Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease

Total Page:16

File Type:pdf, Size:1020Kb

Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease International Journal of Molecular Sciences Review Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease Antonio Rodríguez-Sinovas 1,2,3,* , Jose Antonio Sánchez 1,2,3, Laura Valls-Lacalle 1,2,3, Marta Consegal 1,2,3 and Ignacio Ferreira-González 1,2,4,* 1 Cardiovascular Diseases Research Group, Department of Cardiology, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; [email protected] (J.A.S.); [email protected] (L.V.-L.); [email protected] (M.C.) 2 Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain 3 Centro de Investigación Biomédica en Red sobre Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain 4 Centro de Investigación Biomédica en Red (CIBER) de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain * Correspondence: [email protected] (A.R.-S.); [email protected] (I.F.-G.); Tel.: +34-93-4894184 (A.R.-S.) Abstract: Connexins are a family of transmembrane proteins that play a key role in cardiac physiology. Gap junctional channels put into contact the cytoplasms of connected cardiomyocytes, allowing the existence of electrical coupling. However, in addition to this fundamental role, connexins are also involved in cardiomyocyte death and survival. Thus, chemical coupling through gap junctions plays a key role in the spreading of injury between connected cells. Moreover, in addition to their involvement in cell-to-cell communication, mounting evidence indicates that connexins have additional gap junction-independent functions. Opening of unopposed hemichannels, located at Citation: Rodríguez-Sinovas, A.; Sánchez, J.A.; Valls-Lacalle, L.; the lateral surface of cardiomyocytes, may compromise cell homeostasis and may be involved in Consegal, M.; Ferreira-González, I. ischemia/reperfusion injury. In addition, connexins located at non-canonical cell structures, including Connexins in the Heart: Regulation, mitochondria and the nucleus, have been demonstrated to be involved in cardioprotection and in Function and Involvement in Cardiac regulation of cell growth and differentiation. In this review, we will provide, first, an overview on Disease. Int. J. Mol. Sci. 2021, 22, 4413. connexin biology, including their synthesis and degradation, their regulation and their interactions. https://doi.org/10.3390/ijms22094413 Then, we will conduct an in-depth examination of the role of connexins in cardiac pathophysiology, including new findings regarding their involvement in myocardial ischemia/reperfusion injury, Academic Editor: Robert David cardiac fibrosis, gene transcription or signaling regulation. Received: 16 March 2021 Keywords: connexin; Cx43; gap junction; hemichannel; mitochondria; nucleus; heart; cardiomyocyte Accepted: 20 April 2021 Published: 23 April 2021 Publisher’s Note: MDPI stays neutral 1. Introduction with regard to jurisdictional claims in published maps and institutional affil- Connexins are a large family of highly homologous transmembrane proteins, com- iations. prising 20 and 21 different isoforms in mice and humans, respectively [1–3]. All these isoforms are named according to their expected molecular weight in kDa and have distinct biophysical properties. However, and despite their electrophysiological differences, all connexins share a similar structure. They are oriented so that the amino- and carboxytermi- nal (CT) tails of the protein are located within the cell cytoplasm, and they include four Copyright: © 2021 by the authors. α Licensee MDPI, Basel, Switzerland. transmembrane-spanning -helix domains linked by two extracellular segments (E1 and This article is an open access article E2) and one cytoplasmic loop (Figure1)[ 4]. Differences between connexin isoforms are distributed under the terms and mostly due to variations in the amino acid sequence at the CT domain, although also, to conditions of the Creative Commons some extent, at the cytoplasmic loop [5]. The CT domain has multiple serine, threonine and Attribution (CC BY) license (https:// tyrosine residues susceptible to phosphorylation, which is a very important phenomenon creativecommons.org/licenses/by/ regulating connexin trafficking, assembly and function [6–9], and is largely responsible 4.0/). for the appearance of multiple bands in Western blots. Connexin 43 (Cx43) is, by far, Int. J. Mol. Sci. 2021, 22, 4413. https://doi.org/10.3390/ijms22094413 https://www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 2 of 65 Int. J. Mol. Sci. 2021, 22, 4413 and tyrosine residues susceptible to phosphorylation, which is a very important phe-2 of 64 nomenon regulating connexin trafficking, assembly and function [6–9], and is largely responsible for the appearance of multiple bands in Western blots. Connexin 43 (Cx43) is, bythe far, best-known the best-known and mostand most ubiquitously ubiquitously expressed expressed isoform, isoform, and and it is it encoded is encoded by the by GJA1the GJA1gene, gene, located, located, in in humans, humans, in in chromosome chromosome 6 6 [ 10[10].]. The The gene gene nomenclature nomenclature for for the the two two otherother most most common common human human cardiac connexinconnexin isoforms,isoforms, Cx40 Cx40 and and Cx45, Cx45, is GJA5is GJA5 and and GJC1, GJC1,respectively respectively [2]. [2]. FigureFigure 1. Schematic 1. Schematic view view of a ofsingle a single connexin connexin molecule molecule located located at the at plasma the plasma membrane membrane (upper (upper panel).panel). Lower Lower panels panels depict depict hemichannels hemichannels and and intercellular intercellular or or gap gap junctional junctional channels. channels. Created Created with withBiorender.com Biorender.com (accessed (accessed on on 15 April15 Ap 2021).ril 2021). Modified Modified from from [11 ,[11,12].12]. AllAll connexin connexin isoforms isoforms are are integral integral compon componentsents of ofplasma plasma membranes membranes where where they they formform channels channels around around a central a central pore. pore. These These channels channels are formed are formed by the by oligomerization the oligomeriza- of tionsix ofindividual six individual connexin connexin molecules molecules and andare known are known as hemichannels as hemichannels or orconnexons connexons (Figure(Figure 1)1 [4,13].) [4,13 Hundreds]. Hundreds to tothousands thousands of ofthese these hemichannels hemichannels gather gather in inplaques, plaques, termed termed gapgap junctions, junctions, where where they they dock dock with with opposi opposingng connexons connexons from from adjacent adjacent cells, cells, forming forming intercellularintercellular channels channels (Figure (Figure 1)1)[ [4,13].4,13]. In In cardiomyocytes, gapgap junctions junctions are are mainly mainly located lo- catedat the at cellthe polescell poles (Figure (Figure2), perpendicular 2), perpendicular to the to long the axis long of axis the cell,of the within cell, within the intercalated the in- tercalateddiscs, which discs, are which complex are complex structures structures in which in plasma which membranesplasma membranes of neighboring of neigh- cells boringare in cells close are contact in close and contact that also and include that al adherensso include junctions, adherens hemichannels junctions, hemichannels and ion chan- andnels ion [14 channels,15]. Three [14,15]. cysteine Three residues, cysteine located residues, in each located extracellular in each extracellular loop of each loop connexin of eachmolecule, connexin are molecule, important are in important the docking in process.the docking Disulfide process. bonds Disulfide between bonds these between cysteines theseare cysteines needed to are create needed the β to-sheet create conformation the β-sheet conformation required for the required interaction for the between interaction the two betweenopposing the hemichannelstwo opposing [hemich4,5,16].annels In fact, [4,5,16]. Cx43 lacking In fact, these Cx43 cysteines lacking these is not cysteines able to form is notgap able junctional to form gap intercellular junctional channels intercellular [17]. Connexonschannels [17] can. Connexons be formed bycan a be unique formed connexin by a uniqueisoform connexin or by several isoform connexin or by several isoforms connexin (giving isoforms rise to homomeric (giving rise or heteromericto homomeric connex- or heteromericons, respectively), connexons, although respectively), not all are although compatible not [all16]. are In turn,compatible intercellular [16]. In channels turn, in- can tercellularbe homotypic channels (formed can be by homotypic connexons (formed with the by sameconnexons composition) with the orsame heterotypic composition) (when each connexon has a different composition) [18,19]. Such mixed conformations modify channel electrophysiological properties and alter gap junctional conductance [20,21]. Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 65 Int. J. Mol. Sci. 2021, 22, 4413 or heterotypic (when each connexon has a different composition) [18,19]. Such mixed3 of 64 conformations modify channel electrophysiological properties and alter gap junctional conductance [20,21]. Figure 2. (A) Confocal images showing expression of connexin 43 (Cx43, red) in cardiac slices obtained from wild-type Figure 2. (A) Confocal images showing expression of connexin
Recommended publications
  • A Rare Missense Mutation in GJB3 (Cx31g45e) Is Associated with a Unique Cellular Phenotype Resulting in Necrotic Cell Death Easton, J
    University of Dundee A rare missense mutation in GJB3 (Cx31G45E) is associated with a unique cellular phenotype resulting in necrotic cell death Easton, J. A.; Alboulshi, A. K.; Kamps, M. A. F.; Brouns, G. H.; Broers, M. R.; Coull, B. J.; Oji, V.; van Geel, M.; van Steensel, M. A. M.; Martin, P. E. Published in: Experimental Dermatology DOI: 10.1111/exd.13542 Publication date: 2018 Document Version Peer reviewed version Link to publication in Discovery Research Portal Citation for published version (APA): Easton, J. A., Alboulshi, A. K., Kamps, M. A. F., Brouns, G. H., Broers, M. R., Coull, B. J., ... Martin, P. E. (2018). A rare missense mutation in GJB3 (Cx31G45E) is associated with a unique cellular phenotype resulting in necrotic cell death. Experimental Dermatology. https://doi.org/10.1111/exd.13542 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • A Computational Model of Large Conductance Voltage and Calcium
    Journal of Computational Neuroscience (2019) 46:233–256 https://doi.org/10.1007/s10827-019-00713-9 A computational model of large conductance voltage and calcium activated potassium channels: implications for calcium dynamics and electrophysiology in detrusor smooth muscle cells Suranjana Gupta1 · Rohit Manchanda1 Received: 11 September 2018 / Revised: 14 February 2019 / Accepted: 19 February 2019 / Published online: 25 April 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract The large conductance voltage and calcium activated potassium (BK) channels play a crucial role in regulating the excitability of detrusor smooth muscle, which lines the wall of the urinary bladder. These channels have been widely characterized in terms of their molecular structure, pharmacology and electrophysiology. They control the repolarising and hyperpolarising phases of the action potential, thereby regulating the firing frequency and contraction profiles of the smooth muscle. Several groups have reported varied profiles of BK currents and I-V curves under similar experimental conditions. However, no single computational model has been able to reconcile these apparent discrepancies. In view of the channels’ physiological importance, it is imperative to understand their mechanistic underpinnings so that a realistic model can be created. This paper presents a computational model of the BK channel, based on the Hodgkin-Huxley formalism, constructed by utilising three activation processes — membrane potential, calcium inflow from voltage-gated calcium channels on the membrane and calcium released from the ryanodine receptors present on the sarcoplasmic reticulum. In our model, we attribute the discrepant profiles to the underlying cytosolic calcium received by the channel during its activation. The model enables us to make heuristic predictions regarding the nature of the sub-membrane calcium dynamics underlying the BK channel’s activation.
    [Show full text]
  • ION CHANNEL DIVERSITY and CHARACTERIZATION
    ION CHANNEL DIVERSITY and CHARACTERIZATION Voltage clamp techniques K channels Na channels Ca channels Ligand-gated channels Channelopathies OUTLINE Voltage clamp techniques whole cell, single channel, gating K channels Na channels Ca channels Cardiac AP Na nerve vs cardiac Ica: L vs T type; drugs (BayK, nitrendipine) Ito: inactivation, subtypes Kv1.4, Kv4.2/3, accessory subunits Ikr,Iks, Ikur (drugs dofetilide) IK1 – rectification Cardiac channelopathies (LQTS, SQTS, Brugada syndrome) Ligand-gated channels (AChR) Pancreatic beta cell channels (KATP, ICa) Voltage clamp techniques Capacitance currents (Ic) and ionic currents (Ii) are activated by rapid changes in membrane potential using voltage clamp Variable Vtest can be applied with voltage clamp 2.0 sec 40 duration 20 (10 sec between each pulse) 0 -20 mV test -40 V -60 -80 Simplified schematic of voltage clamp circuit Original patch clamp recordings (1981) Pflugers Arch 391: 85-100 Four modes of patch clamp technique High-throughput, automated patch clamp instruments EVOLUTION and Ion channel diversity Diversity of ion channels Example: nematode C. elegans 73 K channels (20 6 TM, 3 IRK, 50 TWIK) 89 ligand-gated channels (42 ACh, 37 inhibitory GABAA or glutamate, 10 excitatory glutamate) 5 voltage-gated Ca channels 6 chloride channels 24 gap junction channels (connexins) 22 mechanosensitive channels 6 cyclic-nucleotide gated channels 11 TRP-related channels Total: 236 channel subunit genes Origin of ion channel diversity 1) gene duplication & divergence 2) alternative mRNA splicing 3)
    [Show full text]
  • GJA4/Connexin 37 Mutations Correlate with Secondary Lymphedema Following Surgery in Breast Cancer Patients
    biomedicines Article GJA4/Connexin 37 Mutations Correlate with Secondary Lymphedema Following Surgery in Breast Cancer Patients Mahrooyeh Hadizadeh 1,2, Seiied Mojtaba Mohaddes Ardebili 1, Mansoor Salehi 2, Chris Young 3, Fariborz Mokarian 4, James McClellan 5, Qin Xu 6, Mohammad Kazemi 2, Elham Moazam 4, Behzad Mahaki 7 ID and Maziar Ashrafian Bonab 8,* 1 Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; [email protected] (M.H.); [email protected] (S.M.M.A.) 2 Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan 81746753461, Iran; [email protected] (M.S.); [email protected] (M.K.) 3 School of Allied Health Sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK; [email protected] 4 Cancer Prevention Research Centre, Isfahan University of Medical Sciences, Isfahan 8184917911, Iran; [email protected] (F.M.); [email protected] (E.M.) 5 School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK; [email protected] 6 School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK; [email protected] 7 Department of Occupational Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; [email protected] 8 Department of Biological Sciences, University of Chester, Chester CH1 4BJ, UK * Correspondence: [email protected]; Tel.: +44-(0)1244-513-056 Received: 31 December 2017; Accepted: 13 February 2018; Published: 22 February 2018 Abstract: Lymphedema is a condition resulting from mutations in various genes essential for lymphatic development and function, which leads to obstruction of the lymphatic system.
    [Show full text]
  • Cell-Cell Interactions
    7 Cell-Cell Interactions Concept Outline 7.1 Cells signal one another with chemicals. Receptor Proteins and Signaling between Cells. Receptor proteins embedded in the plasma membrane change shape when they bind specific signal molecules, triggering a chain of events within the cell. Types of Cell Signaling. Cell signaling can occur between adjacent cells, although chemical signals called hormones act over long distances. 7.2 Proteins in the cell and on its surface receive signals from other cells. Intracellular Receptors. Some receptors are located within the cell cytoplasm. These receptors respond to lipid- soluble signals, such as steroid hormones. Cell Surface Receptors. Many cell-to-cell signals are water-soluble and cannot penetrate membranes. Instead, the signals are received by transmembrane proteins protruding out from the cell surface. 7.3 Follow the journey of information into the cell. FIGURE 7.1 Persimmon cells in close contact with one another. These Initiating the Intracellular Signal. Cell surface receptors plant cells and all cells, no matter what their function, interact often use “second messengers” to transmit a signal to the with their environment, including the cells around them. cytoplasm. Amplifying the Signal: Protein Kinase Cascades. Surface receptors and second messengers amplify signals as id you know that each of the 100 trillion cells of your they travel into the cell, often toward the cell nucleus. Dbody shares one key feature with the cells of tigers, bumblebees, and persimmons (figure 7.1)—a feature that 7.4 Cell surface proteins mediate cell-cell interactions. most bacteria and protists lack? Your cells touch and com- The Expression of Cell Identity.
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Src Regulation of Cx43 Phosphorylation and Gap Junction Turnover
    biomolecules Article Src Regulation of Cx43 Phosphorylation and Gap Junction Turnover Joell L. Solan 1 and Paul D. Lampe 1,2,* 1 Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; [email protected] 2 Department of Global Health, Pathobiology Program, University of Washington, Seattle, WA 98109, USA * Correspondence: [email protected] Received: 27 October 2020; Accepted: 22 November 2020; Published: 24 November 2020 Abstract: The gap junction protein Connexin43 (Cx43) is highly regulated by phosphorylation at over a dozen sites by probably at least as many kinases. This Cx43 “kinome” plays an important role in gap junction assembly and turnover. We sought to gain a better understanding of the interrelationship of these phosphorylation events particularly related to src activation and Cx43 turnover. Using state-of-the-art live imaging methods, specific inhibitors and many phosphorylation-status specific antibodies, we found phospho-specific domains in gap junction plaques and show evidence that multiple pathways of disassembly exist and can be regulated at the cellular and subcellular level. We found Src activation promotes formation of connexisomes (internalized gap junctions) in a process involving ERK-mediated phosphorylation of S279/282. Proteasome inhibition dramatically and rapidly restored gap junctions in the presence of Src and led to dramatic changes in the Cx43 phospho-profile including to increased Y247, Y265, S279/282, S365, and S373 phosphorylation. Lysosomal inhibition, on the other hand, nearly eliminated phosphorylation on Y247 and Y265 and reduced S368 and S373 while increasing S279/282 phosphorylation levels. We present a model of gap junction disassembly where multiple modes of disassembly are regulated by phosphorylation and can have differential effects on cellular signaling.
    [Show full text]
  • Entropy-Based Regulation of Cluster Ion Channel Density
    www.nature.com/scientificreports OPEN Molecular and cellular correlates in Kv channel clustering: entropy‑based regulation of cluster ion channel density Limor Lewin1, Esraa Nsasra1, Ella Golbary1, Uzi Hadad2, Irit Orr1 & Ofer Yifrach1* Scafold protein-mediated ion channel clustering at unique membrane sites is important for electrical signaling. Yet, the mechanism(s) by which scafold protein-ion channel interactions lead to channel clustering or how cluster ion channel density is regulated is mostly not known. The voltage‑activated potassium channel (Kv) represents an excellent model to address these questions as the mechanism underlying its interaction with the post-synaptic density 95 (PSD-95) scafold protein is known to be controlled by the length of the extended ‘ball and chain’ sequence comprising the C-terminal channel region. Here, using sub-difraction high-resolution imaging microscopy, we show that Kv channel ‘chain’ length regulates Kv channel density with a ‘bell’-shaped dependence, refecting a balance between thermodynamic considerations controlling ‘chain’ recruitment by PSD-95 and steric hindrance due to the spatial proximity of multiple channel molecules. Our results thus reveal an entropy‑based mode of channel cluster density regulation that mirrors the entropy‑based regulation of the Kv channel-PSD-95 interaction. The implications of these fndings for electrical signaling are discussed. Action potential generation, propagation and the evoked synaptic potential all rely on precisely timed events associated with activation and inactivation gating transitions of voltage-dependent Na + and K + channels, clus- tered in multiple copies at unique membrane sites, such as the initial segment of an axon, nodes of Ranvier, pre-synaptic terminals or at the post-synaptic density (PSD)1–3.
    [Show full text]
  • Cooperative Coupling of Cell-Matrix and Cell–Cell Adhesions in Cardiac Muscle
    Cooperative coupling of cell-matrix and cell–cell adhesions in cardiac muscle Megan L. McCaina, Hyungsuk Leea,1, Yvonne Aratyn-Schausa, André G. Kléberb, and Kevin Kit Parkera,2 aDisease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; and bDepartment of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 Edited by Robert Langer, Massachusetts Institute of Technology, Cambridge, MA, and approved May 1, 2012 (received for review February 21, 2012) Adhesion between cardiac myocytes is essential for the heart to serve as cues for remodeling adhesions and assembling tissues. In function as an electromechanical syncytium. Although cell-matrix vitro studies have demonstrated that cytoskeletal tension (27) and and cell–cell adhesions reorganize during development and dis- exogenous cyclic strain (28, 29) promote cell–cell adhesion and ease, the hierarchical cooperation between these subcellular struc- tissue assembly in many cell types. Culturing noncardiac cells tures is poorly understood. We reasoned that, during cardiac on stiff substrates tips the balance of adhesion in favor of focal development, focal adhesions mechanically stabilize cells and tis- adhesions and away from cell–cell adhesions (30–32), suggesting sues during myofibrillogenesis and intercalated disc assembly. As that mechanical forces can modulate the assembly or disassembly the intercalated disc matures, we postulated that focal
    [Show full text]
  • Localized Calcium Signaling and the Control of Coupling at Cx36 Gap Junctions
    Research Article: New Research | Novel Tools and Methods Localized calcium signaling and the control of coupling at Cx36 gap junctions https://doi.org/10.1523/ENEURO.0445-19.2020 Cite as: eNeuro 2020; 10.1523/ENEURO.0445-19.2020 Received: 25 October 2019 Revised: 29 January 2020 Accepted: 21 February 2020 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2020 Moore et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. 1 Localized calcium signaling and the control of coupling at Cx36 gap junctions 2 3 Abbreviated title: Calcium signaling at Cx36 gap junctions 4 5 Keith B. Moore1,†, Cheryl K. Mitchell1, Ya-Ping Lin1, Yuan-Hao Lee1, Eyad Shihabeddin1,2, and 6 John O'Brien1,2,* 7 8 1. Richard S. Ruiz, M.D. Department of Ophthalmology & Visual Science, McGovern Medical 9 School, The University of Texas Health Science Center at Houston, Houston, Texas, USA. 10 2. The MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 11 Houston, Texas, USA. 12 †. Current Address: School of Public Health, The University of Texas Health Science Center at 13 Houston, Houston, Texas, USA.
    [Show full text]
  • Supporting Figure 2
    Normalized value Functional class Genbank Name Naive SC 1h SC 6h SC 24h WM 1h WM 6h WM 24h AB016161 GABA-B receptor 1d AF109405 GABA-B receptor 2a M35077 Dopamine-1A receptor S46131 Dopamine-1A receptor M84009 Dopamine receptor D4 U13368 Adrenergic receptor, alpha 1a G Protein-coupled M60654 Adrenergic receptor, alpha 1d receptors and their M64236 Tachykinin 1 receptor effectors AI229237 Opioid receptor-like Y11433 Pyrimidinergic receptor P2Y4 M64299 Adenosine A1 receptor E00001 Pro-insulin M29014 Insulin receptor precursor U35315 Serotonin receptor 2C S62043 Serotonin receptor 6 AF000368 Scn9a sodium channel, type IX, alpha polypeptide M27158 Kcna5 K+ voltage-gated channel, shaker-related subfamily, member 5 X17621 Kcna6 potassium voltage-gated channel, shaker-related, subfamily, member 6 X16476 Kcnb1 potassium voltage gated channel, Shab-related subfamily, member 1 M77482 Kcnb2 potassium voltage gated channel, Shab-related subfamily, member 2 S64320 Kcnd2 potassium voltage gated channel, Shal-related family, member 2 Ion channels X87635 Kcnj4 potassium inwardly-rectifying channel, subfamily J, member 4 D86039 Kcnj11 potassium inwardly-rectifying channel, subfamily J, member 11 X83581 Kcnj16 potassium inwardly-rectifying channel, subfamily J, member 16 AF073891 Kcnh5 potassium voltage-gated channel, subfamily H (eag-related), member 5 U69882 Kcnn2 potassium intermediate/small conductance calcium-activated channel, subfamily N, member 2 Z36944 Chloride channel 4-2 Z56277 Chloride channel 5 L08493 GABA-A receptor alpha-4 subunit X51992
    [Show full text]
  • Modeling of Voltage-Gated Ion Channels
    Modeling of voltage-gated ion channels Modeling of voltage-gated ion channels Pär Bjelkmar c Pär Bjelkmar, Stockholm 2011, pages 1-65 Cover picture: Produced by Pär Bjelkmar and Jyrki Hokkanen at CSC - IT Center for Science, Finland. Cover of PLoS Computational Biology February 2009 issue. ISBN 978-91-7447-336-0 Printed in Sweden by US-AB, Stockholm 2011 Distributor: Department of Biochemistry and Biophysics, Stockholm University Abstract The recent determination of several crystal structures of voltage-gated ion channels has catalyzed computational efforts of studying these re- markable molecular machines that are able to conduct ions across bi- ological membranes at extremely high rates without compromising the ion selectivity. Starting from the open crystal structures, we have studied the gating mechanism of these channels by molecular modeling techniques. Firstly, by applying a membrane potential, initial stages of the closing of the channel were captured, manifested in a secondary-structure change in the voltage-sensor. In a follow-up study, we found that the energetic cost of translocating this 310-helix was significantly lower than in the origi- nal conformation. Thirdly, collaborators of ours identified new molecular constraints for different states along the gating pathway. We used those to build new protein models that were evaluated by simulations. All these results point to a gating mechanism where the S4 helix undergoes a secondary structure transformation during gating. These simulations also provide information about how the protein in- teracts with the surrounding membrane. In particular, we found that lipid molecules close to the protein diffuse together with it, forming a large dynamic lipid-protein cluster.
    [Show full text]