Development of a Human Primary Gut-On-A-Chip to Model
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Poised Lineage Specification in Multipotential Hematopoietic Stem
Cell Stem Cell Short Article Poised Lineage Specification in Multipotential Hematopoietic Stem and Progenitor Cells by the Polycomb Protein Bmi1 Hideyuki Oguro,1,2 Jin Yuan,1,2 Hitoshi Ichikawa,4 Tomokatsu Ikawa,5 Satoshi Yamazaki,3,6 Hiroshi Kawamoto,5 Hiromitsu Nakauchi,3,6 and Atsushi Iwama1,2,* 1Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan 2JST, CREST 3JST, ERATO Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan 4Genetics Division, National Cancer Center Research Institute, Tokyo, 104-0045, Japan 5Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama 230-0045, Japan 6Laboratory of Stem Cell Therapy, Center for Experimental Medicine, Institute of Medical Sciences, University of Tokyo, Tokyo 108-8679, Japan *Correspondence: [email protected] DOI 10.1016/j.stem.2010.01.005 SUMMARY Pietersen and van Lohuizen, 2008). They reside in two main complexes, termed Polycomb repressive complex 1 and 2 Polycomb group (PcG) proteins are essential regula- (PRC1 and PRC2). PRC2 and trithorax group (trxG) proteins tors of stem cells. PcG and trithorax group proteins mark developmental regulator gene promoters with bivalent mark developmental regulator gene promoters with domains consisting of overlapping repressive and activating bivalent domains consisting of overlapping repres- histone modifications to keep developmental regulators sive and activating histone modifications to keep ‘‘poised’’ for activation in embryonic stem cells (ESCs) (Bernstein them poised for activation in embryonic stem cells. et al., 2006; Spivakov and Fisher 2007; Mendenhall and Bern- stein, 2008). Likewise, in adult stem cells, developmental regula- Bmi1, a component of PcG complexes, maintains tors that govern lineage specification are supposedly repressed the self-renewal capacity of adult stem cells, but its epigenetically to maintain their multipotency (Pietersen and van role in multipotency remains obscure. -
FTY720P Upregulates the Na+/K+ Atpase in Hepg2 Cells by Activating S1PR3 and Inducing PGE2 Release
Cellular Physiology Cell Physiol Biochem 2019;53:518-531 DOI: 10.33594/00000015510.33594/000000155 © 2019 The Author(s).© 2019 Published The Author(s) by and Biochemistry Published online: 11 SeptemberSeptember 20192019 Cell Physiol BiochemPublished Press GmbH&Co. by Cell Physiol KG Biochem 518 + + Press GmbH&Co. KG, Duesseldorf ChakkourAccepted: 5et September al.: FTY720-P 2019 Upregulates Na /K Atpase www.cellphysiolbiochem.com This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Interna- tional License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Original Paper FTY720P Upregulates the Na+/K+ ATPase in HepG2 Cells by Activating S1PR3 and Inducing PGE2 Release Mohamed Chakkour Sawsan Kreydiyyeh Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon Key Words FTY720-P • Na+/K+ATPase • HepG2 • PKC • ERK • PGE2 Abstract Background/Aims: Liver regeneration is induced by S1P and accompanied with an increase in hepatic Na+/K+ ATPase activity, suggesting a potential modulatory role of the sphingolipid on the ATPase activity. The ability of S1P to alter the ATPase activity was confirmed in a previous work which showed a time dependent effect, with an inhibition appearing at 15min and a stimulation at two hours. The aim of this work was to investigate if FTY720-P, an analogue of S1P used in the treatment of multiple sclerosis, exerts a similar effect at 2 hours. Methods: HepG2 cells were treated with FTY720-P for two hours and the activity of the Na+/K+ ATPase was assayed by measuring the amount of inorganic phosphate liberated in presence and absence of ouabain. -
Nanoparticles to Upregulate Notch Signaling Victor
Notch Intracellular Domain Plasmid Delivery via Poly(lactic-co-glycolic acid) Nanoparticles to Upregulate Notch Signaling Victoria L. Messerschmidt1,2†, Aneetta E. Kuriakose1,2†, Uday Chintapula1, Samantha Laboy1, Thuy Thi Dang Truong1, LeNaiya A. Kydd1, Justyn Jaworski1, Kytai T. Nguyen1,2*, Juhyun Lee1,2* 1Department of Bioengineering, University of Texas at Arlington, Arlington TX 76010 USA 2University of Texas Southwestern Medical Center, Dallas TX 75390 USA † These authors have contributed equally to this work Corresponding Author: Juhyun Lee, Ph.D. Joint Department of Bioengineering UT Arlington / UT Southwestern Arlington, TX 75022 Email: [email protected] Telephone: 817-272-6534 Fax: 817-272-2251 Abstract Notch signaling is a highly conserved signaling system that is required for embryonic development and regeneration of organs. When the signal is lost, maldevelopment occurs and leads to a lethal state. Liposomes and retroviruses are most commonly used to deliver genetic material to cells. However, there are many drawbacks to these systems such as increased toxicity, nonspecific delivery, short half-life, and stability after formulation. We utilized the negatively charged and FDA approved polymer poly(lactic-co-glycolic acid) to encapsulate Notch Intracellular Domain- containing plasmid in nanoparticles. In this study, we show that primary human umbilical vein endothelial cells readily uptake the nanoparticles with and without specific antibody targets. We demonstrated that our nanoparticles also are nontoxic, stable over time, and compatible with blood. We also determined that we can successfully transfect primary human umbilical vein endothelial cells (HUVECs) with our nanoparticles in static and dynamic environments. Lastly, we elucidated that our transfection upregulates the downstream genes of Notch signaling, indicating that the payload was viable and successfully altered the genetic downstream effects. -
Lncegfl7os Regulates Human Angiogenesis by Interacting
RESEARCH ARTICLE LncEGFL7OS regulates human angiogenesis by interacting with MAX at the EGFL7/miR-126 locus Qinbo Zhou1†, Bo Yu1†*, Chastain Anderson1, Zhan-Peng Huang2, Jakub Hanus1, Wensheng Zhang3, Yu Han4, Partha S Bhattacharjee5, Sathish Srinivasan6, Kun Zhang3, Da-zhi Wang2, Shusheng Wang1,7* 1Department of Cell and Molecular Biology, Tulane University, New Orleans, United States; 2Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, United States; 3Department of Computer Science, Xavier University, New Orleans, United States; 4Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, United States; 5Department of Biology, Xavier University, New Orleans, United States; 6Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma, United States; 7Department of Ophthalmology, Tulane University, New Orleans, United States Abstract In an effort to identify human endothelial cell (EC)-enriched lncRNAs,~500 lncRNAs were shown to be highly restricted in primary human ECs. Among them, lncEGFL7OS, located in the opposite strand of the EGFL7/miR-126 gene, is regulated by ETS factors through a bidirectional promoter in ECs. It is enriched in highly vascularized human tissues, and upregulated in the hearts of dilated cardiomyopathy patients. LncEGFL7OS silencing impairs angiogenesis as shown by EC/fibroblast co-culture, in vitro/in vivo and ex vivo human choroid sprouting angiogenesis assays, while lncEGFL7OS overexpression has the opposite function. Mechanistically, *For correspondence: lncEGFL7OS is required for MAPK and AKT pathway activation by regulating EGFL7/miR-126 [email protected] (BY); expression. MAX protein was identified as a lncEGFL7OS-interacting protein that functions to [email protected] (SW) regulate histone acetylation in the EGFL7/miR-126 promoter/enhancer. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
Cellular and Molecular Signatures in the Disease Tissue of Early
Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of -
Targetome Analysis Revealed Involvement of Mir-126 in Neurotrophin Signaling Pathway: a Possible Role in Prevention of Glioma Development
Original Article Targetome Analysis Revealed Involvement of MiR-126 in Neurotrophin Signaling Pathway: A Possible Role in Prevention of Glioma Development 1# 1, 2# 3 4, 5 Maedeh Rouigari, M.Sc. , Moein Dehbashi, Ph.D. , Kamran Ghaedi, Ph.D. , Meraj Pourhossein, Ph.D. * 1. Isfahan Neuroscience Research Center (INRC), Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran 2. Genetics Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran 3. Cell and Molecular Biology Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran 4. Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences Isfahan, Iran 5. Department of Food Science and Technology, Food Security Research Center, School of Nutrition and Food Science, Isfahan, Iran #The first two authors equally contributed to this article. *Corresponding Address: P.O.Box: 81746-73461, Hezar Jarib Street, Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran Email: [email protected] Received: 21/Nov/2016, Accepted: 14/Mar/2017 Abstract Objective: For the first time, we used molecular signaling pathway enrichment analysis to determine possible involvement of miR-126 and IRS-1 in neurotrophin pathway. Materials and Methods: In this prospective study, validated and predicted targets (targetome) of miR-126 were collected following searching miRtarbase (http://mirtarbase.mbc.nctu.edu.tw/) and miRWalk 2.0 databases, respectively. Then, approximate expression of miR-126 targeting in Glioma tissue was examined using UniGene database (http://www.ncbi. nlm.nih.gov/unigene). In silico molecular pathway enrichment analysis was carried out by DAVID 6.7 database (http://david. -
CDH12 Cadherin 12, Type 2 N-Cadherin 2 RPL5 Ribosomal
5 6 6 5 . 4 2 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 A A A A A A A A A A A A A A A A A A A A C C C C C C C C C C C C C C C C C C C C R R R R R R R R R R R R R R R R R R R R B , B B B B B B B B B B B B B B B B B B B , 9 , , , , 4 , , 3 0 , , , , , , , , 6 2 , , 5 , 0 8 6 4 , 7 5 7 0 2 8 9 1 3 3 3 1 1 7 5 0 4 1 4 0 7 1 0 2 0 6 7 8 0 2 5 7 8 0 3 8 5 4 9 0 1 0 8 8 3 5 6 7 4 7 9 5 2 1 1 8 2 2 1 7 9 6 2 1 7 1 1 0 4 5 3 5 8 9 1 0 0 4 2 5 0 8 1 4 1 6 9 0 0 6 3 6 9 1 0 9 0 3 8 1 3 5 6 3 6 0 4 2 6 1 0 1 2 1 9 9 7 9 5 7 1 5 8 9 8 8 2 1 9 9 1 1 1 9 6 9 8 9 7 8 4 5 8 8 6 4 8 1 1 2 8 6 2 7 9 8 3 5 4 3 2 1 7 9 5 3 1 3 2 1 2 9 5 1 1 1 1 1 1 5 9 5 3 2 6 3 4 1 3 1 1 4 1 4 1 7 1 3 4 3 2 7 6 4 2 7 2 1 2 1 5 1 6 3 5 6 1 3 6 4 7 1 6 5 1 1 4 1 6 1 7 6 4 7 e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m -
A Promising Marker of Hormone Refractory Metastatic Prostate Cancer
Vol. 11, 2237–2243, March 15, 2005 Clinical Cancer Research 2237 Reg IV: A Promising Marker of Hormone Refractory Metastatic Prostate Cancer Zhennan Gu,2 Mark A. Rubin,4 Yu Yang,4 growing tumors that may not impact an individual’s natural life Samuel E. Deprimo,5 Hongjuan Zhao,5 span, although others are struck by rapidly progressive, metastatic tumors. Prostate-specific antigen screening is limited by a lack of Steven Horvath,1 James D. Brooks,5 4 2,3 specificity and an inability to predict which patients are at risk to Massimo Loda, and Robert E. Reiter develop hormone refractory metastatic disease. Recent studies Departments of 1Statistics and 2Urology, and the 3Molecular Biology advocating a lower prostate-specific antigen threshold for Institute, Geffen School of Medicine at University of California at diagnosis may increase the number of prostate cancer diagnoses Los Angeles, Los Angeles, California; 4Department of Pathology, Dana-Farber Cancer Institute, Harvard School of Medicine, Boston, and further complicate the identification of patients with indolent Massachusetts; and 5Department of Urology, Stanford University versus aggressive cancers (1). New serum and tissue markers that School of Medicine, Stanford, California correlate with clinical outcome or identify patients with potentially aggressive disease are urgently needed (2). Recent expression profiling studies suggest that expression ABSTRACT signatures for metastatic versus nonmetastatic tumors may reside The diagnosis and management of prostate cancer is in the primary tumor (2–4). Additional features that predispose hampered by the absence of markers capable of identifying tumors to metastasize to specific organs may also be present at patients with metastatic disease. -
Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association Between BMI and Adult-Onset Non- Atopic
Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non- Atopic Asthma Ayoung Jeong 1,2, Medea Imboden 1,2, Akram Ghantous 3, Alexei Novoloaca 3, Anne-Elie Carsin 4,5,6, Manolis Kogevinas 4,5,6, Christian Schindler 1,2, Gianfranco Lovison 7, Zdenko Herceg 3, Cyrille Cuenin 3, Roel Vermeulen 8, Deborah Jarvis 9, André F. S. Amaral 9, Florian Kronenberg 10, Paolo Vineis 11,12 and Nicole Probst-Hensch 1,2,* 1 Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; [email protected] (A.J.); [email protected] (M.I.); [email protected] (C.S.) 2 Department of Public Health, University of Basel, 4001 Basel, Switzerland 3 International Agency for Research on Cancer, 69372 Lyon, France; [email protected] (A.G.); [email protected] (A.N.); [email protected] (Z.H.); [email protected] (C.C.) 4 ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain; [email protected] (A.-E.C.); [email protected] (M.K.) 5 Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain 6 CIBER Epidemiología y Salud Pública (CIBERESP), 08005 Barcelona, Spain 7 Department of Economics, Business and Statistics, University of Palermo, 90128 Palermo, Italy; [email protected] 8 Environmental Epidemiology Division, Utrecht University, Institute for Risk Assessment Sciences, 3584CM Utrecht, Netherlands; [email protected] 9 Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College, SW3 6LR London, UK; [email protected] (D.J.); [email protected] (A.F.S.A.) 10 Division of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 11 MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, W2 1PG London, UK; [email protected] 12 Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy * Correspondence: [email protected]; Tel.: +41-61-284-8378 Int. -
G Protein-Coupled Receptors
S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.