Tentative Syllabus

Total Page:16

File Type:pdf, Size:1020Kb

Tentative Syllabus EEB 451 Biology of Mammals - Winter 2016 Instructor - Professor Priscilla Tucker 3036 Museums Building [email protected] GSI – Lisa Walsh 3091 Museums Building [email protected] Tentative Lecture Syllabus 4151 USB Tuesday/Thursday 1:00-2:30 Jan. 7 Introduction to course 12 Introduction to mammals, origins, phylogeny - Chapters 1 and 2 in Vaughan et al. 2015 14 Introduction to mammals, origins, characteristics - Chapter 3 19 physiology, body size (activity: body size and the cost of being small) - Chapter 21 21 Monotremata and Metatheria – Chapters 5 and 6 26 Metatheria cont., marsupial reproduction – Chapters 6 and 20 28 Soricomorpha, Erinaceomorpha - Chapter 14 Feb. 2 Guest Lecturer 4 Afrotheria- Afrosoricida, Macroscelidea, Tubulidentata, Paenungulata - Chapters 8 and 9 9 Xenarthra - Pilosa, Cingulata - Chapter 10 11 Chiroptera - Chapter 15 16 Chiroptera; echolocation and other sensory systems - Chapter 22 18 Mammalian Reproduction – Chapter 28 23 Cetartiodactyla, Perissodactyla - Chapters 17 and 18 25 Cetartiodactyla continued - Chapter 20 Midterm Break Mar. 8 Carnivora I - Chapter 16 10 Carnivora II - Chapter 16 15 Carnivora III, Pholidota – Chapters 16 and 10, page 150 17 Dermoptera, Scandentia, Primates I - Chapters 11 and 12 22 Primates II - Chapter 12 24 Rodentia I- Chapter 13 29 Rodentia II - Chapter 13 31 Rodentia III and Lagomorpha - Chapter 13 Apr. 5 Conservation Concerns/Zoonoses- Chapter 26 and 28 7 Guest Lecture – Prof. Geoff Gerstner 12 Term Project Presentations 14 Term Project Presentations Grades: Lab quizzes (10) 300 mid-term exam 100 final exam 100 term project 100 total 600 Course Goals You will have the opportunity to see and learn about a large number of groups of mammals, including around 100 families, and you will also be learning to recognize around 65 species of mammals that are found in Michigan. You will learn about them in both lecture and lab, and our goal is to coordinate the two parts of the course as closely as we can. We will hold no exams during the lecture period. Instead, we will give a series of quizzes in lab sections (one each week) that will cover both lecture and lab material. You will be asked to identify specimens and answer short questions covering lecture materials. Each week’s quiz will focus on the groups from the previous week, but there will always be at least one question on earlier material (and sometimes more than one). That is, the quizzes are cumulative. The midterm and final exams will be in exactly the same format as the lab quizzes, but they will include more questions. Due to the logistics of lab exams, they will take place in lab sections. [If this causes a problem for you, talk to us and we’ll work out an alternate plan.] Note that the aggregate score of the quizzes makes up half of your grade for the course. Keeping up is important! Another significant component of your grade will be a term project. This includes articulation of a specimen, a presentation to the class and a short paper on aspects of the species on which you are working. Term Project Due Date – Friday, April 1. Details about the term project will be provided at a later date. Text: Vaughan, T. A., et al. 2015. Mammalogy. Sixth Edition. Jones and Bartlett Publishing. A book by Feldhamer, G. et al. (2007, Mammalogy: Adaptation, Diversity, Ecology, Johns Hopkins Univ. Press) is also good. It is available on reserve from the Science Library. Another excellent resource is the Animal Diversity Web (http://animaldiversity.ummz.umich.edu). This website contains an extensive section on mammals. Accounts of species often include pictures of living animals, and in a few, but growing number of cases, recordings of sounds. Many accounts include photographs of mammal skeletal elements, especially, crania and teeth. Many of these images emphasize characteristics of the specimens that are of taxonomic importance. The descriptions of the class Mammalia, subclasses, orders and families were originally written for an earlier version of this course, and they are recommended reading for each laboratory period. These are meant to provide a readily-available means of review and study. Use this system to your advantage! We encourage you to bring laptops to lab so that you can use the ADW as you review specimens. Others have found it useful to bring a camera as well. EEB 451 Lab schedule 2016 Wednesdays 3031 Ruthven Section 2, 9:00-12:00, Section 3, 2:00-5:00 Jan. 13 Introduction to bones and teeth; Chapter 3 (Vaughan et al., 2015) pp.47-56 Jan. 20 Introduction to bones and teeth; Chapter 3 (Vaughan et al., 2015) pp.47-56, cont. Jan. 27 Monotremata (Ornithorhynchidae, Tachyglossidae); Didelphimorphia (Didelphidae); Paucituberculata (Caenolestidae); Dasyuromorphia (Dasyuridae); Diprotodontia (Phalangeridae, Potoroidae, Macropodidae, Vombatidae, Phascolarctidae, Tarsipedidae) Feb. 3 Erinaceomorpha (Erinaceidae); Soricomorpha (Talpidae, Solenodontidae, Soricidae) Feb. 10 Afrotheria: Afrosoricida (Tenrecidae, Chrysochloridae). Macroscelidea: (Macroscelididae). Tubulidentata (Orycteropodidae). Sirenia (Dugongidae, Trichechidae); Hyracoidea (Procaviidae); Proboscidea (Elephantidae) Xenarthra: Pilosa (Bradypodidae, Megalonychidae, Cyclopedidae, Myrmecophagidae); Cingulata (Dasypodidae) Feb. 17 Chiroptera (Pteropodidae, Emballonuridae, Hipposideridae, Noctilionidae, Megadermatidae, Rhinolophidae, Phyllostomidae, Vespertilionidae, Molossidae) Feb 24 EXAM I Mar.9 Cetartiodactyla (Suidae, Tayassuidae, Hippopotamidae, Camelidae, Giraffidae, Moschidae, Cervidae, Antilocapridae, Bovidae, Balaenopteridae, Delphinidae, Monodontidae, Phocoenidae, Physeteridae); Perissodactyla (Tapiridae, Rhinocerotidae, Equidae) Mar. 16 Carnivora (Canidae, Ursidae, Procyonidae, Mustelidae, Mephitidae, Ailuridae, Viverridae, Herpestidae, Hyaenidae, Felidae, Otariidae, Odobenidae, Phocidae); Pholidota (Manidae) Mar. 23 Primates (Lemuridae, Loridae, Galagonidae, Tarsiidae, Atelidae, Aotidae, Cebidae, Callitrichidae, Cercopithecidae, Hylobatidae, Hominidae); Dermoptera (Cynocephalidae); Scandentia (Tupaiidae) Mar. 30 Rodentia: Sciuromorpha (Aplodontidae, Gliridae, Sciuridae); Castorimorpha (Castoridae, Geomyidae, Heteromyidae); Hystricomorpha (Bathyergidae, Agoutidae, Hystricidae, Erethizontidae, Chinchillidae, Caviidae, Hydrochaeridae, Dasyproctidae, Ctenomyidae, Echimyidae, Myocastoridae) Apr.6 Rodentia: Myomorpha (Dipodidae, Muridae, Nesomyidae, Cricetidae [Cricetinae, Sigmodontinae, Arvicolinae], Spalacidae); Lagomorpha (Ochotonidae, Leporidae) Apr. 13 EXAM II Important note: Attendance in lab is essential. A lab cannot be made up once the week is over and the specimens have been put away. If you must miss your assigned lab during some week, attend the other lab section. However, please let Lisa know beforehand..
Recommended publications
  • Identifing Priority Ecoregions for Rodent Conservation at the Genus Level
    Oryx Vol 35 No 2 April 2001 Short Communication Identifing priority ecoregions for rodent conservation at the genus level Giovanni Amori and Spartaco Gippoliti Abstract Rodents account for 40 per cent of living high number of genera) 'threat-spots' for rodent conser- mammal species. Nevertheless, despite an increased vation. A few regions, mainly drylands, are singled out interest in biodiversity conservation and their high as important areas for rodent conservation but are not species richness, Rodentia are often neglected by con- generally recognized in global biodiversity assessments. servationists. We attempt for the first time a world-wide These are the remaining forests of Togo, extreme evaluation of rodent conservation priorities at the genus 'western Sahel', the Turanian and Mongolian-Manchu- level. Given the low popularity of the order, we rian steppes and the desert of the Horn of Africa. considered it desirable to discuss identified priorities Resources for conservation must be allocated first to within the framework of established biodiversity prior- recognized threat spots and to those restricted-range ity areas of the world. Two families and 62 genera are genera which may depend on species-specific strategies recognized as threatened. Our analyses highlight the for their survival. Philippines, New Guinea, Sulawesi, the Caribbean, China temperate forests and the Atlantic Forest of Keywords Biodiversity, conservation priorities, south-eastern Brazil as the most important (for their rodents, threatened genera, world ecoregions. Conservation efforts for rodents must be included in Introduction the general framework of mammalian diversity conser- With 26-32 recognized extant families and more than vation, focusing on a biodiversity/area approach.
    [Show full text]
  • Classification of Mammals 61
    © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORCHAPTER SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Classification © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 4 NOT FORof SALE MammalsOR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 2ND PAGES 9781284032093_CH04_0060.indd 60 8/28/13 12:08 PM CHAPTER 4: Classification of Mammals 61 © Jones Despite& Bartlett their Learning,remarkable success, LLC mammals are much less© Jones stress & onBartlett the taxonomic Learning, aspect LLCof mammalogy, but rather as diverse than are most invertebrate groups. This is probably an attempt to provide students with sufficient information NOT FOR SALE OR DISTRIBUTION NOT FORattributable SALE OR to theirDISTRIBUTION far greater individual size, to the high on the various kinds of mammals to make the subsequent energy requirements of endothermy, and thus to the inabil- discussions of mammalian biology meaningful.
    [Show full text]
  • Redalyc.Mountain Vizcacha (Lagidium Cf. Peruanum) in Ecuador
    Mastozoología Neotropical ISSN: 0327-9383 [email protected] Sociedad Argentina para el Estudio de los Mamíferos Argentina Werner, Florian A.; Ledesma, Karim J.; Hidalgo B., Rodrigo Mountain vizcacha (Lagidium cf. peruanum) in Ecuador - First record of chinchillidae from the northern Andes Mastozoología Neotropical, vol. 13, núm. 2, julio-diciembre, 2006, pp. 271-274 Sociedad Argentina para el Estudio de los Mamíferos Tucumán, Argentina Available in: http://www.redalyc.org/articulo.oa?id=45713213 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Mastozoología Neotropical, 13(2):271-274, Mendoza, 2006 ISSN 0327-9383 ©SAREM, 2006 Versión on-line ISSN 1666-0536 www.cricyt.edu.ar/mn.htm MOUNTAIN VIZCACHA (LAGIDIUM CF. PERUANUM) IN ECUADOR – FIRST RECORD OF CHINCHILLIDAE FROM THE NORTHERN ANDES Florian A. Werner¹, Karim J. Ledesma2, and Rodrigo Hidalgo B.3 1 Albrecht-von-Haller-Institute of Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany; <[email protected]>. 2 Department of Biological Sciences, Florida Atlantic University, Boca Raton, U.S.A; <[email protected]>. 3 Colegio Nacional Eloy Alfaro, Gonzales Suarez y Sucre, Cariamanga, Ecuador; <[email protected]>. Key words. Biogeography. Caviomorpha. Distribution. Hystricomorpha. Viscacha. Chinchillidae is a family of hystricomorph Cerro Ahuaca is a granite inselberg 2 km rodents distributed in the Andes of Peru, from the town of Cariamanga (1950 m), Loja Bolivia, Chile and Argentina, and in lowland province (4°18’29.4’’ S, 79°32’47.2’’ W).
    [Show full text]
  • Chinchilla-Complete1
    Chinchilla lanigera Chinchilla Class: Mammalia. Order: Rodentia. Family: Chinchillidae. Other names: Physical Description: A small mammal with extremely dense, velvet-like, blue-gray fur with black tinted markings. It has large, rounded ears, big eyes, a bushy tail, and long whiskers. The front paws have only four well-developed digits; the fifth toe is vestigial. The hind legs are longer than the forelimbs with three large toes and one tiny one. It is quite agile and capable of leaping both horizontally and vertically, reaching heights up to 6ft vertically. Weight is reported to range from18-35 oz. The head and body is 9-15”, averaging 12”; the tail averages 3-6”. Females (does) are larger and heavier than males (bucks). Crying, barking, chattering, chirping, and a crackling vocalization if angry are all normal sounds for a chinchilla. Domestic chinchillas have been selectively bred to rear other colors beside the wild blue-gray including beige, silver, cream and white. Diet in the Wild: Bark, grasses, herbs, seeds, flowers, leaves. Diet at the Zoo: Timothy hay, chinchilla diet, apples, grapes, raisins, banana chips, almonds, peanuts, sunflower seeds, romaine. Habitat & Range: High Andes of Bolivia, Chile, and Peru, but today colonies in the wild remain only in Chile, live within rocky crevices and caverns. Life Span: Up to 15-20 years in captivity; avg. 8-10 in the wild. Perils in the wild: Birds of prey, skunks, felines, snakes, canines, and humans. Physical Adaptations: If threatened, chinchillas depend upon their running, jumping, and climbing skills. If provoked, they are capable of inflicting a sharp bite.
    [Show full text]
  • B.Sc. II YEAR CHORDATA
    B.Sc. II YEAR CHORDATA CHORDATA 16SCCZO3 Dr. R. JENNI & Dr. R. DHANAPAL DEPARTMENT OF ZOOLOGY M. R. GOVT. ARTS COLLEGE MANNARGUDI CONTENTS CHORDATA COURSE CODE: 16SCCZO3 Block and Unit title Block I (Primitive chordates) 1 Origin of chordates: Introduction and charterers of chordates. Classification of chordates up to order level. 2 Hemichordates: General characters and classification up to order level. Study of Balanoglossus and its affinities. 3 Urochordata: General characters and classification up to order level. Study of Herdmania and its affinities. 4 Cephalochordates: General characters and classification up to order level. Study of Branchiostoma (Amphioxus) and its affinities. 5 Cyclostomata (Agnatha) General characters and classification up to order level. Study of Petromyzon and its affinities. Block II (Lower chordates) 6 Fishes: General characters and classification up to order level. Types of scales and fins of fishes, Scoliodon as type study, migration and parental care in fishes. 7 Amphibians: General characters and classification up to order level, Rana tigrina as type study, parental care, neoteny and paedogenesis. 8 Reptilia: General characters and classification up to order level, extinct reptiles. Uromastix as type study. Identification of poisonous and non-poisonous snakes and biting mechanism of snakes. 9 Aves: General characters and classification up to order level. Study of Columba (Pigeon) and Characters of Archaeopteryx. Flight adaptations & bird migration. 10 Mammalia: General characters and classification up
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • Afrotherian Conservation – Number 16
    AFROTHERIAN CONSERVATION Newsletter of the IUCN/SSC Afrotheria Specialist Group Number 16 Edited by PJ Stephenson September 2020 Afrotherian Conservation is published annually by the measure the effectiveness of SSC’s actions on biodiversity IUCN Species Survival Commission Afrotheria Specialist conservation, identification of major new initiatives Group to promote the exchange of news and information needed to address critical conservation issues, on the conservation of, and applied research into, consultations on developing policies, guidelines and aardvarks, golden moles, hyraxes, otter shrews, sengis and standards, and increasing visibility and public awareness of tenrecs. the work of SSC, its network and key partners. Remarkably, 2020 marks the end of the current IUCN Published by IUCN, Gland, Switzerland. quadrennium, which means we will be dissolving the © 2020 International Union for Conservation of Nature membership once again in early 2021, then reassembling it and Natural Resources based on feedback from our members. I will be in touch ISSN: 1664-6754 with all members at the relevant time to find out who wishes to remain a member and whether there are any Find out more about the Group people you feel should be added to our group. No one is on our website at http://afrotheria.net/ASG.html automatically re-admitted, however, so you will all need to and on Twitter @Tweeting_Tenrec actively inform me of your wishes. We will very likely need to reassess the conservation status of all our species during the next quadrennium, so get ready for another round of Red Listing starting Message from the Chair sometime in the not too distant future.
    [Show full text]
  • Download Article Chinchilla Factsheet
    Association of Pet Behaviour Counsellors www.apbc.org.uk E: [email protected] Chinchilla Factsheet Introduction Chinchillas are South American rodents with soft, dense coats, large ears and eyes and a long hairy curled tail. They are becoming increasingly popular as pets in the UK and can commonly be found for sale in pet shops. This species has complex social, environmental and behavioural needs which need to be met if they are to be kept happily as pets. This information leaflet is about the history and natural behaviour of the chinchilla, and how to meet their behavioural needs as pets. If you already have chinchillas, this guide willhelp you understand your chinchillas so that you can provide for their needs, and if you are thinking about getting chinchillas it can help you to decide whether they are the right pet for you and your household. The Natural History chinchillas have descended from 12 feed on different plants when they of Wild Chinchillas wild chinchillas (C. lanigera) captured become available so their diet varies in 1923 by Mathias. F Chapman and greatly between the wet and dry Chinchillas belong to the family taken to the USA (Spotorno et al, seasons(Cortés, Miranda & Jiménez, Chinchillidae, which consists of 2004). Today, they are kept as fur- 2002). Their main food plants are chinchillas and viscachas (Marcon bearing animals, laboratory animals the bark and leaves of native herbs & Mongini, 1984). There are two and pets. and shrubs, and succulents such as species of chinchilla; Chinchilla bromeliads and cacti ( Cortés,Miranda lanigera, the long-tailed chinchilla, Habitat & Jiménez, 2002).
    [Show full text]
  • Checklist: Mammals of Mkomazi
    CHAPTER 32 Checklist: Mammals of Mkomazi S. Keith Eltringham, Robert J. Morley, Jonathan Kingdon, Malcolm J. Coe & Nicholas C. McWilliam The following list is based on: field records by the Mkomazi Ecological Research Programme in 1992–96; small mammal records made by Larry Harris in 1964–67 (marked LH) (Harris 1972) and collections made by Rob Morley (marked RM; see Chapter 30). Additional comments and sightings by Malcolm Coe (marked MJC), Keith Eltringham (KE) and Jonathan Kingdon (JK). Historical data col- lated by Nicholas McWilliam. Species thought not to occur wild any longer in Mkomazi are marked ‘*’ and details are given at the end of this chapter. Nomen- clature (Latin and common) follows Corbett & Hill (1991), Skinner & Smithers (1990) and Kingdon (1997). MAMMALS (Class Mammalia) ?Usambara galago Galagoides orinus. Possible recording from Ibaya Hill (JK). PLACENTALS (Sub-class Eutheria) PRIMATES (Order Primates) BATS (Order Chiroptera) Cheek-pouch monkeys (Cercopithecidae) Yellow baboon Papio cynocephalus. Re- Fruit bats (Sub-order Megachiroptera) ported by JK and KE. JK has suggested Pteropodidae mixing with olive baboon (P. anubis) in Rousette bat Rousettus aegyptiacus. LH, overlap of ranges. listed as R. angolensis, but not known from Olive baboon Papio anubis. KE. this region. * Angola pied colobus Colobus angolensis. Epauletted fruit bat Epomophorus sp. LH. Reported possible sighting 19 June 1995 Probably E. wahlbergi but Eidolon helvum near Umba River. Formerly quite common. known from this area (MJC). Vervet monkey Cercopithecus pygerythrus. Sykes’ monkey Cercopithecus mitis. Insect bats (Sub-order Microchiroptera) Slit-faced bats (Nycteridae) Galagos (Galagonidae) Slit-faced bat Nycteris thebaica. LH, listed Small-eared galago Otolemur garbetti.
    [Show full text]
  • Atypicat Molecular Evolution of Afrotherian and Xenarthran B-Globin
    Atypicat molecular evolution of afrotherian and xenarthran B-globin cluster genes with insights into the B-globin cluster gene organization of stem eutherians. By ANGELA M. SLOAN A thesis submitted to the Faculty of Graduate Studies in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Zoology University of Manitoba Winnipeg, Manitoba, Canada @ Angela M. Sloan, July 2005 TIIE I]MVERSITY OF' MANITOBA FACULTY OF GRADUATE STT]DIES ***** - COPYRIGHTPERMISSION ] . Atypical molecular evolution of afrotherian and xenarthran fslobin cluster genes with insights into thefglobin cluster gene organization òf stem eutherians. BY Angela M. Sloan A ThesislPracticum submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfill¡nent of the requirement of the degree of Master of Science Angela M. Sloan @ 2005 Permission has been granted to the Library of the University of Manitoba to lend or sell copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the fiIm, and to University Microfïlms Inc. to publish an abstract of this thesis/practicum. This reproduction or copy of this thesis has been made available by authority of the copyright owner solely for the purpose of private study and research, and may only be reproduced and copied as permitted by copyright laws or with express written authorization from the copyright ownér. ABSTRACT Our understanding of p-globin gene cluster evolutionlwithin eutherian mammals .is based solely upon data collected from species in the two most derived eutherian superorders, Laurasiatheria and Euarchontoglires. Ifence, nothing is known regarding_the gene composition and evolution of this cluster within afrotherian (elephants, sea cows, hyraxes, aardvarks, elephant shrews, tenrecs and golden moles) and xenarthran (sloths, anteaters and armadillos) mammals.
    [Show full text]
  • List of 28 Orders, 129 Families, 598 Genera and 1121 Species in Mammal Images Library 31 December 2013
    What the American Society of Mammalogists has in the images library LIST OF 28 ORDERS, 129 FAMILIES, 598 GENERA AND 1121 SPECIES IN MAMMAL IMAGES LIBRARY 31 DECEMBER 2013 AFROSORICIDA (5 genera, 5 species) – golden moles and tenrecs CHRYSOCHLORIDAE - golden moles Chrysospalax villosus - Rough-haired Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus – Lowland Streaked Tenrec 3. Microgale dobsoni - Dobson’s Shrew Tenrec 4. Tenrec ecaudatus – Tailless Tenrec ARTIODACTYLA (83 genera, 142 species) – paraxonic (mostly even-toed) ungulates ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BOVIDAE (46 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Impala 3. Alcelaphus buselaphus - Hartebeest 4. Alcelaphus caama – Red Hartebeest 5. Ammotragus lervia - Barbary Sheep 6. Antidorcas marsupialis - Springbok 7. Antilope cervicapra – Blackbuck 8. Beatragus hunter – Hunter’s Hartebeest 9. Bison bison - American Bison 10. Bison bonasus - European Bison 11. Bos frontalis - Gaur 12. Bos javanicus - Banteng 13. Bos taurus -Auroch 14. Boselaphus tragocamelus - Nilgai 15. Bubalus bubalis - Water Buffalo 16. Bubalus depressicornis - Anoa 17. Bubalus quarlesi - Mountain Anoa 18. Budorcas taxicolor - Takin 19. Capra caucasica - Tur 20. Capra falconeri - Markhor 21. Capra hircus - Goat 22. Capra nubiana – Nubian Ibex 23. Capra pyrenaica – Spanish Ibex 24. Capricornis crispus – Japanese Serow 25. Cephalophus jentinki - Jentink's Duiker 26. Cephalophus natalensis – Red Duiker 1 What the American Society of Mammalogists has in the images library 27. Cephalophus niger – Black Duiker 28. Cephalophus rufilatus – Red-flanked Duiker 29. Cephalophus silvicultor - Yellow-backed Duiker 30. Cephalophus zebra - Zebra Duiker 31. Connochaetes gnou - Black Wildebeest 32. Connochaetes taurinus - Blue Wildebeest 33. Damaliscus korrigum – Topi 34.
    [Show full text]
  • The Genome 10K Project: a Way Forward
    The Genome 10K Project: A Way Forward Klaus-Peter Koepfli,1 Benedict Paten,2 the Genome 10K Community of Scientists,Ã and Stephen J. O’Brien1,3 1Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 199034 St. Petersburg, Russian Federation; email: [email protected] 2Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064 3Oceanographic Center, Nova Southeastern University, Fort Lauderdale, Florida 33004 Annu. Rev. Anim. Biosci. 2015. 3:57–111 Keywords The Annual Review of Animal Biosciences is online mammal, amphibian, reptile, bird, fish, genome at animal.annualreviews.org This article’sdoi: Abstract 10.1146/annurev-animal-090414-014900 The Genome 10K Project was established in 2009 by a consortium of Copyright © 2015 by Annual Reviews. biologists and genome scientists determined to facilitate the sequencing All rights reserved and analysis of the complete genomes of10,000vertebratespecies.Since Access provided by Rockefeller University on 01/10/18. For personal use only. ÃContributing authors and affiliations are listed then the number of selected and initiated species has risen from ∼26 Annu. Rev. Anim. Biosci. 2015.3:57-111. Downloaded from www.annualreviews.org at the end of the article. An unabridged list of G10KCOS is available at the Genome 10K website: to 277 sequenced or ongoing with funding, an approximately tenfold http://genome10k.org. increase in five years. Here we summarize the advances and commit- ments that have occurred by mid-2014 and outline the achievements and present challenges of reaching the 10,000-species goal. We summarize the status of known vertebrate genome projects, recommend standards for pronouncing a genome as sequenced or completed, and provide our present and futurevision of the landscape of Genome 10K.
    [Show full text]