Measurements at the Bit: a New Generation of MWD Tools

Total Page:16

File Type:pdf, Size:1020Kb

Measurements at the Bit: a New Generation of MWD Tools DRILLING Measurements at the Bit: A New Generation of MWD Tools Measurements-while-drilling technology has moved down the drillstring to enlist the bit itself as a sensor. Drillers time information about petrophysics and drilling mechanics without a lag between bit and sensors. This technical ciency of directional drilling, enhance real-time formation evaluation, and ultimately create a more productive well. a a a a a a a aa a a a a Steve Bonner a a a a aa aa a a a a Trevor Burgess a a Brian Clark aa a aa a a a a a a a aa a Dave Decker a Jacques Orban Kick-off aaa a a a a a a point Bernhard Prevedel a a First build aaa a a a a a a a a a a Sugar Land, Texas, USA a (5.5 ft /100 ft) a a aa aa a Martin Lüling a a a G aa aa e a a Second build a aa a a aa a a a aa Ridgefield, Connecticut, USA o a a a a a m (10 ft /100 ft) e a a a a tr a Tangent aa a a a a a a a a a ic Jim White s section e c aaa a ti a a aa a a a a a Aberdeen, Scotland a a a o a a a a a a n a a Horizontala Target entry point tolerance a a a a a a aa aa a aa a a aaa a a a a a a a In this article, IDEAL (Integrated Drilling Evaluation and a aaa a aa a a a a a aa a a Logging), GeoSteering tool, PowerPak, RAB (Resistivity- a a a a a a a at-the-Bit), RWOB (Receiver, Weight on Bit and Torque a a a Geosteering section a a aa a a a tool), PowerPulse, CDR (Compensated Dual Resistivity a a a aaa a a a tool), SFL (Spherically Focused Resistivity Log), AIT (Array Induction Imager Tool), CDN (Compensated Den- a a aa a a a a a a a a a sity Neutron tool) and FMI (Fullbore Formation MicroIm- ager) are marks of Schlumberger. aaa a a aa For help in preparation of this article, thanks to David Allen, Schlumberger Well Services, Sugar Land, Texas, nA typical horizontal well plan. Geometric drilling refers to USA; Philippe Faure, Dominic McCann, Samantha drilling along a fixed, predetermined trajectory, generally based Miller, Bernard Montaron and Kanai Pathak, Anadrill, on offset data and a stratigraphic model. Decisions about steer- Sugar Land, Texas, USA; Richard Rosthal, Schlumberger ing are based only on real-time information about bit direction Logging While Drilling, Sugar Land, Texas, USA; and David Hill, Schlumberger Well Services, New Orleans, and inclination. Geosteering refers to navigating the borehole Louisiana, USA. using geologic information in real time. Geosteering is possible 1. Betts P, Blount C, Broman B, Clark B, Hibbard L, with logging-while-drilling sensors, which are integrated into Louis A, Oosthoek P: “Acquiring and Interpreting Logs drill collars 40 to 100 ft [12 to 30 m] above the bit and steerable in Horizontal Wells,” Oilfield Review 2, no. 3 (July motor. Geosteering becomes more efficient with measurements 1990): 34-51. at the bit. Logging While Drilling. Schlumberger Education Ser- vices: Houston, Texas, USA, 1992. Conventional drilling of high-angle and hor- properties—are remote from the bit, crucial 2. For a review on horizontal drilling methods: izontal wells is like piloting an airplane from drilling decisions are delayed and data may Burgess T and Van de Slijke P: “Horizontal Drilling the tail rather than the cockpit. Information require more complex interpretation. In par- Comes of Age,” Oilfield Review 2, no. 3 (July 1990): required to land the well in the target forma- ticular, course corrections are delayed by 22-33. tion is derived from sensors 50 ft [15 m] or lag in measurements needed to make steer- more behind the bit or at the surface. ing decisions, resulting in less drainhole in Because these measurements—about well the pay zone. Also, maximum drilling effi- trajectory, drilling efficiency and formation ciency requires information about mechani- 44 Oilfield Review Locked assembly Rotary mode for vertical, tangent or horizontal sections Steerable assembly Rotary or sliding mode and geologists now have real- progress promises to improve effi- Locked Steerable cal power delivered to the bit, which is nTypical bottomhole assemblies for horizontal drilling. A rigid, inferred from surface measurements, or locked, assembly is used for drilling a vertical, tangent or degrading its accuracy. And resistivity mea- straight horizontal section. Rigidity increases with the number of stabilizers. This type of assembly permits only gradual changes surements from logging-while-drilling in the vertical angle of the well trajectory. A steerable assembly (LWD) sensors in drill collars are limited to with a downhole motor inside a bent housing can vary well tra- formation resistivity less than 200 ohm-m.1 jectory vertically and to the left and right, and can change Despite these limitations, horizontal and angle more quickly than a locked assembly. a a a a a a a a a high-angle drilling have proved successful, a especially in simple geologic settings— a aa a a a uncomplicated layer-cake structure. Nearly a aa a a aa a a a aa all these wells start vertically, with a con- a a a a a ventional rotary bottomhole assembly (BHA) aa a a a a a a a a (previous page).2 The drillstring and bit are a Sliding mode a aa a a a a a rotated from the surface either by a rotary a a a a a a a a a table on the derrick floor or a motor in the a a aa aa a aa a a traveling block, called a topdrive. Drilling a Rotary mode this way is called rotary mode. To kick off a aa a a a a a aa a a from vertical, the rotary assembly is a a a aa a a a replaced with a steerable motor—usually a a a a positive displacement motor, driven by mud Increased diameter due to a a aa a a a a a a a a a flow, in a housing bent 1° to 3° (above, outward tilt of steerable motor (scale exaggerated) aaa a a aa right). When mud is flowing, the motor rotates the bit, but not the drillstring. This nHow well trajectory is changed. In rotary mode, both the bit type of drilling is called sliding mode, and drillstring rotate and the bit cuts a straight path parallel to because the drillstring slides along after the the axis of the drillstring above the bent sub. In sliding mode, bit, which advances in the direction of the only the bit rotates and the hole follows the axis of the bent hous- housing below the bend (right). The larger ing below the bend. the angle of the bent housing, the sharper vertical. Large changes in direction are adjustments in inclination can be made with the curvature of the trajectory. The direction made by lifting off bottom and reorienting conventional rotary assemblies only by in which the bit is pointing, called toolface, the bent sub by rotating from surface. Small pulling out of the hole and varying the size is measured and sent to surface by measure- changes are made by varying weight on bit, and placement of stabilizers. Most horizon- ment-while-drilling (MWD) equipment for which changes the reactive torque of the tal sections, and some tangent sections, are real-time control of bit orientation. Mea- motor and hence toolface orientation. drilled with a steerable motor while rotating surements include azimuth, which is the Once sufficient inclination has been built, the drillstring from surface. In this mode, the compass bearing of the bit, and inclination, straight or tangent sections can be drilled in steerable motor behaves like a rotary BHA, which is the angle of the bit with respect to several ways. One is with a conventional maintaining both azimuth and inclination. rotary, or “locked,” assembly, which is rigid enough to allow fast, straight drilling. Small adjustments in inclination can be made by April/July 1993 varying weight on bit or rotary speed. Large 45 However, the presence of the steerable motor allows the driller to make course cor- XX00 rections without tripping the drillstring out Actual trajectory of the hole. Generally, the driller tries to make as much hole as possible using a rotary assembly or a steerable motor in rotary mode. Rotation of the drillstring Proposed geometric trajectory reduces the risk of getting stuck and allows vertical depth, ft True Reservoir XX25 faster drilling than in sliding mode. X700 X900 X100 X300 X500 X700 X900 Overcoming Limitations in Horizontal distance, ft Horizontal Drilling Today, the ability to drill horizontally is nThe risk of steering geometrically with inadequate information about reservoir dip— undisputed, and records for the longest hori- less drainhole in the pay zone. This North Sea well was successfully drilled beyond hori- zontal section are broken nearly as soon as zontal, but the reservoir dipped more than expected. Only about 15% of the drainhole was in the pay zone. they are set.3 Yet, the efficiency of drilling and steering horizontally is limited by the distance between the bit and measurements. Bulk density In drilling, for example, one way to define efficiency is the ratio of time spent making hole to the total rig time, including opera- Rad (deep) resistivity Rps (shallow) resistivity tions such as trips or hole conditioning.
Recommended publications
  • Start Time End Time Speaker Company Talk Title 09:00 09:30 Registration
    Start End Speaker Company Talk Title time time 09:00 09:30 Registration Michael 09:30 09:40 LPS Welcome & Introduction O'Keefe Kevin Independent 1 09:40 10:15 What is Advanced Formation Evaluation? Corrigan Consultant Rockflow Shaly sand evaluation in the total & effective 2 10:15 10:45 Roddy Irwin Resources LTD porosity systems: Know the difference! 10:45 11:15 Break 3 11:15 11:45 Iain Whyte Tullow Oil Resistivity in thin beds…some case studies Michel A review of low-resistivity & low-resistivity 4 11:45 12:15 Schlumberger Claverie contrast pay with focus on Africa Baker Using fractals to determine a reservoir's 5 12:15 12:45 Steve Cuddy Hughes/SPE hydrocarbon distribution 12:45 13:45 Lunch Joint Interpretation of Magnetic Resonance - and Geoff Page & Baker Hughes 6 13:45 14:30 Resistivity-based fluid volumetrics: A framework Holger Thern / SPWLA for petrophysical evaluation Richard Retired 7 14:30 15:00 The problem of the high permeability streak Dawe Consultant 15:00 15:30 Break Leicester Shale gas petrophysics; key parameters, 8 15:30 16:00 Mike Lovell University assumptions, and uncertainties Improved cased-hole formation evaluation: the Chiara 9 16:00 16:30 Schlumberger value of new fast neutron cross-section Cavelleri measurements & high definition spectroscopy Independent Getting More from Less - Using legacy data and 10 16:30 17:00 TBA Consultant sparse data sets Michael 17:00 17:10 LPS Closing Comments O'Keefe 17:10 onwards Refreshments Important notice: The statements and opinions expressed in this presentation are those of the author(s) and should not be construed as an official action or opinion of the London Petrophysical Society (LPS).
    [Show full text]
  • Real Time Petrophysical Data Analysis for Well Completions
    Real Time Petrophysical Data Analysis for Well Completions Installed in Oil Fields in the Amazon Basin in Ecuador Ivan Vela, Oscar Morales and Fabricio Sierra, Petroamazonas, Ecuador, and Francisco Porturas, Halliburton, Brasil. Copyright 2013, SBGf - S ociedade Brasileira de Geofísica its interpretation is a unique source of information of rock and fluid properties for a final calibration of predicted This paper was prepared f or presentati on during the 13th I nternational Congress of the Brazilian G eophysical S ociet y held in Rio de Janeiro, Brazil, A ugust 26-29, 2013. m odels , base cas es as an aid to install an efficient completion hardware. Contents of this paper were reviewed by the T echnic al Committee of the 13th International Congress of the Brazilian G eophysical Soci et y and do not nec essaril y represent any position of the SBG f, its officers or members. Electronic reproduction or Depending on the well geometry, wells are com pleted storage of any part of this paper f or commercial purpos es without the written consent of the Brazilian G eophysical Soci et y is pr ohibit ed. with a variety of completion equipment, from conventional ____________________________________________________________________________ slotted liners, to standalone screens (SAS) and only Abstract recently with ICDs and Autonomous Inflow Control Devices (AICDs) and or Interval Control Valves (ICVs), Petrophysical interpretation of Logging While Drilling usually incorporating some level of compartmentalization (LWD) data, acquired real time or later downloaded and zonal isolation with swellable packers. from memory data, is applied to estimate valuable reservoir rock and fluid properties.
    [Show full text]
  • The Context of Public Acceptance of Hydraulic Fracturing: Is Louisiana
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2012 The context of public acceptance of hydraulic fracturing: is Louisiana unique? Crawford White Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Environmental Sciences Commons Recommended Citation White, Crawford, "The onc text of public acceptance of hydraulic fracturing: is Louisiana unique?" (2012). LSU Master's Theses. 3956. https://digitalcommons.lsu.edu/gradschool_theses/3956 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. THE CONTEXT OF PUBLIC ACCEPTANCE OF HYDRAULIC FRACTURING: IS LOUISIANA UNIQUE? A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Environmental Sciences by Crawford White B.S. Georgia Southern University, 2010 August 2012 Dedication This thesis is dedicated to the memory of three of the most important people in my life, all of whom passed on during my time here. Arthur Earl White 4.05.1919 – 5.28.2011 Berniece Baker White 4.19.1920 – 4.23.2011 and Richard Edward McClary 4.29.1982 – 9.13.2010 ii Acknowledgements I would like to thank my committee first of all: Dr. Margaret Reams, my advisor, for her unending and enthusiastic support for this project; Professor Mike Wascom, for his wit and legal expertise in hunting down various laws and regulations; and Maud Walsh for the perspective and clarity she brought this project.
    [Show full text]
  • Geo V18i2 with Covers in Place.Indd
    VOL. 18, NO. 2 – 2021 GEOSCIENCE & TECHNOLOGY EXPLAINED GEO EDUCATION Geoscientists for the Energy Transition INDUSTRY ISSUES Gas Flaring EXPLORATION Alaska Anxiously Awaits its Fate GEOPHYSICS Nimble Nodes ENERGY TRANSITION Increasing Energy While Decreasing Carbon geoexpro.com GEOExPro May 2021 1 Previous issues: www.geoexpro.com Contents Vol. 18 No. 2 This issue of GEO ExPro focuses on North GEOSCIENCE & TECHNOLOGY EXPLAINED America; New Technologies and the Future for Geoscientists. 30 West Texas! Land of longhorn cattle, 5 Editorial mesquite, and fiercely independent ranchers. It also happens to be the 6 Regional Update: The Third Growth location of an out-of-the-way desert gem, Big Bend National Park. Gary Prost Phase of the Haynesville Play takes us on a road trip and describes the 8 Licencing Update: PETRONAS geology of this beautiful area. Launches Malaysia Bid Round, 2021 48 10 A Minute to Read The effects of contourite systems on deep water 14 Cover Story: Gas Flaring sediments can be subtle or even cryptic. However, in recent years 20 Seismic Foldout: The Greater Orphan some significant discoveries and Basin the availability of high-quality regional scale seismic data, 26 Energy Transition: Critical Minerals has drawn attention to the from Petroleum Fields frequent presence of contourite dominated bedforms. 30 GEO Tourism: Big Bend Country 34 Energy Transition Update: Increasing Energy While Decreasing Carbon 36 Hot Spot: North America 52 Seismic node systems developed in the past 38 GEO Education: Geoscientists for the decade were not sufficiently compact to efficiently Energy Transition acquire dense seismic in any environment. To answer this challenge, BP, in collaboration 42 Seismic Foldout: Ultra-Long Offsets with Rosneft and Schlumberger, developed a new nimble node system, now being developed Signal a Bright Future for OBN commercially by STRYDE.
    [Show full text]
  • Advancing Understanding of Resource Recovery and Environmental Impacts Via Field Laboratories
    Advancing Understanding of Resource Recovery and Environmental Impacts via Field Laboratories Jared Ciferno – Oil and Gas Technology Manager, NETL Upstream Workshop Houston, TX February 14, 2018 The National Laboratory System Idaho National Lab National Energy Technology Laboratory Pacific Northwest Ames Lab Argonne National Lab National Lab Fermilab Brookhaven National Lab Berkeley Lab Princeton Plasma Physics Lab SLAC National Accelerator Thomas Jefferson National Accelerator Lawrence Livermore National Lab Oak Ridge National Lab Sandia National Lab Savannah River National Lab Office of Science National Nuclear Security Administration Environmental Management Fossil Energy Nuclear Energy National Renewable Energy Efficiency & Renewable Energy Los Alamos Energy Lab National Lab 2 Why Field Laboratories? • Demonstrate and test new technologies in the field in a scientifically objective manner • Gather and publish comprehensive, integrated well site data sets that can be shared by researchers across technology categories (drilling and completion, production, environmental) and stakeholder groups (producers, service companies, academia, regulators) • Catalyze industry/academic research collaboration and facilitate data sharing for mutual benefit 3 Past DOE Field Laboratories Piceance Basin • Multi-well Experiment (MWX) and M-Site project sites in the Piceance Basin where tight gas sand research was done by DOE and GRI in the 1980s • Data and analysis provided an extraordinary view of reservoir complexities and “… played a significant role
    [Show full text]
  • Approach Optimizes Well Geosteering
    SEPTEMBER 2018 The “Better Business” Publication Serving the Exploration / Drilling / Production Industry Approach Optimizes Well Geosteering By Christopher Viens When a change in total gamma is not based 3-D geosteering solution rather and Mark Tomlinson associated with an up or down movement than conventional 2-D geosteering soft- through stratigraphy, it indicates faulting, ware. By integrating multiple well and HOUSTON–Geosteering in horizontal a depositional anomaly, heterogeneity, or seismic surface inputs, this approach wells involves correlating logging data bedding that is not laterally continuous gives the geosteering geologist the infor- to a type log from a nearby offset well to or stratified. Because the fundamental mation to confidently resolve abrupt bed characterize the zone of interest. Corre- basis of geosteering is correlating to dip changes, identify faults, identify areas lating against a type log requires the bed- marker beds that have lateral continuity, of lateral continuity/discontinuity, identify ding thickness and gamma character of in situations where lateral continuity is stratified/unstratified zones and understand the target well to be close to that of the absent, only a low level of interpretation formation-related directional drilling tra- type log, which can be offset by miles in confidence can be achieved using tradi- jectory phenomena, etc. some cases. If not, the resulting geosteering tional correlation methods. interpretation will have unreasonable bed To maximize the benefits of azimuthal Laterally Continuous Bedding dips that do not accurately reflect the gamma imaging, a protocol has been de- In areas with laterally continuous target lithology being drilled, leaving the veloped to identify and handle challenging strata, the gamma character in the type geosteering geologist running multiple geosteering situations using a model- well typically will be present at the simultaneous interpretations in the hope that one will start to make sense as new data come in during drilling.
    [Show full text]
  • Value Creation with Multi-Criteria Decision Making in Geosteering Operations
    International Journal of Petroleum Technology, 2016, 3, 15-31 15 Value Creation with Multi-Criteria Decision Making in Geosteering Operations K. Kullawan1,*, R. B. Bratvold1 and J. E. Bickel2 1University of Stavanger, Department of Petroleum Engineering, 4036 Stavanger Norway 2Graduate Program in Operations Research, 1 University Station, C2200, The University of Texas at Austin, Austin, Texas, 78712-0292, USA Abstract: Due to escalated drilling costs, the petroleum industry has been attempting to access the largest possible hydrocarbon resources with the lowest achievable costs. Multiple well objectives are set prior to the start of drilling. Then, a geosteering approach is implemented to help operators achieve these objectives. A comprehensive literature survey has been performed on geosteering case histories, including many cases with multiple objectives. We found that the listed objectives are often conflicting and expressed in different measures. Furthermore, none of the cases from the reviewed literature has discussed a systematic approach for dealing with multiple objectives in geosteering contexts. Without implementing a well-structured approach, decision makers are likely to make judgments about the relative importance of each objective based on previous experiences or on approximate methods. Research shows that such decision-making approaches are unlikely to identify optimal courses of action. In this paper, we propose a systematic method for making multi-criteria decisions in geosteering context. The method is constructed such that it is applicable for real-time operations. Results show that different decision criteria can have significant impact on well success as measured by its trajectory, future production, cost, and operational efficiency. Keywords: Geosteering, real-time well placement, geosteering decision, multi-objective decision, decision making.
    [Show full text]
  • Wireline Logging
    Petrophysics MSc Course Notes Wireline Logging 5. WIRELINE LOGGING 5.1 What is a Wireline Log A log is a continuous recording of a geophysical parameter along a borehole. GAMMA RAY (GR) Wireline logging is a conventional form of logging that employs a measurement tool 0 API UNITS 100 suspended on a cable or wire that suspends the tool and carries the data back to the 620 surface. These logs are taken between drilling episodes and at the end of drilling. Recent developments also allow some measurements to be made during drilling. The tools required to make these measurements are attached to the drill string behind the bit, and do not use a wire relying 630 instead on low band-width radio communication of data through the conductive drilling mud. Such data is called MWD (measurement while drilling) for simple drilling data, and LWD (logging while drilling) for measurements analogous 640 to conventional wireline measurements. MWD and LWD will not be covered by this course, although the logs that are produced in this way have very similar characteristics, even though they have been obtained in a completely different way. 650 Figure 5.1 shows a typical wireline log. In this case it is a log that represents the natural gamma radioactivity of a formation. Note that depth is arranged vertically in feet or metres, and the header contains the name of the log curve and the range. This example shows a single track of data. Note also that 660 no data symbols are shown on the curve. Symbols are retained to represent discrete core data by convention, while continuous measurements, such as logs, are represented by smooth curves.
    [Show full text]
  • Respack Petrophysics Location:Formation Nuqrah Evaluation SEDEX from Wireline Log Analysis and Solutionmachine Learning by FALCON P Lus
    ResPack Petrophysics Location:Formation Nuqrah evaluation SEDEX from wireline log analysis and Solutionmachine learning by FALCON P lus INDUSTRY CHALLENGES Speed Identification Data Fast quality control, editing, and Heterogeneous formations In frontier exploration areas, formation evaluation from wireline present a host of challenges finding enough high-quality log data plays a critical role in related to subsurface evaluations well data can be problematic developing both unconventional and development plans. due to the lack or quality of and conventional assets. wireline log data. GEOSCIENCE SOLUTIONS RESPACK PETROPHYSICS ADVANTAGES ◊ Accelerate subsurface understanding using the power of ◊ Gain knowledge of rock properties across the entire asset machine learning using machine learning to fill data gaps ◊ Make timely management decisions with essential ◊ Generate well-constrained seismic inversion products formation evaluation data, delivered fast across your asset by combining log and seismic data ROCK PHYSICS MODELING AND MACHINE LEARNING ALLOW CONFIDENT WELL PLANNING CGG completed a ResPack Petrophysics project using proprietary and public well data for a seismic inversion of the Spraberry and Wolfcamp Formations in the Midland Basin, Texas. The project lacked sonic data for depth conversion and subsequent inversion. Through the application of rock physics modeling and machine learning, synthesized sonic logs were produced in wells containing only triple-combo data—a process that provided additional elastic log data to further constrain the seismic products, enabling the client to plan lateral well drilling targets. Rock physics Log simulation on Data processing Petrophysical modeling & machine non-key wells using & editing evaluation learning on key wells machine learning The ResPack Petrophysics workflow compensates for missing well data by using rock physics and machine learning to simulate sonic logs.
    [Show full text]
  • Geosteering Improves Bakken Results
    JANUARY 2012 The “Better Business” Publication Serving the Exploration / Drilling / Production Industry Geosteering Improves Bakken Results By Kevin O’Connell, NPE is drilling and developing two blocks, in Divide, Williams and McKenzie coun- David Skari, aggregating approximately 50,000 net acres ties. Wells are being drilled to target zones Aaron J. Wheeler in the heart of the Bakken Shale in Divide, located between 9,000 and 11,000 feet and Allan Rennie Williams, Dunn and McKenzie counties, true vertical depth. The horizontal pro- N.D. (Figure 1). Led by a highly experienced, ducing sections of the wells average 8,000 DENVER–Developing tight oil and technologically focused management team, feet of lateral, which is cased, perforated gas-bearing formations often requires a the company prides itself on customizing its and fractured in multiple stages. The two dense pattern of wells with long lateral drilling and completion methods to the primary intervals targeted within the oil sections. To produce such fields econom- unique geological and geophysical charac- reservoir are a clean dolomite member of ically, producing sections of wells must teristics of its core project blocks. the Three Forks formation and a 15-foot be positioned accurately within the targeted zone below a tight limestone within the Drilling History intervals, while drilling costs are kept to Bakken Middle Member. a minimum. Since early in 2010, Ensign Rigs Nos. Initially, the horizontal production wells A cost-effective solution has been de- 89 and 118 have been working for NPE required drilling a vertical pilot hole that veloped that includes predrill modeling was sidetracked, deviated from vertical of logging-while-drilling measurements FIGURE 1 to build the curve, then drilled laterally along the trajectory of a planned well to North Plains Energy LLC Area of within the producing zone.
    [Show full text]
  • Mce Deepwater Development 2016
    MCE DEEPWATER DEVELOPMENT 2016 5-7 APRIL, 2016 Managing the Downturn PALAIS BEAUMONT Through Cost Reductions Collaborating to Realize PAU • FRANCE Economic Benefits WWW.MCEDD.COM Hosted by: SHOW PROGRAM Organized by In Partnership with Supported by Host Letter of Support Release Date: 9 November, 2015 Dear Colleaues, TOTAL RÉFÉRENCES COULEUR TOTAL_brand_block_CMYK The uniue dynamics of our current down cycle in the glo30/01/2014bal oil and gas industry reuires a structural 24, rue Salomon de Rothschild - 92288 Suresnes - FRANCE Tél. : +33 (0)1 57 32 87 00 / Fax : +33 (0)1 57 32 87 87 M100% Y80% Web : www.carrenoir.com M48% Y100% M100% Y80% and fundamental shift in the way we develop our offshore, and spC100%e cM80%ifically deepwater, discoveries. K70% C70% M30% While continuously aiming at improvin industry safety objectives, our common objective is to reduce costs sinificantly in order for deepwater to remain competitive. This will only be achieved thou a step chance in efficiency which reuires reinforced industry collaboration and innovative technologies. MCE Deepwater Development is a leadin industry event focused on brinin together the strategic decision makers within the deepwater oil and gas market. Throu a focused tecnical program, creative networkin opportunities and a comprehensive exhibition hall, the event creates a uniue opportunity for these members of industry to engage in critical dialoue around the future of our industry. Considerin current market conditions and the lon established reutation of MCE Deepwater Development, Total is pleased to host the 2016 event in Pau, France, 5-7 April 201. As a key operator in deepwater oil and gas, Total looks forward to taking full advantage of the opportunities provided durin MCE Deepwater Development.
    [Show full text]
  • A Petrophysical Approach to Evaluation from Measured While Drilling Gamma Ray, Case Study in the Powder River and Delaware Basins
    https://www.scirp.org/journal/ns Natural Science, 2021, Vol. 13, (No. 7), pp: 282-300 A Petrophysical Approach to Evaluation from Measured While Drilling Gamma Ray, Case Study in the Powder River and Delaware Basins Stephanie E. Perry GeoMark Research, Houston, TX, USA Correspondence to: Stephanie E. Perry, Keywords: Petrophysics, Gamma Ray, Measuring While Drilling, Workflow, Delaware, Powder River Received: May 18, 2021 Accepted: July 27, 2021 Published: July 30, 2021 Copyright © 2021 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ Open Access ABSTRACT One of the most common subsurface data sets that is easily accessible and often underuti- lized is the acquired measuring while drilling (MWD) gamma ray (GR-GAPI) log. Data is acquired from a given gamma ray tool positioned within the drill string and pulsed up to the surface through the mud column in the wellbore. Typical use of the data is for subsurface geologists, drillers and others to correlate the data to known stratigraphic signatures and steer wells through horizontal target zones. Through that correlation, an association to the geologic stratigraphic column can be made and the team of subsurface scientists adjusts where, how fast, and why they choose to continue drilling. The technique of correlation ap- plies to both the conventional and unconventional application. In the unconventional ap- plication, the data is also typically acquired along the length of the horizontal wellbore. From a petrophysical standpoint, just acquiring a gamma ray can limit the amount of information and ability to fully evaluate the properties along the length of the well.
    [Show full text]