Shellfish Aquaculture in Washington State

Total Page:16

File Type:pdf, Size:1020Kb

Shellfish Aquaculture in Washington State Shellfish Aquaculture in Washington State Final Report to the Washington State Legislature December 2015 Washington Sea Grant Washington Sea Grant Shellfish Aquaculture in Washington State • 2015 | a Shellfish Aquaculture in Washington State Final Report to the Washington State Legislature • December 2015 This report provides the final results of Washington Sea Grant studies conducted from July 1, 2013 to November 30, 2015 on the effects of evolving shellfish aquaculture techniques and practices on Washington’s marine ecosystems and economy. Funding provided by a proviso in Section 606(1) of the adopted 2013 – 2015 State Operating Budget. Recommended citation Acknowledgments Washington Sea Grant (2015) Shellfish aquaculture in Washington Sea Grant expresses its appreciation to the many Washington State. Final report to the Washington State individuals who provided information and support for this Legislature, 84 p. report. In particular, we gratefully acknowledge funding pro- vided by the Washington State Legislature, National Oceanic and This report is available online at Atmospheric Administration, and the University of Washington. https://wsg.washington.edu/shellfish-aquaculture We also would like to thank the many academic, state, federal, tribal, industry and other experts on shellfish aquaculture who cooperated with investigators to make this research possible. Contact Investigators/staff Washington Sea Grant Jonathan C.P. Reum, Bridget E. Ferriss Research Manager 3716 Brooklyn Avenue N.E. Chris J. Harvey Seattle, WA 98105-6716 Neil S. Banas Teri King Wei Cheng 206.543.6600 Kate Litle Penelope Dalton [email protected] P. Sean McDonald Kevin Decker wsg.washington.edu Robyn Ricks Marcus Duke WSG-TR 15-03 Jennifer Runyan Dara Farrell MaryAnn Wagner Contents Overview ..........................................................................................................................i Patterns in the Economic Contribution of Shellfish Aquaculture ...................1 Evaluating Trophic and Non-Trophic Effects of Shellfish Aquaculture in the Central Puget Sound Food Web ....................... 15 Qualitative Network Models in Support of Ecosystem Approaches to Aquaculture Production: Potential Applications to Management and Climate Change ...................................................................35 An Oceanographic Circulation Model for South Puget Sound .......................59 Geographic Information System Approaches and Spatial Datasets Relevant to Shellfish Aquaculture Siting in Washington State ..................... 71 Overview hellfish aquaculture is both culturally significant and water quality issues) in western South Puget Sound. The Seconomically important to Washington communities, and model also has a wide range of other potential applications in many locations interest exists in expanding production. To and could be an important first step towards better promote and manage shellfish aquaculture in a sustainable prediction of seawater oxygen and acidity levels in South manner, it is essential to understand the potential ecological Puget Sound. and economic effects, both positive and negative, of evolving 5. A framework and data assessment for spatial decision aquaculture practices. At the direction of the Washington State support in aquaculture (p. 71) can further the development legislature in 2013, Washington Sea Grant initiated a research of tools to support decisions such as where to site shellfish program to assess and develop tools and resources that could farms. A decision support study outlines the framework help growers, managers, and other coastal residents address and includes an assessment of publicly available spatial a range of issues. The research program included an economic data in Washington State that will likely be relevant. It analysis, three pilot modeling studies, and an overview of spa- provides a starting point for growers, managers, and tial data approaches: researchers interested in developing spatial tools to weigh 1. An economic trend analysis of Washington shellfish the potential ecological, social, and economic tradeoffs production and value (p. 1) details the economic involved in farm placement. contribution of shellfish aquaculture to different coastal areas in Washington and to the state. The analysis underscores the contribution of aquaculture to generating SHELLFISH AND THE WASHINGTON revenue in the state economy. Results from this work ENVIRONMENT should help guide future development of economic studies and social science on the state aquaculture industry. ommercial shellfish cultivation has taken place in Washing- ton waters since the mid-1800s and has evolved in terms of 2. An ecosystem model of Central Puget Sound (p. 15) was C the species farmed, methods used, product markets, and acre- developed to explore the potential influence of aquaculture age under cultivation. Today Washington State is the nation’s on the environment and, alternatively, how environmental leading producer of farmed clams, oysters, and mussels. The changes affect aquaculture. In this region, sufficient data 2011 Washington Shellfish Initiative estimated that state shell- are available to build a quantitative ecosystem model, fish growers directly and indirectly employ more than 3,200 which can be used to explore different management people and provide an estimated total economic contribution of scenarios. For example, a finding from the model that $270 million. Production includes hatcheries, nurseries, farms, aquaculture gear had stronger ecosystem impacts than and processing, distributing, wholesale, and retail operations. the farmed geoduck themselves points to development of In addition to their commercial importance, shellfish are cen- innovative gear and new culture techniques as a promising tral to tribal cultures and economies and contribute to recre- approach for minimizing impacts. ational opportunities and tourism. 3. Relying on limited data, qualitative food web models of Shellfish are an important component of marine ecosystems, South Puget Sound and Willapa Bay (p. 35) can be used and environmental changes and stressors can affect shellfish to identify whether shellfish populations or other food aquaculture production. For example, the Washington coast web members are likely to increase or decrease given a is especially vulnerable to ocean acidification (OA), a change particular management or environmental scenario. The in ocean chemistry that interferes with shell development in models for Willapa Bay, for instance, indicate that ocean some marine organisms and which may potentially affect both acidification could potentially result in fewer Manila clams cultured species and marine food web dynamics. Harmful algal but more eelgrasses and phytoplankton. The models were blooms and aquatic invasive species also continue to pose seri- relatively simple to build and can be easily refined using ous threats to shellfish resources and seafood product safety. alternative scenarios. Meanwhile, climate change has introduced additional variability 4. An oceanographic study advances development of a in environmental parameters like water temperature, contrib- high-resolution circulation model for South Puget Sound uting to and interacting with other changes. (p. 59). In a preliminary analysis, the model suggests Shifts in Washington’s coastal environment have been coupled that aquaculture may have the capacity to control with growing human populations that affect coastal water phytoplankton concentrations in localized areas. The quality and put additional pressure on regional shellfish results strongly encourage further investigation of both resources. Approximately 65 percent of state residents live in the possible downstream effects on other consumers coastal counties, and the Puget Sound region alone is expected of phytoplankton and a possible role for aquaculture in to grow almost 35 percent, to five million people, by 2040. The mitigating eutrophication (which can be associated with Washington Sea Grant Overview i complex challenges facing shellfish managers and growers have Evergreen State College with participants representing tribes, spurred interest in more comprehensive, ecosystem-based environmental groups, county planners, state and federal agen- research that integrates environmental, social, economic, and cies, scientists, shellfish growers, and legislative staff. The institutional information. workshop provided a forum for the team to present the goals of the research and initial work products, and for participants to provide feedback that informed the development of models and 2013-2015 SHELLFISH AQUACULTURE scenarios. In June 2015, chapter manuscripts were distributed to RESEARCH PROGRAM subject experts for external review, and revised and finalized by November 2015. oused in the UW College of the Environment, Washington Consistent with the direction from the legislature, the research Sea Grant is a federal–university partnership that conducts H team’s products and results are not intended to provide a basis research, education, and outreach to address Washington’s for either increasing the availability of shellfish harvesting per- coastal and marine issues and needs. In 2013, the Washington mits or restricting the extent or intensity of shellfish aquaculture State Legislature directed Washington Sea Grant to conduct a in Washington waters. Several program components involved two-year scientific research program specifically addressing development of modeling
Recommended publications
  • Abstracts of Technical Papers, Presented at the 104Th Annual Meeting, National Shellfisheries Association, Seattle, Ashingtw On, March 24–29, 2012
    W&M ScholarWorks VIMS Articles 4-2012 Abstracts of Technical Papers, Presented at the 104th Annual Meeting, National Shellfisheries Association, Seattle, ashingtW on, March 24–29, 2012 National Shellfisheries Association Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation National Shellfisheries Association, Abstr" acts of Technical Papers, Presented at the 104th Annual Meeting, National Shellfisheries Association, Seattle, ashingtW on, March 24–29, 2012" (2012). VIMS Articles. 524. https://scholarworks.wm.edu/vimsarticles/524 This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Journal of Shellfish Research, Vol. 31, No. 1, 231, 2012. ABSTRACTS OF TECHNICAL PAPERS Presented at the 104th Annual Meeting NATIONAL SHELLFISHERIES ASSOCIATION Seattle, Washington March 24–29, 2012 231 National Shellfisheries Association, Seattle, Washington Abstracts 104th Annual Meeting, March 24–29, 2012 233 CONTENTS Alisha Aagesen, Chris Langdon, Claudia Hase AN ANALYSIS OF TYPE IV PILI IN VIBRIO PARAHAEMOLYTICUS AND THEIR INVOLVEMENT IN PACIFICOYSTERCOLONIZATION........................................................... 257 Cathryn L. Abbott, Nicolas Corradi, Gary Meyer, Fabien Burki, Stewart C. Johnson, Patrick Keeling MULTIPLE GENE SEGMENTS ISOLATED BY NEXT-GENERATION SEQUENCING
    [Show full text]
  • COMPLETE LIST of MARINE and SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND Marine Algae Sponges
    COMPLETE LIST OF MARINE AND SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND List compiled by: Rayna Holtz, Jeff Adams, Maria Metler Marine algae Number Scientific name Common name Notes BB year Location 1 Laminaria saccharina sugar kelp 2013SH 2 Acrosiphonia sp. green rope 2015 M 3 Alga sp. filamentous brown algae unknown unique 2013 SH 4 Callophyllis spp. beautiful leaf seaweeds 2012 NP 5 Ceramium pacificum hairy pottery seaweed 2015 M 6 Chondracanthus exasperatus turkish towel 2012, 2013, 2014 NP, SH, CH 7 Colpomenia bullosa oyster thief 2012 NP 8 Corallinales unknown sp. crustous coralline 2012 NP 9 Costaria costata seersucker 2012, 2014, 2015 NP, CH, M 10 Cyanoebacteria sp. black slime blue-green algae 2015M 11 Desmarestia ligulata broad acid weed 2012 NP 12 Desmarestia ligulata flattened acid kelp 2015 M 13 Desmerestia aculeata (viridis) witch's hair 2012, 2015, 2016 NP, M, J 14 Endoclaydia muricata algae 2016 J 15 Enteromorpha intestinalis gutweed 2016 J 16 Fucus distichus rockweed 2014, 2016 CH, J 17 Fucus gardneri rockweed 2012, 2015 NP, M 18 Gracilaria/Gracilariopsis red spaghetti 2012, 2014, 2015 NP, CH, M 19 Hildenbrandia sp. rusty rock red algae 2013, 2015 SH, M 20 Laminaria saccharina sugar wrack kelp 2012, 2015 NP, M 21 Laminaria stechelli sugar wrack kelp 2012 NP 22 Mastocarpus papillatus Turkish washcloth 2012, 2013, 2014, 2015 NP, SH, CH, M 23 Mazzaella splendens iridescent seaweed 2012, 2014 NP, CH 24 Nereocystis luetkeana bull kelp 2012, 2014 NP, CH 25 Polysiphonous spp. filamentous red 2015 M 26 Porphyra sp. nori (laver) 2012, 2013, 2015 NP, SH, M 27 Prionitis lyallii broad iodine seaweed 2015 M 28 Saccharina latissima sugar kelp 2012, 2014 NP, CH 29 Sarcodiotheca gaudichaudii sea noodles 2012, 2014, 2015, 2016 NP, CH, M, J 30 Sargassum muticum sargassum 2012, 2014, 2015 NP, CH, M 31 Sparlingia pertusa red eyelet silk 2013SH 32 Ulva intestinalis sea lettuce 2014, 2015, 2016 CH, M, J 33 Ulva lactuca sea lettuce 2012-2016 ALL 34 Ulva linza flat tube sea lettuce 2015 M 35 Ulva sp.
    [Show full text]
  • Uvic Thesis Template
    Coastal aquaculture in British Columbia: Perspectives on finfish, shellfish, seaweed and Integrated Multi-Trophic Aquaculture (IMTA) from three First Nation communities by Kathryn Tebbutt B.A., University of British Columbia, 2009 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF ARTS in the Department of Geography Kathryn Tebbutt, 2014 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. ii Supervisory Committee Coastal aquaculture in British Columbia: Perspectives on finfish, shellfish, seaweed and Integrated Multi-Trophic Aquaculture (IMTA) from three First Nation communities by Kathryn Tebbutt B.A., University of British Columbia, 2009 Supervisory Committee Dr. Mark Flaherty, (Department of Geography) Supervisor Dr. Denise Cloutier, (Department of Geography) Departmental Member Dr. Stephen Cross, (Department of Geography) Departmental Member iii Abstract Supervisory Committee Dr. Mark Flaherty, (Department of Geography) Supervisor Dr. Denise Cloutier, (Department of Geography) Departmental Member Dr. Stephen Cross, (Department of Geography) Departmental Member Most aquaculture tenures in British Columbia (BC) are located in coastal First Nation traditional territories, making the aquaculture industry very important to First Nation communities. Marine aquaculture, in particular salmon farming, has been labeled one of the most controversial industries in BC and various groups with differing opinions have created a wide-spread media debate known as the “aquaculture controversy”. Industry, government, and (E)NGO’s are often the most visible players; First Nations, especially those without aquaculture operations directly in their territories, are often excluded or underrepresented in the conversation.
    [Show full text]
  • Canadian Aquaculture
    Presented by Canadian agencies and organizations currently undertaking aquaculture research in Canada CANADIAN AQUACULTURE R&D REVIEW Includes 150 summaries of recent research projects on salmon, trout, charr, oysters, mussels, marine species plus special full length features on completed projects across the country. CANADIAN AQUACULTURE R&D REVIEW Bridging research, development CONTENTS and commercialisation Improving awareness of aquaculture R&D key components are a new internal DFO FINFISH - FRESHWATER ......................3 activities in Canada and increasing transfer of Program for Regulatory Research (PARR) and knowledge and technology to the aquaculture core funding for the Centre for Integrated sector has been the goal of the aquaculture Aquaculture Science, a DFO virtual Centre of FINFISH - SALMON .............................9 R&D review since its inception in 2004. It grew Expertise based in St. Andrews, NB that focuses out of efforts by the federal and provincial on ecosystem-based approaches. The objective governments to improve aquaculture R&D of AIMAP is to improve the competitiveness FINFISH - MARINE ............................15 coordination and communication in Canada. of the Canadian aquaculture industry by This third bi-annual edition continues to encouraging an aquaculture sector that build on the success of the first two editions. It continuously develops and adopts innovative POLYCULTURE ..................................18 summarises about 150 R&D projects that have technologies and management techniques been
    [Show full text]
  • Starfish Adaptations: Peer-Taught
    Starfish Adaptations: Peer-Taught Subject (Focus/Topic): Life Science: Animal adaptations, structure and function, habitat, natural selection. Grade Level: Second Grade; taught by high school biology students. Average Learning Time: This lesson will take approximately two 45-minute periods. Lesson Summary (Overview/Purpose): Students will observe, explore, dissect and compare members of the animal phylum Image credit: Divegallery.com Echinodermata to understand what particular traits make them successful in their environment. Second grade students work with peer (high school student) teachers. Overall Concept (Big Idea/Essential Question): Students explore an unknown organism to understand that every living creature has traits that impact their use of habitat. The structure and function of traits are important in an individual’s survival and the survival of populations. Specific Concepts (Key Concepts): Students will understand three key features of starfish systems: water vascular, digestive and integument (skin). They will compare these systems to human and describe ways that the starfish systems are beneficial to them in their environment. Students will relate the success of starfish to their adaptations. Focus Questions (Specific Questions): Where do starfish live? What is their habitat? If you lived in the ocean, what would you need to survive? What do you notice about the starfish’s skin? How might the starfish skin help it in its habitat? What do starfish use to move? How do they do this? Do starfish need oxygen like humans do? How do they get their oxygen? How do starfish get food? What do they use to get food? How do starfish see? Where do you think their eyes are located? Objectives/Learning Goals: Students will be able to describe three structures of starfish anatomy and relate the structure to function with 80% accuracy.
    [Show full text]
  • Thermal and Dietary Optimization in the Hatchery Culture Of
    THERMAL AND DIETARY OPTIMIZATION IN THE HATCHERY CULTURE OF JUVENILE PACIFIC GEODUCK CLAMS (PANOPEA GENEROSA, GOULD 1850) by Bianca Danielle Arney B.Sc. (Hons.), Hawaii Pacific University, 2009 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in The Faculty of Graduate and Postdoctoral Studies (Applied Animal Biology) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) September 2013 © Bianca Danielle Arney, 2013 Abstract This research is the first to examine thermal and dietary optimization in the hatchery culture of juvenile Pacific geoduck (Panopea generosa). Chapter 2 investigated temperature and feed ration optimization; chapter 3 examined live algae substitution with the spray-dried species, Schizochytrium spp. or Spirulina (Arthrospira platensis). Geoduck growth and survival were measured to quantify treatment success. The temperature trial tested four temperatures (7, 11, 15, 19 °C) in juvenile and post-larval culture. Temperature promoted a significant growth effect in both sizes. The 19 °C culture elicited a delayed growth benefit in juveniles, and suppressed ash- free dry weight (AFDW), which recommends utilization of 15 °C. In contrast, geoduck post- larvae displayed immediate (post 7 d) shell growth acceleration at 19 °C. The 19 °C temperature shortened the rearing period by 2.9 d, suggesting its application in post-larval culture. The ration experiment examined the feed ration requirements of four geoduck juvenile size classes. Ration quantities between 0.0 - 128.0x10⁶ equivalent Isochrysis cells individual⁻¹ day⁻¹ were tested. All treatments received Chaetoceros muelleri and Isochrysis sp. mixed by AFDW. Following shell length/wet weight optimization, the following rations (10⁶ equivalent Isochrysis cells individual⁻¹ day⁻¹) should be applied between week 1 and 4 of the tested geoduck culture: 4.0 (1); 8.0 (2); 16.0 or 32.0 (shell length or wet weight optimum, respectively; 3); and 32.0 (4).
    [Show full text]
  • Download Download
    Appendix C: An Analysis of Three Shellfish Assemblages from Tsʼishaa, Site DfSi-16 (204T), Benson Island, Pacific Rim National Park Reserve of Canada by Ian D. Sumpter Cultural Resource Services, Western Canada Service Centre, Parks Canada Agency, Victoria, B.C. Introduction column sampling, plus a second shell data collect- ing method, hand-collection/screen sampling, were This report describes and analyzes marine shellfish used to recover seven shellfish data sets for investi- recovered from three archaeological excavation gating the siteʼs invertebrate materials. The analysis units at the Tseshaht village of Tsʼishaa (DfSi-16). reported here focuses on three column assemblages The mollusc materials were collected from two collected by the researcher during the 1999 (Unit different areas investigated in 1999 and 2001. The S14–16/W25–27) and 2001 (Units S56–57/W50– source areas are located within the village proper 52, S62–64/W62–64) excavations only. and on an elevated landform positioned behind the village. The two areas contain stratified cultural Procedures and Methods of Quantification and deposits dating to the late and middle Holocene Identification periods, respectively. With an emphasis on mollusc species identifica- The primary purpose of collecting and examining tion and quantification, this preliminary analysis the Tsʼishaa shellfish remains was to sample, iden- examines discarded shellfood remains that were tify, and quantify the marine invertebrate species collected and processed by the site occupants for each major stratigraphic layer. Sets of quantita- for approximately 5,000 years. The data, when tive information were compiled through out the reviewed together with the recovered vertebrate analysis in order to accomplish these objectives.
    [Show full text]
  • Some Creatures of Clayoquot and Barkley Sounds: a Life History Manual
    Some Creatures of Clayoquot and Barkley Sounds: A Life History Manual By Stefan Linquist & Jim Shinkewski Photos Danny Kent Sponsored by the Ucluelet Aquarium Society the Clayoquot Biosphere Trust, and the Biohumanities Project 1 Table of contents Introduction…………………………………………………………... 3 Acorn Barnacle ………………………………………………………. 4 Spiny Pink Sea Star ………………………………………………….. 8 Decorator Crab ………………………………………………………. 9 Orange Sea Pen ……………………………………………………… 11 California Sea Cucumber ……………………………………………. 13 Dungeness Crab …………………………………………………….. 15 Boring Sulfur Sponge ………………………………………………. 19 Moon Snail …………………………………………………………. 22 Opalescent Nudibranch …………………………………………….. 24 Moon Jellyfish ……………………………………………………... 27 Bay Pipefish ……………………………………………………….. 31 Green Surf Anemone ………………………………………………. 34 Spot Prawn …………………………………………………………. 35 Sea Urchin …………………………………………………………. 37 Shiner Perch ……………………………………………………….. 39 Sunflower Sea Star ………………………………………………… 41 Squat Lobster ………………………………………………………. 43 Plumose Anemone …………………………………………………. 45 Ochre Sea Star ……………………………………………………… 47 Wolf Eel ……………………………………………………………. 49 Sand Dollar ………………………………………………………… 51 2 Introduction All of us bring different eyes to the ocean and its inhabitants. Some enjoy food from the sea. Some admire the self-renewing nature of coastal waters. Others marvel in the diversity of colours, shapes and interrelationships among marine creatures. Because we enjoy it, as aquarists, philosophers, fishermen, shore walkers or the merely curious, we ought to care about its well being. To this end, this
    [Show full text]
  • Appendix 3 Marine Spcies Lists
    Appendix 3 Marine Species Lists with Abundance and Habitat Notes for Provincial Helliwell Park Marine Species at “Wall” at Flora Islet and Reef Marine Species at Norris Rocks Marine Species at Toby Islet Reef Marine Species at Maude Reef, Lambert Channel Habitats and Notes of Marine Species of Helliwell Provincial Park Helliwell Provincial Park Ecosystem Based Plan – March 2001 Marine Species at wall at Flora Islet and Reef Common Name Latin Name Abundance Notes Sponges Cloud sponge Aphrocallistes vastus Abundant, only local site occurance Numerous, only local site where Chimney sponge, Boot sponge Rhabdocalyptus dawsoni numerous Numerous, only local site where Chimney sponge, Boot sponge Staurocalyptus dowlingi numerous Scallop sponges Myxilla, Mycale Orange ball sponge Tethya californiana Fairly numerous Aggregated vase sponge Polymastia pacifica One sighting Hydroids Sea Fir Abietinaria sp. Corals Orange sea pen Ptilosarcus gurneyi Numerous Orange cup coral Balanophyllia elegans Abundant Zoanthids Epizoanthus scotinus Numerous Anemones Short plumose anemone Metridium senile Fairly numerous Giant plumose anemone Metridium gigantium Fairly numerous Aggregate green anemone Anthopleura elegantissima Abundant Tube-dwelling anemone Pachycerianthus fimbriatus Abundant Fairly numerous, only local site other Crimson anemone Cribrinopsis fernaldi than Toby Islet Swimming anemone Stomphia sp. Fairly numerous Jellyfish Water jellyfish Aequoria victoria Moon jellyfish Aurelia aurita Lion's mane jellyfish Cyanea capillata Particuilarly abundant
    [Show full text]
  • Industrial Shellfish Aquaculture Is Converting Puget Sound Aquatic Habitat to Agricultural Use
    Industrial Shellfish Aquaculture is Converting Puget Sound Aquatic Habitat to Agricultural Use How much expansion is good for Puget Sound? Geoduck farm, Nisqually Reach, 6/30/07 Copyright © Coalition to Preserve Puget Sound Habitat, 2007, all rights reserved. Our concerns are: 2 Habitat degradation and fragmentation The trend of converting natural ecosystems to agricultural use The extent of expansion Environmental impacts: unknown Invasive species and disease Interference with recreational and residential uses Marine debris Zangle Cove, 4/29/06 Approximately 43,500 tubes planted per acre (about 8 miles of PVC pipe) with either individual net tops or canopy nets that cover the entire installation; Geoducks are not an 3 essential food. “…geoduck is a super luxury item which only the rich can afford. The product’s price in the Chinese market can reach $60 to $100 per pound. If the price of the product were to fall by 50 percent, it will still be out of the price range of most of the population.” -- The World Geoduck Market and the Potential for Geoduck Aquaculture on Washington State Lands , prepared for DNR by Northern Economics, Inc. Geoduck and oyster bag 2004 operation – Totten Inlet Shellfish Industry ‘working waterfront’ 4 New intensive methods are converting natural beaches into single use agricultural zones. How does this square with the requirement of the Shoreline Management Act to achieve “no net loss” in ecological function? To the average person, it is common sense that this is a disturbance to both people and wildlife. “We believe the environmental impacts are at worst benign and at best they’re beneficial.” --Shellfish Industry, Seattle Times, 10/5/06 Totten Inlet 6/26/06 When did the shift to new 5 intensive techniques appear in Totten Inlet? (as reported by Totten Inlet residents) Prior to about 1992, no conflict with shellfish farmers.
    [Show full text]
  • Small Scale Clam Farming in Washington
    S m a l l - S c a l e CLAM Farming For PleaSure and ProFit in WaShington According to one Native American tale, the first humans arrived in the Pacific Northwest by stepping out of a clam shell. Since those ancient times, clams have had central roles in shaping the cultures and economies of the Pacific Northwest. For many shoreline property owners or leaseholders in Washington, clam farming is an enjoyable and sometimes profitable way to remain connected with the rich aquacultural legacy of the state. It is also a good way for them to become more aware of coastal processes such as sedimentation and erosion and to be vigilant for Spartina cordgrass, European green crab and other unintentionally introduced marine organisms. Two clam species — native littleneck clams and Manila clams — are routinely farmed in Washington. This publication introduces shoreline property owners and leaseholders to these two species and describes methods for growing clams for consumption. 1 2 IntroducIng two PoPular clams Three clam species — native littleneck clams (Protothaca staminea), Manila clams (Venerupis japonica) and geoduck clams (Panope abrupta) — are routinely farmed in Washington. Successful cultivation of geoduck clams entails different farming strategies and, as such, is not described in this introductory document. Native littleneck clams have been an important food On Washington beaches, Manila clams thrive in source of Northwest coastal Indian tribes. These clams protected bays and inlets on relatively stable have relatively thick shells that can attain a length of beaches with mixtures of gravel, sand, three inches. They can grow to a harvestable size in mud and shell.
    [Show full text]
  • In Canada Initiative
    ABORIGINAL AQUACULTURE IN CANADA INITIATIVE ACCESS TO CAPITAL FOR ABORIGINAL AQUACULTURE DEVELOPMENT - GAP ANALYSIS Submitted to: General Delivery Birch Island, Ontario P0P 1A0 c/o Todd Gordon Prepared by: 262 Parr Street St Andrews, New Brunswick E5B 1M4 www.rethinkinc.ca January 22, 2016 AACI ABORIGINAL ECONOMIC DEVELOPMENT PROGRAM GAP ANALYSIS REPORT This page left blank deliberately 1. AACI ABORIGINAL ECONOMIC DEVELOPMENT PROGRAM GAP ANALYSIS REPORT TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................3 1.0 THE AQUACULTURE SECTOR IN CANADA .....................................................................4 2.0 PURPOSE & OBJECTIVES OF THE STUDY .....................................................................6 2.1 Purpose .....................................................................................................................6 2.2 Objectives .................................................................................................................6 3.0 ABORIGINAL AQUACULTURE IN CANADA INITIATIVE ...................................................7 4.0 FINANCING AN AQUACULTURE BUSINESS ..................................................................13 4.1 Commercial Lending Instruments ............................................................................14 4.2 Venture Capital Funding ..........................................................................................15 4.3 Federal and Provincial Government
    [Show full text]