3-dimensional Lie group G. Bianchi cosmological models : definitions I A Bianchi spacetime is a globally hyperbolic spatially homogeneous (but not isotropic) spacetime. I A Bianchi spacetime is a spacetime (M; g) with 2 M ' I × G g = −dt + ht where I = (t−; t+) ⊂ R, G is 3-dimensional Lie group, ht is a left-invariant riemannian metric on G. Bianchi cosmological models : definitions I A Bianchi spacetime is a globally hyperbolic spatially homogeneous (but not isotropic) spacetime. -
On the Energy of Homogeneous Cosmologies
On the energy of homogeneous cosmologies James M. Nester Department of Physics, National Central University, Chungli 32054, Taiwan Department of Physics and Institute of Astronomy, National Central University, Chungli 32054, Taiwan. [email protected] Lau Loi So1 Department of Physics, National Central University, Chungli 32054, Taiwan [email protected] T. Vargas2 Instituto de Fisica Teorica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 Sao Paulo SP, Brazil. [email protected] Received ; accepted 1present address:Department of physics, Tamkang University, Tamsui 251, Taiwan. 2present address:Department of Physics, National Central University, Chungli 32054, Tai- wan. – 2 – ABSTRACT We investigate the quasi-local energy of all the homogeneous cosmological models. More specifically using the standard natural prescription we find the quasi-local energy-momentum for a large class of gravity theories with a tetrad description for all 9 Bianchi types with general gravitational sources. Using ideas related to a Hamiltonian approach we find that, with homogeneous boundary conditions, the quasi-local energy vanishes for all regions in all Bianchi class A models, and it does not vanish for any class B model. This is so not only for Einstein’s general relativity but, moreover, for the whole 3-parameter class of tetrad-teleparallel theories. For the physically favored one parameter subclass, which includes the teleparallel equivalent of Einstein’s theory as an important special case, the quasi-local energy for all class B models is positive. PACS 04.20.Cv, 04.20.Fy, 98.80.Jk 2006-12-19jmn 1. Introduction Energy has been one of the most useful physical concepts, no less so in gravitating systems—one need only recall its utility in the Newtonian Kepler problem. -
A Survey of the Development of Geometry up to 1870
A Survey of the Development of Geometry up to 1870∗ Eldar Straume Department of mathematical sciences Norwegian University of Science and Technology (NTNU) N-9471 Trondheim, Norway September 4, 2014 Abstract This is an expository treatise on the development of the classical ge- ometries, starting from the origins of Euclidean geometry a few centuries BC up to around 1870. At this time classical differential geometry came to an end, and the Riemannian geometric approach started to be developed. Moreover, the discovery of non-Euclidean geometry, about 40 years earlier, had just been demonstrated to be a ”true” geometry on the same footing as Euclidean geometry. These were radically new ideas, but henceforth the importance of the topic became gradually realized. As a consequence, the conventional attitude to the basic geometric questions, including the possible geometric structure of the physical space, was challenged, and foundational problems became an important issue during the following decades. Such a basic understanding of the status of geometry around 1870 enables one to study the geometric works of Sophus Lie and Felix Klein at the beginning of their career in the appropriate historical perspective. arXiv:1409.1140v1 [math.HO] 3 Sep 2014 Contents 1 Euclideangeometry,thesourceofallgeometries 3 1.1 Earlygeometryandtheroleoftherealnumbers . 4 1.1.1 Geometric algebra, constructivism, and the real numbers 7 1.1.2 Thedownfalloftheancientgeometry . 8 ∗This monograph was written up in 2008-2009, as a preparation to the further study of the early geometrical works of Sophus Lie and Felix Klein at the beginning of their career around 1870. The author apologizes for possible historiographic shortcomings, errors, and perhaps lack of updated information on certain topics from the history of mathematics. -
Symmetry and Mathematics
A Conceptual History of Space and Symmetry Pietro Giuseppe Fré A Conceptual History of Space and Symmetry From Plato to the Superworld 123 Pietro Giuseppe Fré University of Torino Turin, Italy ISBN 978-3-319-98022-5 ISBN 978-3-319-98023-2 (eBook) https://doi.org/10.1007/978-3-319-98023-2 Library of Congress Control Number: 2018950942 © Springer Nature Switzerland AG 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland This book is dedicated to my family, namely to my beloved daughter Laura, to my darling wife Olga, to my young son Vladimir and to my former wife Tiziana, Laura’s mother, with whom, notwithstanding our divorce, the ties due to a common daughter and to more than twenty five years spent together remain strong. -
Mathematisches Forschungsinstitut Oberwolfach the History Of
Mathematisches Forschungsinstitut Oberwolfach Report No. 51/2004 The History of Differential Equations, 1670–1950 Organised by Thomas Archibald (Wolfville) Craig Fraser (Toronto) Ivor Grattan-Guinness (Middlesex) October 31st – November 6th, 2004 Mathematics Subject Classification (2000): 01A45, 01A50, 01A55, 01A60, 34-03, 35-03. Introduction by the Organisers Differential equations have been a major branch of pure and applied mathematics since their inauguration in the mid 17th century. While their history has been well studied, it remains a vital field of on-going investigation, with the emergence of new connections with other parts of mathematics, fertile interplay with applied subjects, interesting reformulation of basic problems and theory in various periods, new vistas in the 20th century, and so on. In this meeting we considered some of the principal parts of this story, from the launch with Newton and Leibniz up to around 1950. ‘Differential equations’ began with Leibniz, the Bernoulli brothers and others from the 1680s, not long after Newton’s ‘fluxional equations’ in the 1670s. Appli- cations were made largely to geometry and mechanics; isoperimetrical problems were exercises in optimisation. Most 18th-century developments consolidated the Leibnizian tradition, extend- ing its multi-variate form, thus leading to partial differential equations. General- isation of isoperimetrical problems led to the calculus of variations. New figures appeared, especially Euler, Daniel Bernoulli, Lagrange and Laplace. Development of the general theory of solutions included singular ones, functional solutions and those by infinite series. Many applications were made to mechanics, especially to astronomy and continuous media. In the 19th century: general theory was enriched by development of the un- derstanding of general and particular solutions, and of existence theorems.