Somewhat Saved: a Captive Breeding Programme for Two Endemic Christmas Island Lizard Species, Now Extinct in the Wild

Total Page:16

File Type:pdf, Size:1020Kb

Somewhat Saved: a Captive Breeding Programme for Two Endemic Christmas Island Lizard Species, Now Extinct in the Wild Somewhat saved: a captive breeding programme for two endemic Christmas Island lizard species, now extinct in the wild P AUL A NDREW,HAL C OGGER,DON D RISCOLL,SAMANTHA F LAKUS,PETER H ARLOW D ION M APLE,MIKE M ISSO,CAITLIN P INK,KENT R ETALLICK,KARRIE R OSE B RENDAN T IERNAN,JUDY W EST and J OHN C.Z. WOINARSKI Abstract As with many islands, Christmas Island in the or diseases, or to other environmental modifications. Indian Ocean has suffered severe biodiversity loss. Its terres- Consequently, island species are over-represented among trial lizard fauna comprised five native species, of which four the world’s recent extinctions (Duncan & Blackburn, ). were endemic. These were abundant until at least the late In many cases, conservation management responses for s, but four species declined rapidly thereafter and were island species have been ineffective. Often, resources have last reported in the wild between and . In response been inadequate to respond to synchronous declines of to the decline, a captive breeding programme was established many species. On many islands there are multiple threats in August . This attempt came too late for the Christmas and it is difficult to disentangle their relative or synergistic Island forest skink Emoia nativitatis,whoselastknownindi- impacts, and hence to target management responses most vidual died in captivity in , and for the non-endemic effectively. Furthermore, there may be limited options for coastal skink Emoia atrocostata. However, two captive popu- in situ conservation, and many threats may be difficult to lations are now established for Lister’sgeckoLepidodactylus control (Fritts & Rodda, ). listeri and the blue-tailed skink Cryptoblepharus egeriae.The The Australian Indian Ocean territory of Christmas conservation future for these two species is challenging: re- Island has high levels of endemism but many of these en- introduction will not be possible until the main threats are demic species have declined or become extinct. For example, identified and controlled. of five native mammal species, at least four of which were endemic, only the Christmas Island flying-fox Pteropus Keywords Christmas Island, extinction, gecko, Indian (melanotus) natalis, is known to be extant, and it is now Ocean, reintroduction, skink Critically Endangered (Woinarski et al., ). Notably, the Christmas Island pipistrelle Pipistrellus murrayi was abundant up to the s but declined rapidly to extinction slands provide many of the world’s most important con- in . The failure to conserve this species has been the servation opportunities and challenges. Many have a high I subject of critical review (Martin et al., ). complement of endemic species but these often have small Christmas Island is a km island in the Indian Ocean populations, limited genetic diversity and low reproductive (°′ S, °′ E), km distant from the nearest land rates, lack immunity to novel diseases or are predator-naive. (Java, Indonesia). It was settled in the s, for phosphate These characteristics mean that island species have little mining; % of the island has been cleared but it has otherwise resilience to introduced predators, consumers, competitors mostly retained its original rainforest, and %isnationalpark. Many species have been introduced to Christmas Island and are now widespread even in intact native vegetation. PAUL ANDREW,PETER HARLOW and KARRIE ROSE Taronga Conservation Society Australia, Bradleys Head Road, Mosman, New South Wales, Australia Across much of the island super-colonies of the introduced yellow crazy ant Anoplolepis gracilipes have subverted the HAL COGGER Australian Museum Research Institute, Sydney, New South Wales, Australia previous crab-mediated ecology, leading to an ‘invasional ’ ’ DON DRISCOLL School of Life and Environmental Sciences, Deakin University, meltdown (O Dowd et al., ). The abundance of yellow Burwood, Victoria, Australia crazy ants has been periodically controlled through broad- SAMANTHA FLAKUS,DION MAPLE,MIKE MISSO,CAITLIN PINK,KENT RETALLICK and scale application of insecticides. BRENDAN TIERNAN Parks Australia, Christmas Island, Indian Ocean, Australia Introduced species known or presumed to prey upon JUDY WEST Department of the Environment, Parks Australia, Canberra, Christmas Island lizards include the feral cat Felis catus (in- Australian Capital Territory, Australia troduced in the s), black rat Rattus rattus (), giant JOHN C. Z. WOINARSKI (Corresponding author) Threatened Species Recovery centipede Scolopendra subspinipes (s) and wolf snake Hub, Charles Darwin University, Casuarina, Northern Territory 0909, Australia. E-mail [email protected] Lycodon capucinus (c. ). All are now common across Received July . Accepted September . First published online the island. An eradication programme is being implemented November . for feral cats, but no broad-scale management for the other Oryx, 2018, 52(1), 171–174 © 2016 Fauna & Flora International doi:10.1017/S0030605316001071 Downloaded from https://www.cambridge.org/core. IP address: 170.106.202.58, on 28 Sep 2021 at 07:45:25, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0030605316001071 172 P. Andrew et al. predators has been undertaken. Three lizard species that may be potential competitors to and disease vectors for na- tive reptiles have been introduced: the geckoes Hemidactylus frenatus (first recorded in ) and Gehyra mutilata () and skink Lygosoma bowringii (). The reptile fauna comprised six native species: the endemic Christmas Island blind snake Ramphotyphlops exocoeti,the Christmas Island forest skink Emoia nativitatis, the blue- tailed skink Cryptoblepharus egeriae, the giant gecko Cyrtodactylus sadleiri and Lister’sgeckoLepidodactylus listeri, and the non-endemic coastal skink Emoia atrocostata. The blue-tailed skink (snout–vent length c. mm) FIG. 1 Changes in the size of captive-breeding populations of forages actively in low vegetation or on the ground. ’ ’ blue-tailed skink Cryptoblepharus egeriae and Lister s gecko Lister s gecko (c. mm) is nocturnal and arboreal. The for- Lepidodactylus listeri from November to May on est skink (c. mm) occurred mostly in forest gap and edge Christmas Island and at Taronga Zoo. habitats. The coastal skink (c. mm) occurred mainly in rocky littoral habitats (Cogger et al., ). Although there are only six records of the blind snake geckoes and blue-tailed skinks (at November ) were since (Maple et al., ), the five lizards were generally maintained at facilities on Christmas Island. common until at least (Cogger et al., ). Declines of These have been treated as independent units (i.e. without the blue-tailed skink were first reported in (Rumpff, interchange of individuals after establishment). Management ) and of the forest skink, coastal skink and Lister’s by Mean Kinship (Ballou & Lacy, ) was used to maximize gecko in (Cogger & Sadlier, ), with ongoing de- retention of genetic diversity for Lister’sgeckoatTaronga, clines reported between and (James, ; and management by Maximal Avoidance of Inbreeding Schulz & Barker, ). For reasons not yet understood, (Princée, ) was used for blue-tailed skinks at both sites, the giant gecko remains abundant and widespread. and for Lister’s gecko at Christmas Island. Detailed husband- In response to the decline of four lizard species, a captive ry information is not presented here. breeding programme was initiated in . Here we describe Captive populations have been monitored since the progress and outlook of this programme. The role and November ; they have been stable at Taronga, and cost-effectiveness of captive breeding within a broader con- have increased on Christmas Island (Fig. ). These results servation context has been a focus of considerable global provide evidence of some success, but what are the local interest (Bowkett, ). In this case, it was justified by the and broader contexts of this programme, and how can rapid declines (Smith et al., ) and the likelihood that this limited success be consolidated? threats could not be controlled in the wild in the short time Reptiles are currently undergoing a severe global decline, period before the probable extinction of these species. Despite with increasing numbers of threatened species and extinc- a series of intensive and extensive searches, the last records of tions (Gibbons et al., ). Loss is particularly pronounced the Christmas Island population of coastal skink were in for species with small ranges, especially island species. September , of the forest skink and blue-tailed skink in Increasingly, captive breeding and translocation are likely August , and of Lister’s gecko in October . to be necessary mechanisms to forestall extinctions for the From August as many individuals as possible of the most threatened species. The Christmas Island lizards pre- four declining species were collected from the wild. Three sent a sobering example. The five species were abundant and forest skinks (all females), Lister’s geckoes and blue- presumed secure in (and perhaps remained so for at tailed skinks were captured and housed in purpose-built fa- least another decade), having withstood nearly years cilities. No coastal skinks and no male forest skinks could be of human settlement and many introductions. But by captured. The last of the three forest skinks died on May four of these species had disappeared from the wild. The , the presumed extinction date for this species. The conservation response
Recommended publications
  • Unsustainable Food Systems Threaten Wild Crop and Dolphin Species
    INTERNATIONAL PRESS RELEASE Embargoed until: 07:00 GMT (16:00 JST) 5 December 2017 Elaine Paterson, IUCN Media Relations, t+44 1223 331128, email [email protected] Goska Bonnaveira, IUCN Media Relations, m +41 792760185, email [email protected] [In Japan] Cheryl-Samantha MacSharry, IUCN Media Relations, t+44 1223 331128, email [email protected] Download photographs here Download summary statistics here Unsustainable food systems threaten wild crop and dolphin species Tokyo, Japan, 5 December 2017 (IUCN) – Species of wild rice, wheat and yam are threatened by overly intensive agricultural production and urban expansion, whilst poor fishing practices have caused steep declines in the Irrawaddy Dolphin and Finless Porpoise, according to the latest update of The IUCN Red List of Threatened Species™. Today’s Red List update also reveals that a drying climate is pushing the Ringtail Possum to the brink of extinction. Three reptile species found only on an Australian island – the Christmas Island Whiptail-skink, the Blue- tailed Skink (Cryptoblepharus egeriae) and the Lister’s Gecko – have gone extinct, according to the update. But in New Zealand, conservation efforts have improved the situation for two species of Kiwi. “Healthy, species-rich ecosystems are fundamental to our ability to feed the world’s growing population and achieve the UN Sustainable Development Goal 2 – to end hunger by 2030,” says IUCN Director General Inger Andersen. “Wild crop species, for example, maintain genetic diversity of agricultural crops
    [Show full text]
  • The Herpetofauna of Timor-Leste: a First Report 19 Doi: 10.3897/Zookeys.109.1439 Research Article Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 109: 19–86 (2011) The herpetofauna of Timor-Leste: a first report 19 doi: 10.3897/zookeys.109.1439 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research The herpetofauna of Timor-Leste: a first report Hinrich Kaiser1, Venancio Lopes Carvalho2, Jester Ceballos1, Paul Freed3, Scott Heacox1, Barbara Lester3, Stephen J. Richards4, Colin R. Trainor5, Caitlin Sanchez1, Mark O’Shea6 1 Department of Biology, Victor Valley College, 18422 Bear Valley Road, Victorville, California 92395, USA; and The Foundation for Post-Conflict Development, 245 Park Avenue, 24th Floor, New York, New York 10167, USA 2 Universidade National Timor-Lorosa’e, Faculdade de Ciencias da Educaçao, Departamentu da Biologia, Avenida Cidade de Lisboa, Liceu Dr. Francisco Machado, Dili, Timor-Leste 3 14149 S. Butte Creek Road, Scotts Mills, Oregon 97375, USA 4 Conservation International, PO Box 1024, Atherton, Queensland 4883, Australia; and Herpetology Department, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia 5 School of Environmental and Life Sciences, Charles Darwin University, Darwin, Northern Territory 0909, Australia 6 West Midland Safari Park, Bewdley, Worcestershire DY12 1LF, United Kingdom; and Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Vic- toria 3010, Australia Corresponding author: Hinrich Kaiser ([email protected]) Academic editor: Franco Andreone | Received 4 November 2010 | Accepted 8 April 2011 | Published 20 June 2011 Citation: Kaiser H, Carvalho VL, Ceballos J, Freed P, Heacox S, Lester B, Richards SJ, Trainor CR, Sanchez C, O’Shea M (2011) The herpetofauna of Timor-Leste: a first report. ZooKeys 109: 19–86.
    [Show full text]
  • Cretaceous Fossil Gecko Hand Reveals a Strikingly Modern Scansorial Morphology: Qualitative and Biometric Analysis of an Amber-Preserved Lizard Hand
    Cretaceous Research 84 (2018) 120e133 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Cretaceous fossil gecko hand reveals a strikingly modern scansorial morphology: Qualitative and biometric analysis of an amber-preserved lizard hand * Gabriela Fontanarrosa a, Juan D. Daza b, Virginia Abdala a, c, a Instituto de Biodiversidad Neotropical, CONICET, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucuman, Argentina b Department of Biological Sciences, Sam Houston State University, 1900 Avenue I, Lee Drain Building Suite 300, Huntsville, TX 77341, USA c Catedra de Biología General, Facultad de Ciencias Naturales, Universidad Nacional de Tucuman, Argentina article info abstract Article history: Gekkota (geckos and pygopodids) is a clade thought to have originated in the Early Cretaceous and that Received 16 May 2017 today exhibits one of the most remarkable scansorial capabilities among lizards. Little information is Received in revised form available regarding the origin of scansoriality, which subsequently became widespread and diverse in 15 September 2017 terms of ecomorphology in this clade. An undescribed amber fossil (MCZ Re190835) from mid- Accepted in revised form 2 November 2017 Cretaceous outcrops of the north of Myanmar dated at 99 Ma, previously assigned to stem Gekkota, Available online 14 November 2017 preserves carpal, metacarpal and phalangeal bones, as well as supplementary climbing structures, such as adhesive pads and paraphalangeal elements. This fossil documents the presence of highly specialized Keywords: Squamata paleobiology adaptive structures. Here, we analyze in detail the manus of the putative stem Gekkota. We use Paraphalanges morphological comparisons in the context of extant squamates, to produce a detailed descriptive analysis Hand evolution and a linear discriminant analysis (LDA) based on 32 skeletal variables of the manus.
    [Show full text]
  • A New Record of the Christmas Island Blind Snake, Ramphotyphlops Exocoeti (Reptilia: Squamata: Typhlopidae)
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 27 156–160 (2012) A new record of the Christmas Island Blind Snake, Ramphotyphlops exocoeti (Reptilia: Squamata: Typhlopidae). Dion J. Maple1, Rachel Barr, Michael J. Smith 1 Christmas Island National Park, Christmas Island, Western Australia, Indian Ocean, 6798, Email: [email protected] ABSTRACT – The endemic Christmas Island Blind Snake Ramphotyphlops exocoeti is a species rarely collected since initial faunal collections were conducted on Christmas Island in 1887. Twenty-three years after the last record in 1986, an individual was collected on 31 July 2009. Here we catalogue historical collection records of this animal. We also describe the habitat and conditions in which the recent collection occurred and provide a brief morphological description of the animal including a diagnostic feature that may assist in future identifi cations. This account provides the fi rst accurate spatial record and detailed description of habitat utilised by this species. KEYWORDS: Indian Ocean, Yellow Crazy Ant, recovery plan INTRODUCTION ‘fairly common’ and could be found under the trunks Christmas Island is located in the Indian Ocean of fallen trees. In 1975 a specimen collected from (10°25'S, 105°40'E), approximately 360 km south of the Stewart Hill, located in the central west of the island western head of Java, Indonesia (Geoscience Australia in a mine lease known as Field 22, was deposited in 2011). This geographically remote, rugged and thickly the Australian Museum (Cogger and Sadlier 1981). A vegetated island is the exposed summit of a large specimen was caught by N. Dunlop in 1984 while pit mountain.
    [Show full text]
  • Species Boundaries, Biogeography, and Intra-Archipelago Genetic Variation Within the Emoia Samoensis Species Group in the Vanuatu Archipelago and Oceania" (2008)
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2008 Species boundaries, biogeography, and intra- archipelago genetic variation within the Emoia samoensis species group in the Vanuatu Archipelago and Oceania Alison Madeline Hamilton Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Hamilton, Alison Madeline, "Species boundaries, biogeography, and intra-archipelago genetic variation within the Emoia samoensis species group in the Vanuatu Archipelago and Oceania" (2008). LSU Doctoral Dissertations. 3940. https://digitalcommons.lsu.edu/gradschool_dissertations/3940 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. SPECIES BOUNDARIES, BIOGEOGRAPHY, AND INTRA-ARCHIPELAGO GENETIC VARIATION WITHIN THE EMOIA SAMOENSIS SPECIES GROUP IN THE VANUATU ARCHIPELAGO AND OCEANIA A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Alison M. Hamilton B.A., Simon’s Rock College of Bard, 1993 M.S., University of Florida, 2000 December 2008 ACKNOWLEDGMENTS I thank my graduate advisor, Dr. Christopher C. Austin, for sharing his enthusiasm for reptile diversity in Oceania with me, and for encouraging me to pursue research in Vanuatu. His knowledge of the logistics of conducting research in the Pacific has been invaluable to me during this process.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Survey of Reptiles and Amphibians at Bimblebox Nature Reserve - Queensland
    Summary of an Observational Survey of Reptiles and Amphibians at Bimblebox Nature Reserve - Queensland Graham Armstrong – May, 2016 Objective - to provide an updated and more complete list of the herpetofauna recorded from Bimblebox Nature Refuge. Approach - 1. Review available data and records pertaining to the herpetofauna at Bimblebox Nature Refuge. 2. Visit Bimblebox Nature Refuge during Spring, Summer and Autumn seasons to make observational and photographic records of the herpetofauna observed. Methodology - In order to maximise the number of species recorded, 3 successive 2.5 day visits were made to BNR, one in September 2015, Jan 2016 and the end of April 2016. This approach potentially broadens the range of weather conditions experienced and hence variety of reptiles and amphibians encountered when compared to a single field visit. Survey methodology involved walking and driving around the nature refuge during the day and after dark (with the aid of a head torch to detect eye-shine). Active reptiles including those that ran for or from cover while passing by were recorded. Frequently, in situ photographic evidence of individuals was obtained and the photographs are available for the purpose of corroborating identification. To avoid any double counting of individual animals the Refuge was traversed progressively and the locations of animals were recorded using a GPS. During any one visit no area was traversed twice and when driving along tracks, reptiles were only recorded the first time a track was traversed unless a new species was detected at a later time. Available Records The most detailed list of reptiles and amphibians recorded as occurring on Bimblebox Nature Reserve comes from the standardised trapping program of Eric Vanderduys of CSIRO in Townsville.
    [Show full text]
  • Science for Saving Species Research Update Project 2.3.2 Options Beyond Captivity for Two Critically Endangered Christmas Island Reptiles
    Science for Saving Species Research Update Project 2.3.2 Options beyond captivity for two critically endangered Christmas Island reptiles Conservation options for Christmas Island’s blue-tailed skinks Project Overview Introduced predators The blue-tailed skink Several introduced predators (Cryptoblepharus egeriae) threaten these lizard species, and and Lister’s gecko (Lepidodactylus were likely to have significantly listeri) are two endemic reptiles contributed to their extinction in to Christmas Island that are the wild. The wolf snake (Lycodon now presumed to be extinct in capucinus) and giant centipede the Wild. Both were once (Scolopendra subspinipes) are two common on the Island, however such species, and pose ongoing both declined rapidly from the threats to reintroduced wild 1980s, and by 2012 both had populations of skinks and geckos. vanished from the wild. The wolf snake was introduced Fortunately, in 2009 and early to Christmas Island in the 1980s 2010, Parks Australia, with the and is now found across the entire help of Perth Zoo, captured 66 island. On Christmas Island, the wolf blue-tailed skinks and 43 Lister’s snake is known to threaten native geckos to establish captive reptiles via predation. It has also breeding populations on been implicated in the extinction Christmas Island and at Taronga of the Christmas Island pipistrelle Zoo. Captive breeding has (Pipistrellus murrayi). circumvented extinction in Giant centipedes have been the short term, with both present since European settlement captive populations now over of the island in the late 1880s. 1000individuals. However, They predate on a range of native the facilities on Christmas Island species, including native reptiles Image: Renata De Jonge, Parks Australia have reached carrying capacity, like the blue-tailed skink and Blue-tailed skinks within a breeding and there is strong interest in Lister’s gecko.
    [Show full text]
  • Reptiles and Frogs of Gluepot Reserve (Updated June 2020)
    Reptiles and Frogs of Gluepot Reserve (updated June 2020) Scientific name Common name Notes with reference to Gluepot Family Agamidae Dragon Lizards Ctenophorus spinodomus1 Eastern Mallee Dragon Terrestrial, associated with spinifex, commonly observed Ctenophorus pictus Painted Dragon Terrestrial, commonly observed Diporiphora nobbi Nobbi Dragon Terrestrial/arboreal, commonly observed Pogona vitticeps Central Bearded Dragon Terrestrial, commonly observed Family Gekkonidae Typical Geckos Gehyra versicolor2 Eastern Tree Dtella Arboreal, nocturnal, commonly observed on buildings Heteronotia binoei Bynoe’s Gecko Terrestrial, nocturnal, occasionally observed Family Carphodactylidae Knob-tails & others Nephrurus levis Smooth Knob-tailed Gecko Terrestrial, nocturnal, occasionally observed Family Diplodactylidae Diplodactylus furcosis Ranges Stone Gecko Terrestrial, nocturnal, occasionally observed Diplodactylus vittatus Eastern Stone Gecko Terrestrial, nocturnal, occasionally observed Lucasium damaeum Beaded Gecko Terrestrial, nocturnal, commonly observed Oedura cincta3 Inland Marbled Velvet Gecko Arboreal, nocturnal, on Black Oak, rarely observed Rhynchoedura angusta4 Border Beaked Gecko Terrestrial, nocturnal, occasionally observed. Strophurus elderi Jewelled Gecko Terrestrial, nocturnal, in spinifex, occasionally observed Strophurus williamsi Eastern Spiny-tailed Gecko Terrestrial/arboreal, nocturnal, occasionally observed Family Pygopodidae Legless Lizards Aprasia inaurita Red-tailed Worm Lizard Terrestrial, rarely observed, often under
    [Show full text]
  • Code of Practice Captive Reptile and Amphibian Husbandry Nature Conservation Act 1992
    Code of Practice Captive Reptile and Amphibian Husbandry Nature Conservation Act 1992 ♥ The State of Queensland, Department of Environment and Science, 2020 Copyright protects this publication. Except for purposes permitted by the Copyright Act, reproduction by whatever means is prohibited without prior written permission of the Department of Environment and Science. Requests for permission should be addressed to Department of Environment and Science, GPO Box 2454 Brisbane QLD 4001. Author: Department of Environment and Science Email: [email protected] Approved in accordance with section 174A of the Nature Conservation Act 1992. Acknowledgments: The Department of Environment and Science (DES) has prepared this code in consultation with the Department of Agriculture, Fisheries and Forestry and recreational reptile and amphibian user groups in Queensland. Human Rights compatibility The Department of Environment and Science is committed to respecting, protecting and promoting human rights. Under the Human Rights Act 2019, the department has an obligation to act and make decisions in a way that is compatible with human rights and, when making a decision, to give proper consideration to human rights. When acting or making a decision under this code of practice, officers must comply with that obligation (refer to Comply with Human Rights Act). References referred to in this code- Bustard, H.R. (1970) Australian lizards. Collins, Sydney. Cann, J. (1978) Turtles of Australia. Angus and Robertson, Australia. Cogger, H.G. (2018) Reptiles and amphibians of Australia. Revised 7th Edition, CSIRO Publishing. Plough, F. (1991) Recommendations for the care of amphibians and reptiles in academic institutions. National Academy Press: Vol.33, No.4.
    [Show full text]
  • An Overview of the Biology of the Brown Treesnake* (Boiga Irregularis), a Costly Introduced Pest on Pacific Islands
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Publications Plant Health Inspection Service April 1999 An Overview of the Biology of the Brown Treesnake* (Boiga irregularis), a Costly Introduced Pest on Pacific Islands Gordon H. Rodda Thomas H. Fritts Michael J. McCoid Earl W. Campbell III Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Part of the Environmental Sciences Commons Rodda, Gordon H.; Fritts, Thomas H.; McCoid, Michael J.; and Campbell, Earl W. III, "An Overview of the Biology of the Brown Treesnake* (Boiga irregularis), a Costly Introduced Pest on Pacific Islands" (1999). USDA National Wildlife Research Center - Staff Publications. 659. https://digitalcommons.unl.edu/icwdm_usdanwrc/659 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 2 An Overview of the Biology of the Brown Treesna ke* ( Boigo irreguluris), a Costly Introduced Pest on Pacific Islands THE GENUS BOlGA The 2&30 species of the genus Boiga (Colubridae, Boiginae) range from tropical Africa through southern Asia to Melanesia and Australia (Leviton, 1968). Collec- tively, they are known as catsnakes, mangrove snakes, or treesnakes (Obst et al., 1988; Greene, 1989). The common name "catsnakes" is sometimes used for snakes in the genus Telescopus as well (Obst et 1,1988).
    [Show full text]
  • Australasian Journal of Herpetology 3 Eight New Skink Genera and 45
    Australasian Journal of Herpetology 3 Australasian Journal of Herpetology 40:3-49. Published 10 July 2019. ISSN 1836-5698 (Print) ISSN 1836-5779 (Online) Eight new skink genera and 45 newly named species associated with Emoia Gray, 1845 sensu lato that reflects ancient divergence and recent speciation within the assemblage (Reptilia: Squamata). LSID urn:lsid:zoobank.org:pub:88C0C262-ABA2-4878-80D9-F85838DB90DD RAYMOND T. HOSER 488 Park Road, Park Orchards, Victoria, 3134, Australia. Phone: +61 3 9812 3322 Fax: 9812 3355 E-mail: snakeman (at) snakeman.com.au Received 29 March 2018, Accepted 18 June 2019, Published 10 July 2019. ABSTRACT The lizard genus Emoia Gray, 1845 within the Lygosominae as recognized in 2019 contains about 80 recognized species. Morphological studies have long recognized various species groups (e.g. Brown 1991). More recent molecular studies show ancient divergences. In fact some of these groups are not even closely related to one another, but in fact occur some distance away in the Lygosominae sub familial tree (e.g. Pyron et al. 2013). Based on both morphological and molecular divergence as cited, seven new genera of skinks formerly placed within Emoia as currently recognized are formally named according to the rules of the International Code of Zoological Nomenclature (Ride et al. 1999). Species in the new genera were mainly placed within the so-called E. samoensis group as defined by Brown (1991). The genus Emoa Girard, 1857, type species Emoa nigra, is resurrected for this divergent taxon, also previously placed in the E. samoensis group. The taxon also subdivided into 6 allopatric species.
    [Show full text]