The First Period: 1888 - 1904

Total Page:16

File Type:pdf, Size:1020Kb

The First Period: 1888 - 1904 The first period: 1888 - 1904 The members of the editorial board: 1891: Henri Poincaré entered to belong to “direttivo” of Circolo. (In that way the Rendiconti is the first mathematical journal with an international editorial board: the Acta’s one was only inter scandinavian) 1894: Gösta Mittag-Leffler entered to belong to “direttivo” of Circolo . 1888: New Constitution Art. 2: [Il Circolo] potrà istituire concorsi a premi e farsi promotore di congress scientifici nelle varie città del regno. [Il Circolo] may establish prize competitions and become a promoter of scientific congress in different cities of the kingdom. Art 17: Editorial Board 20 members (five residents and 15 non residents) Art. 18: elections with a system that guarantees the secrety of the vote. 1888: New Editorial Board 5 from Palermo: Giuseppe and Michele Albeggiani; Francesco Caldarera; Michele Gebbia; Giovan Battista Guccia 3 from Pavia: Eugenio Beltrami; Eugenio Bertini; Felice Casorati; 3 from Pisa: Enrico Betti; Riccardo De Paolis; Vito Volterra 2 from Napoli: Giuseppe Battaglini; Pasquale Del Pezzo 2 from Milano: Francesco Brioschi; Giuseppe Jung 2 from Roma: Valentino Cerruti; Luigi Cremona 2 from Torino: Enrico D’Ovidio; Corrado Segre 1 from Bologna: Salvatore Pincherle A very well distributed arrangement of the best Italian mathematicians! The most important absence is that of the university of Padova: Giuseppe Veronese had joined the Circolo in 1888, Gregorio Ricci will never be a member of it Ulisse Dini and Luigi Bianchi in Pisa will join the Circolo respectively in 1900 and in 1893. The first and the second issue of the Rendiconti Some papers by Palermitan scholars and papers by Eugène Charles Catalan, Thomas Archer Hirst, Pieter Hendrik Schoute, Corrado Segre (first issue, 1887) and Enrico Betti, George Henri Halphen, Ernest de Jonquières, Camille Jordan, Giuseppe Peano, Henri Poincaré, Corrado Segre, Alexis Starkov, Vito Volterra (second issue, 1888). Completely international A famous discussion: Veronese and Peano, 1891 On the hyperspaces and non archimedean geometry G. Peano, Lettera aperta al prof. Veronese , 6, 1892. G. Veronese, A proposito di una lettera del prof. Peano , 6, 1892. G. Veronese, Osservazioni sopra una dimostrazione contro il segmento infinitesimo attuale , 6, 1892. G. Peano, Breve replica al prof. Veronese , 6, 1892. Other important contributions on logical problems Cesare Burali Forti, Una questione sui numeri transfiniti , 11, 1897, 154 – 164 (the famous paradox) Cesare Burali Forti, Il metodo di Grassmann nelle geometria proiettiva , 10, 1896; 11, 1897; 15, 1901. The first contributions of Poincaré 1888, Sur une propiété des fonctions analytiques 189, Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré 1894, Sur les équations de la physique mathématique 1897, Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré 1899, Complément à l’Analysis situs 1901, Quelques rémarques sur les groupes continus Picard and the Rendiconti Three «Revues» from the «Revue Gènerale» 1891 and 1895 (two papers). Particularly « Sur la théorie des surfaces algébriques » in which he presents the papers of Italian geometers. Sur la théorie des groupes et des surfaces algébriques , 9, 1895. Sur les systèmes linéaires de lignes tracées sur une surface algébrique , 13, 1899. The internationalization of the mathematical researches: from 1900 1900: II International Congress (Paris) 1904: III Internazional Congress (Heidelberg) 1908: IV International Congress (Roma) 1904: Congress of Heidelberg “Il prof. Volterra desidererebbe che il Congresso dei Matematici pel 1908 si tenesse in Italia e precisamente a Roma. Della cosa si parlò ne’ primi di giugno in una riunione di soci Lincei (sezione matematica). Ma da tutti si riconobbe che bisognava intendersi col Circolo Matematico, o meglio con Lei, ed averne i consigli e l’aiuto.” [Cerruti a Guccia 16 luglio 1904] “ Prof. Volterra would wish that the Congress of Mathematicians 1908 is held in Italy and precisely in Rome. Of what was said in early June at a meeting of shareholders Lincei (mathematics section). But everyone knew that it was necessary to link up with Circolo Matematico di Palermo, or rather with you, and have the advice and help ” The Congress approves, by acclamation, entrusting the organization to the mathematics section of the Accademia dei Lincei and of the Circolo Matematico di Palermo (respectively to Castelnuovo e Guccia). A. Guerraggio, P. Nastasi Roma 1908: Il congresso internazionale dei matematici , Bollati Boringhieri, 2008. The editorial board till 1909 From Palermo: Giuseppe Albeggiani (from 1888 till his death 1892); Michele Albeggiani (1888 – 1909); Francesco Caldarera (1888 – 1893); Michele Gebbia (1888 – 1909); Francesco Gerbaldi (1894 – 1905); Gabriele Torelli (1894 – 1909) From Italy: Giuseppe Battaglini (Napoli 1888 – 1893); Eugenio Beltrami (Pavia and Roma 1888 – 1890); Eugenio Bertini (Pavia 1888 – 1893); Enrico Betti (Pisa 1888 – 1893); Luigi Bianchi (Pisa 1897 – 1908); Francesco Brioschi (Milano 1888 – 1896); Alfredo Capelli (Napoli 1894 – 1908); Felice Casorati (Pavia 1888 – 1890); Valentino Cerruti (Roma 1888 – 1908); Luigi Cremona (Roma 1888 – 1903); Riccardo De Paolis (Pisa 1888 – 1893); Pasquale Del Pezzo (Napoli 1888 – 1908); Alfonso Del Re (Napoli 1900 – 1908); Ulisse Dini (Pisa 1900 – 1908); Enrico D’Ovidio (Torino 1888 – 1893 and 1906 – 1908); Giuseppe Jung (Milano 1888 – 1899); Gino Loria (Genova 1894 – 1908); Giovanni Maisano (Messina and Palermo 1894 – 1899); Ernesto Pascal (Pavia and Milano 1900 – 1908); Giuseppe Peano (Torino 1894 – 1908); Salvatore Pincherle (Bologna 1888 – 1908); Corrado Segre (Torino 1888 – 1890); Alberto Tonelli (Roma 1900 – 1908); Vito Volterra (Pisa, Torino, Roma 1888 – 1908) From abroad Gösta Mittag Leffler (Stockholm 1894 – 1908); Henri Poincaré (Paris 1891 – 1908) The preparation and the great progress. New members 1904: Max Noether 1905: F. Klein, H.G. Zeuthen, W. Osgood, G. Cantor, J. Lüroth, O. Veblen, G. Darboux, E. Landau, R. Moore 1906: I. Fredholm, E. Borel, M. Fréchet, D. Hilbert, J. Hadamard, J. Wedderburn, 1907: P. Sylow, P. Duhem, K. Hensel, H. Lebesgue 1908: F. Riesz, M. Dehn, E. Zermelo, H. Weyl, Emmy Noether 1909: A. Hurwitz, H. Bohr, W. Sierpinski 1910: L. Bieberbach, R. Courant, F. Hausdorff, G. H. Hardy, W. Burnside 1911: J. Coolidge, Friedrich Noether 1912: B. Russell, G. Polya 1913: H. Steinhaus, G. D. Birkhoff 1914: S. Lefschetz, A.A. H.Fraenkel 1907: an important lunch Lunch which was held November 3, 1907 at the Restaurant of the Hotel Continental, Paris. At this lunch took part (as you seen from the manuscript of Guccia): C. Darboux, C. Jordan, H. Poincarè, P. Appel, P. Painlevè, G. Humbert, J. Hadamard, G. Borel, D. Andrè, C. Laisant, G. Fouret, J. Drach, L. Olivier, P. Boutroux, besides Guccia. This meeting laid the foundation for the internationalization of the Circolo Matematico di Palermo. An ambitious program? Dreams? “Qualche altro anno di tempo mi è necessario (e molto lavoro ancora) prima di battere vittoriosamente tutte e quattro le nostre consorelle di Londra, Parigi, New York e Germania! Ma vi riuscirò, se Dio vuole e se la fiducia degli amici non mi vien meno. Vi riuscirò perché noi disponiamo di mezzi, metodi e organizzazioni che esse non hanno” [Guccia a Cerruti, 15 giugno 1906] “I need a few more years (and a lot of work yet) before beating victoriously all four of our sisters in London, Paris, New York and Germany! But I shall succeed, God willing and if the confidence of the friends I Void. We succeed because we have the means, methods and organizations that they have not ” 400 members (were 195, will be 400 in 1906 and 605 in 1908) Guccia Medal Second journal Divulgation History Guccia Medal “ Ho deciso di fondare un premio per la geometria, che successivamente diverrà molto probabilmente stabile, ma che per cominciare sarà assegnato nel 1908 … Il premio, con il nome di medaglia Guccia, consisterà in una piccola medaglia in oro e in una somma di 3000 franchi in oro. Il premio sarà internazionale. La commissione giudicatrice sarà composta da un italiano (che sarà Segre), da un tedesco (Noether) e da un francese, che vorrei fosse il nostro amico Poincaré ”. [Guccia a Humbert, 19 luglio 1904] “I decided to establish a prize for geometry, which later will become very likely stable, but that will be assigned to begin in 1908 ... The award, as the medal Guccia, will consist of a small gold medal and a sum of 3,000 francs in gold. The award will be international. The jury will be composed of an Italian (which will Segre), a German (Noether) and by a Frenchman, that I would like our friend Poincaré ” Journal of Applied Mathematics “Sorge dunque naturale la idea che anche in Italia qualche cosa di serio si faccia per le matematiche applicate … Vogliamo che le applicazioni si traggano dalle più alte e moderne scoverte delle matematiche pure, non mai dalla matematica elementare o media, perché in tal caso si andrebbe subito giù … si comprenderebbe qualunque cosa ! … I vecchi nostri Rendiconti ( organo per le matematiche pure ) già tanto accreditati, servirebbero ad accreditare in poco tempo i nuovi Rendiconti , che si pubblicherebbero parallelamente, col titolo : « Organo per le matematiche applicate » o altro equivalente .” [Guccia a Cerruti del 11 giugno 1905] “ Rises therefore the natural idea that even in Italy something serious is done for applied mathematics ... We want that applications be drawn from
Recommended publications
  • Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E
    BOOK REVIEW Einstein’s Italian Mathematicians: Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E. Rowe Einstein’s Italian modern Italy. Nor does the author shy away from topics Mathematicians: like how Ricci developed his absolute differential calculus Ricci, Levi-Civita, and the as a generalization of E. B. Christoffel’s (1829–1900) work Birth of General Relativity on quadratic differential forms or why it served as a key By Judith R. Goodstein tool for Einstein in his efforts to generalize the special theory of relativity in order to incorporate gravitation. In This delightful little book re- like manner, she describes how Levi-Civita was able to sulted from the author’s long- give a clear geometric interpretation of curvature effects standing enchantment with Tul- in Einstein’s theory by appealing to his concept of parallel lio Levi-Civita (1873–1941), his displacement of vectors (see below). For these and other mentor Gregorio Ricci Curbastro topics, Goodstein draws on and cites a great deal of the (1853–1925), and the special AMS, 2018, 211 pp. 211 AMS, 2018, vast secondary literature produced in recent decades by the world that these and other Ital- “Einstein industry,” in particular the ongoing project that ian mathematicians occupied and helped to shape. The has produced the first 15 volumes of The Collected Papers importance of their work for Einstein’s general theory of of Albert Einstein [CPAE 1–15, 1987–2018]. relativity is one of the more celebrated topics in the history Her account proceeds in three parts spread out over of modern mathematical physics; this is told, for example, twelve chapters, the first seven of which cover episodes in [Pais 1982], the standard biography of Einstein.
    [Show full text]
  • The True Story Behind Frattini's Argument *
    Advances in Group Theory and Applications c 2017 AGTA - www.advgrouptheory.com/journal 3 (2017), pp. 117–129 ISSN: 2499-1287 DOI: 10.4399/97888255036928 The True Story Behind Frattini’s Argument * M. Brescia — F. de Giovanni — M. Trombetti (Received Apr. 12, 2017 — Communicated by Dikran Dikranjan) Mathematics Subject Classification (2010): 01A55, 20D25 Keywords: Frattini’s Argument; Alfredo Capelli In his memoir [7] Intorno alla generazione dei gruppi di operazioni (1885), Giovanni Frattini (1852–1925) introduced the idea of what is now known as a non-generating element of a (finite) group. He proved that the set of all non- generating elements of a group G constitutes a normal subgroup of G, which he named Φ. This subgroup is today called the Frattini sub- group of G. The earliest occurrence of this de- nomination in literature traces back to a pa- per of Reinhold Baer [1] submitted on Sep- tember 5th, 1952. Frattini went on proving that Φ is nilpotent by making use of an in- sightful, renowned argument, the intellectual ownership of which is the subject of this note. We are talking about what is nowadays known as Frattini’s Argument. Giovanni Frattini was born in Rome on January 8th, 1852 to Gabrie- le and Maddalena Cenciarelli. In 1869, he enrolled for Mathematics at the University of Rome, where he graduated in 1875 under the * The authors are members of GNSAGA (INdAM), and work within the ADV-AGTA project 118 M. Brescia – F. de Giovanni – M. Trombetti supervision of Giuseppe Battaglini (1826–1894), together with other up-and-coming mathematicians such as Alfredo Capelli.
    [Show full text]
  • Algebraic Research Schools in Italy at the Turn of the Twentieth Century: the Cases of Rome, Palermo, and Pisa
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Historia Mathematica 31 (2004) 296–309 www.elsevier.com/locate/hm Algebraic research schools in Italy at the turn of the twentieth century: the cases of Rome, Palermo, and Pisa Laura Martini Department of Mathematics, University of Virginia, PO Box 400137, Charlottesville, VA 22904-4137, USA Available online 28 January 2004 Abstract The second half of the 19th century witnessed a sudden and sustained revival of Italian mathematical research, especially in the period following the political unification of the country. Up to the end of the 19th century and well into the 20th, Italian professors—in a variety of institutional settings and with a variety of research interests— trained a number of young scholars in algebraic areas, in particular. Giuseppe Battaglini (1826–1892), Francesco Gerbaldi (1858–1934), and Luigi Bianchi (1856–1928) defined three key venues for the promotion of algebraic research in Rome, Palermo, and Pisa, respectively. This paper will consider the notion of “research school” as an analytic tool and will explore the extent to which loci of algebraic studies in Italy from the second half of the 19th century through the opening decades of the 20th century can be considered as mathematical research schools. 2003 Elsevier Inc. All rights reserved. Sommario Nella seconda metà dell’Ottocento, specialmente dopo l’unificazione del paese, la ricerca matematica in Italia conobbe una vigorosa rinascita. Durante gli ultimi decenni del diciannovesimo secolo e i primi del ventesimo, matematici italiani appartenenti a diverse istituzioni e con interessi in diversi campi di ricerca, formarono giovani studiosi in vari settori dell’algebra.
    [Show full text]
  • Salvatore Pincherle: the Pioneer of the Mellin–Barnes Integrals
    Journal of Computational and Applied Mathematics 153 (2003) 331–342 www.elsevier.com/locate/cam Salvatore Pincherle: the pioneer of the Mellin–Barnes integrals Francesco Mainardia;∗, Gianni Pagninib aDipartimento di Fisica, Universita di Bologna and INFN, Sezione di Bologna, Via Irnerio 46, I-40126 Bologna, Italy bIstituto per le Scienze dell’Atmosfera e del Clima del CNR, Via Gobetti 101, I-40129 Bologna, Italy Received 18 October 2001 Abstract The 1888 paper by Salvatore Pincherle (Professor of Mathematics at the University of Bologna) on general- ized hypergeometric functions is revisited. We point out the pioneering contribution of the Italian mathemati- cian towards the Mellin–Barnes integrals based on the duality principle between linear di5erential equations and linear di5erence equation with rational coe7cients. By extending the original arguments used by Pincherle, we also show how to formally derive the linear di5erential equation and the Mellin–Barnes integral representation of the Meijer G functions. c 2002 Elsevier Science B.V. All rights reserved. MSC: 33E30; 33C20; 33C60; 34-XX; 39-XX; 01-99 Keywords: Generalized hypergeometric functions; Linear di5erential equations; Linear di5erence equations; Mellin–Barnes integrals; Meijer G-functions 1. Preface In Vol. 1, p. 49 of Higher Transcendental Functions of the Bateman Project [5] we read “Of all integrals which contain gamma functions in their integrands the most important ones are the so-called Mellin–Barnes integrals. Such integrals were ÿrst introduced by Pincherle, in 1888 [21]; their theory has been developed in 1910 by Mellin (where there are references to earlier work) [17] and they were used for a complete integration of the hypergeometric di5erential equation by Barnes [2]”.
    [Show full text]
  • HOMOTECIA Nº 11-15 Noviembre 2017
    HOMOTECIA Nº 11 – Año 15 Miércoles, 1º de Noviembre de 2017 1 En una editorial anterior, comentamos sobre el consejo que le dio una profesora con años en el ejercicio del magisterio a un docente que se iniciaba en la docencia, siendo que ambos debían enseñar matemática: - Si quieres obtener buenos resultados en el aprendizaje de los alumnos que vas a atender, para que este aprendizaje trascienda debes cuidar el lenguaje, el hablado y el escrito, la ortografía, la redacción, la pertinencia. Desde la condición humana, promover la cordialidad y el respeto mutuo, el uso de la terminología correcta de nuestro idioma, que posibilite la claridad de lo que se quiere exponer, lo que se quiere explicar, lo que se quiere evaluar. Desde lo específico de la asignatura, ser lexicalmente correcto. El hecho de ser docente de matemática no significa que eso te da una licencia para atropellar el lenguaje. En consecuencia, cuando utilices los conceptos matemáticos y trabajes la operatividad correspondiente, utiliza los términos, definiciones, signos y símbolos que esta disciplina ha dispuesto para ellos. Debes esforzarte en hacerlo así, no importa que los alumnos te manifiesten que no entienden. Tu preocupación es que aprendan de manera correcta lo que se les enseña. Es una prevención para evitarles dificultades en el futuro . Traemos a colación lo de este consejo porque consideramos que es un tema que debe tratarse con mucha amplitud. El problema de hablar y escribir bien no es solamente característicos en los alumnos sino que también hay docentes que los presentan. Un alumno, por más que asista continuamente a la escuela, es afectado por el entorno cultural familiar en el que se desenvuelve.
    [Show full text]
  • The Bianchi Classification in the Schü
    P1: FLT General Relativity and Gravitation (GERG) PP736-GERG-459711 February 7, 2003 18:36 Style file version May 27, 2002 General Relativity and Gravitation, Vol. 35, No. 3, March 2003 (C 2003) The Bianchi Classification in the Sch¨ucking-Behr Approach1 A. Krasi´nski,2 Christoph G. Behr,3 Engelbert Sch¨ucking,4 Frank B. Estabrook,5 Hugo D. Wahlquist,6 George F. R. Ellis,7 Robert Jantzen,8 and Wolfgang Kundt9 Received July 15, 2002 The historical development of the Bianchi classification of homogeneous cosmological models is described with special emphasis on the contributions by Sch¨ucking and Behr. KEY WORDS: Bianchi models; Lie algebra; cosmology.3 1. INTRODUCTION Today, the Bianchi classification of 3-dimensional Lie algebras is no longer pre- sented by the original Bianchi method [4]. The now-common approach is usually credited to C. G. Behr, but one never sees any reference to a paper by him. Tracing the references back in time one is most often led either to the paper by Ellis and 1 Written collectively as “Golden Oldie XXX; each author is signed under his segment. 2 Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland; e-mail: [email protected] 3 Eduard-Steinle-Strae 19, 70 619 Stuttgart, Germany. 4 29 Washington Square West, New York, NY 10011, USA; e-mail: [email protected] 5 Jet Propulsion Laboratory, Mail Stop 169-327, 4800 Oak Grove Drive, Pasadena, California 91109, USA 6 Jet Propulsion Laboratory, Mail Stop 169-327, 4800 Oak Grove Drive, Pasadena, California 91109, USA; e-mail: [email protected] 7 Mathematics
    [Show full text]
  • Bianchi, Luigi.Pdf 141KB
    Centro Archivistico BIANCHI, LUIGI Elenco sommario del fondo 1 Indice generale Introduzione.....................................................................................................................................................2 Carteggio (1880-1923)......................................................................................................................................2 Carteggio Saverio Bianchi (1936 – 1954; 1975)................................................................................................4 Manoscritti didattico scientifici........................................................................................................................5 Fascicoli............................................................................................................................................................6 Introduzione Il fondo è pervenuto alla Biblioteca della Scuola Normale Superiore di Pisa per donazione degli eredi nel 1994-1995; si tratta probabilmente solo di una parte della documentazione raccolta da Bianchi negli anni di ricerca e insegnamento. Il fondo era corredato di un elenco dattiloscritto a cura di Paola Piazza, in cui venivano indicati sommariamente i contenuti delle cartelle. Il materiale è stato ordinato e descritto da Sara Moscardini e Manuel Rossi nel giugno 2014. Carteggio (1880-1923) La corrispondenza presenta oltre 100 lettere indirizzate a L. B. dal 1880 al 1923, da illustri studiosi del XIX-XX secolo come Eugenio Beltrami, Enrico Betti, A. von Brill, Francesco Brioschi,
    [Show full text]
  • On the Role Played by the Work of Ulisse Dini on Implicit Function
    On the role played by the work of Ulisse Dini on implicit function theory in the modern differential geometry foundations: the case of the structure of a differentiable manifold, 1 Giuseppe Iurato Department of Physics, University of Palermo, IT Department of Mathematics and Computer Science, University of Palermo, IT 1. Introduction The structure of a differentiable manifold defines one of the most important mathematical object or entity both in pure and applied mathematics1. From a traditional historiographical viewpoint, it is well-known2 as a possible source of the modern concept of an affine differentiable manifold should be searched in the Weyl’s work3 on Riemannian surfaces, where he gave a new axiomatic description, in terms of neighborhoods4, of a Riemann surface, that is to say, in a modern terminology, of a real two-dimensional analytic differentiable manifold. Moreover, the well-known geometrical works of Gauss and Riemann5 are considered as prolegomena, respectively, to the topological and metric aspects of the structure of a differentiable manifold. All of these common claims are well-established in the History of Mathematics, as witnessed by the work of Erhard Scholz6. As it has been pointed out by the Author in [Sc, Section 2.1], there is an initial historical- epistemological problem of how to characterize a manifold, talking about a ‘’dissemination of manifold idea’’, and starting, amongst other, from the consideration of the most meaningful examples that could be taken as models of a manifold, precisely as submanifolds of a some environment space n, like some projective spaces ( m) or the zero sets of equations or inequalities under suitable non-singularity conditions, in this last case mentioning above all of the work of Enrico Betti on Combinatorial Topology [Be] (see also Section 5) but also that of R.
    [Show full text]
  • Science and Fascism
    Science and Fascism Scientific Research Under a Totalitarian Regime Michele Benzi Department of Mathematics and Computer Science Emory University Outline 1. Timeline 2. The ascent of Italian mathematics (1860-1920) 3. The Italian Jewish community 4. The other sciences (mostly Physics) 5. Enter Mussolini 6. The Oath 7. The Godfathers of Italian science in the Thirties 8. Day of infamy 9. Fascist rethoric in science: some samples 10. The effect of Nazism on German science 11. The aftermath: amnesty or amnesia? 12. Concluding remarks Timeline • 1861 Italy achieves independence and is unified under the Savoy monarchy. Venice joins the new Kingdom in 1866, Rome in 1870. • 1863 The Politecnico di Milano is founded by a mathe- matician, Francesco Brioschi. • 1871 The capital is moved from Florence to Rome. • 1880s Colonial period begins (Somalia, Eritrea, Lybia and Dodecanese). • 1908 IV International Congress of Mathematicians held in Rome, presided by Vito Volterra. Timeline (cont.) • 1913 Emigration reaches highest point (more than 872,000 leave Italy). About 75% of the Italian popu- lation is illiterate and employed in agriculture. • 1914 Benito Mussolini is expelled from Socialist Party. • 1915 May: Italy enters WWI on the side of the Entente against the Central Powers. More than 650,000 Italian soldiers are killed (1915-1918). Economy is devastated, peace treaty disappointing. • 1921 January: Italian Communist Party founded in Livorno by Antonio Gramsci and other former Socialists. November: National Fascist Party founded in Rome by Mussolini. Strikes and social unrest lead to political in- stability. Timeline (cont.) • 1922 October: March on Rome. Mussolini named Prime Minister by the King.
    [Show full text]
  • The Case of Sicily, 1880–1920 Rossana Tazzioli
    Interplay between local and international journals: The case of Sicily, 1880–1920 Rossana Tazzioli To cite this version: Rossana Tazzioli. Interplay between local and international journals: The case of Sicily, 1880–1920. Historia Mathematica, Elsevier, 2018, 45 (4), pp.334-353. 10.1016/j.hm.2018.10.006. hal-02265916 HAL Id: hal-02265916 https://hal.archives-ouvertes.fr/hal-02265916 Submitted on 12 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Interplay between local and international journals: The case of Sicily, 1880–1920 Rossana Tazzioli To cite this version: Rossana Tazzioli. Interplay between local and international journals: The case of Sicily, 1880–1920. Historia Mathematica, Elsevier, 2018, 45 (4), pp.334-353. 10.1016/j.hm.2018.10.006. hal-02265916 HAL Id: hal-02265916 https://hal.archives-ouvertes.fr/hal-02265916 Submitted on 12 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not.
    [Show full text]
  • Atlas on Our Shoulders
    BOOKS & ARTS NATURE|Vol 449|27 September 2007 Atlas on our shoulders The Body has a Mind of its Own: How They may therefore be part of the neural basis Body Maps in Your Brain HelpYou Do of intention, promoting learning by imitation. (Almost) Everything Better The authors explain how mirror neurons could by Sandra Blakeslee and Matthew participate in a wide range of primate brain Blakeslee functions, for example in shared perception Random House: 2007. 240 pp. $24.95 and empathy, cultural transmission of knowl- edge, and language. At present we have few, if any, clues as to how mirror neurons compute or Edvard I. Moser how they interact with other types of neuron, Like an atlas, the brain contains maps of the but the Blakeslees draw our attention to social internal and external world, each for a dis- neuroscience as an emerging discipline. tinct purpose. These maps faithfully inform It is important to keep in mind that the map the brain about the structure of its inputs. The concept is not explanatory. We need to define JOPLING/WHITE CUBE & J. OF THE ARTIST COURTESY body surface, for example, is mapped in terms what a map is to understand how perception of its spatial organization, with the same neural and cognition are influenced by the spatial arrangement flashed through successive levels arrangement of neural representations. The of processing — from the sensory receptors in classical maps of the sensory cortices are topo- the periphery to the thalamus and cortex in graphical, with neighbouring groups of neurons the brain. Meticulous mapping also takes into Sculptor Antony Gormley also explores how the representing neighbouring parts of the sensory account the hat on your head and the golf club body relates to surrounding space.
    [Show full text]
  • Betti Enrico
    Centro Archivistico Betti Enrico Elenco sommario del fondo 1 Indice generale Introduzione.....................................................................................................................................................2 Carteggio .........................................................................................................................................................3 Manoscritti didattico – scientifici.....................................................................................................................4 Onoranze a Enrico Betti..................................................................................................................................17 Materiale a stampa.........................................................................................................................................18 Allegato A - elenco dei corrispondenti di Enrico Betti...................................................................................19 Introduzione Nel 1893, un anno dopo la morte del Betti, il carteggio, vari manoscritti e la biblioteca dell'illustre matematico vennero donati dagli eredi alla Scuola Normale. Da allora numerosi sono stati gli interventi di riordino che tuttavia hanno interessato soprattutto la serie del carteggio. Nel giugno 2014 il fondo è stato parzialmente rinumerato, ricondizionato e descritto da Sara Moscardini e Manuel Rossi. Il fondo Betti presenta due nuclei prevalenti: carteggio e manoscritti didattico - scientifici. A questi si possono inoltre affiancare
    [Show full text]