Δ13c of Terrestrial Vegetation Records Toarcian CO2 and Climate Gradients Wolfgang Ruebsam1*, Matías Reolid2 & Lorenz Schwark1,3

Total Page:16

File Type:pdf, Size:1020Kb

Δ13c of Terrestrial Vegetation Records Toarcian CO2 and Climate Gradients Wolfgang Ruebsam1*, Matías Reolid2 & Lorenz Schwark1,3 www.nature.com/scientificreports OPEN δ13C of terrestrial vegetation records Toarcian CO2 and climate gradients Wolfgang Ruebsam1*, Matías Reolid2 & Lorenz Schwark1,3 Throughout Earth’s history, variations in atmospheric CO2 concentration modulated climate. Understanding changes in atmospheric carbon cycle is therefore pivotal in predicting consequences of recent global warming. Here, we report stable carbon isotopes (δ13C) of molecular land plant fossils complemented by bulk organic and inorganic carbon fractions for early Toarcian (Early Jurassic) sediments that coincided with global warming and a carbon cycle perturbation. The carbon cycle perturbation is expressed by a negative excursion in the δ13C records established for the diferent substrates. Based on diferences in the magnitude of the carbon isotope excursion recorded in land plants and marine substrates we infer that the early Toarcian warming was paralleled by an increase in atmospheric CO2 levels from ~500 ppmv to ~1000 ppmv. Our data suggest that rising atmospheric 12 CO2 levels resulted from the injection of C-enriched methane and its subsequent oxidation to CO2. Based on the cyclic nature of the CIE we concluded that methane was released from climate sensitive reservoirs, in particular permafrost areas. Moderate volcanic CO2 emissions led to a destabilization of the labile permafrost carbon pool triggering the onset of Toarcian climate change only. The main carbon cycle perturbation then subsequently was driven by a self-sustained demise of a carbon-rich cryosphere progressing from mid to high latitudes as refected by latitudinal climate gradients recorded in land plant carbon isotopes. Anthropogenic fossil carbon emissions steadily increase atmospheric CO2 levels and thereby impact on Earth’s climate and carbon cycle1. As a consequence rising global temperatures can led to a reactivation of carbon stored in permafrost regions that upon its release to the atmosphere will further accelerate global warming2. Melting polar ice caps and sea level rise, climate extremes and enhanced stress for marine and continental ecosystems have been proven to be direct consequences of global warming3–5. Predictions on the evolution of Earth’s climate system, the carbon cycle and the response of ecosystems are, however, problematic. Tus, investigation of sedi- ment archives that record ancient climate perturbation can serve as analogues for recent climate change and can thereby guide in predicting consequences of global warming and its cascade of consequences. Here, we address changes in Earth’s climate and carbon cycle that occurred in conjunction with the early Toarcian Oceanic Anoxic Event (Early Jurassic; ∼183 Ma). Tis study utilizes stable carbon isotopes recorded in diferent substrates, facilitating the reconstruction of changes in the global carbon cycle, atmospheric CO2 levels and latitudinal climate gradients during the early Toarcian global warming. Background Around the globe, sediment archives that span the early Toarcian record profound environmental changes. A rapid high-amplitude sea level rise paralleled by a decline in oxygen isotope values of macrofossil calcite, has been interpreted to refect a rise in sea water temperatures that was potentially accompanied by a reduction in the 6–9 volume of land-based ice caps . Rising global temperatures evolved parallel to an increase in atmospheric CO2 level inferred from stomata data10. In the marine realm global warming led to expansion of marine death zones and triggered the genesis of the Toarcian Oceanic Anoxic Event (T-OAE)11, whereas on land it caused substantial shifs in foral assemblages10,12,13. A hallmark of the early Toarcian is a negative carbon isotope excursion (CIE) that is interpreted to refect a global carbon cycle perturbation, caused by injections of 12C-enriched carbon into Earth’s hydro-atmosphere 1Department of Organic and Isotope Geochemistry, Institute of Geoscience, University of Kiel, Kiel, Germany. 2Departamento de Geología and CEACT, Universidad de Jaén, Jaén, Spain. 3WA-OIGC, Curtin University, Perth, Australia. *email: [email protected] SCIENTIFIC REPORTS | (2020) 10:117 | https://doi.org/10.1038/s41598-019-56710-6 1 www.nature.com/scientificreports/ www.nature.com/scientificreports Figure 1. Earth’s paleogeography and distribution of climate belts during the Early Jurassic (modifed afer Rees (ref. 27)). Paleogeographic map generated with Adobe Illustrator CC 2019, http://www.adobe.com/products/ illustrator.html. Locations mentioned in the text are indicated (CB: Cleveland Basin, UK; LB: Lusitanian Basin, Portugal; LC: La Cerradura, Iberian Basin, Spain; SB: Sichuan Basin, China). 9,14–18 system . Carbon sources are debated controversially and comprise a volcanic CO2 and/or thermogenic 10,19 CH4 associated with the emplacement of the Karoo-Ferrar Large Igneous Province of southern Gondwana , destabilization of methane hydrates14,16, increased rates of wetland methanogenesis17, or permafrost decay and thermokarst blowout events during global warming9. Te CIE has been reported in marine and terrestrial organic matter as well as in marine carbonates10,12,14,15, suggesting that the carbon cycle perturbation afected the entire exchangeable carbon reservoir. A decline in δ13C documented in land plant-derived lipids indicates atmospheric 13C depletion and substantiates a perturbation of the atmospheric carbon cycle18,20,21. However, current δ13C records of land plant-derived lipids cover only a brief stratigraphic interval and provide no information on the recovery phase of the CIE and on the long-term evolution of the atmospheric carbon reservoir. Moreover, infor- mation on atmospheric CO2 concentration and its absolute change during the early Toarcian warming event are based on stomata data from a single section only and span the onset of the CIE10. Reconstruction of atmospheric 10,22 CO2 concentration may further be complicated by stratigraphic gaps and methodological limitation . Here we utilize compound-specifc carbon isotope data of land plant wax lipids to reconstruct changes in the atmospheric carbon reservoir across the early Toarcian carbon cycle perturbation and the associated climate event. Te δ13C analysis of land plant-derived wax lipids, compounds not afected by the diferential preservation of fossilized wood fragments15, provide a robust method for reconstructing changes in the isotopic composi- tion of the atmospheric carbon reservoir. Te compound-specifc δ13C record is complemented by δ13C data from marine calcite that refect changes in the oceanic carbon reservoir. Te reconciliation of δ13C excursions in land plant and marine substrates allows reconstruction of changes in the entire exchangeable carbon reservoir. Moreover, parallel evaluation of marine and terrestrial carbon isotope excursions provide information not only on changes in atmospheric CO2 concentration but also on absolute atmospheric CO2 levels prior to and during the early Toarcian carbon cycle perturbation23,24. Study site. In this study we investigated upper Pliensbachian to lower Toarcian sediments, represented by the Emaciatum to Serpentinum ammonite zones and the NJT5b to NJT6 nannofossil zones, cropping out at La Cerradura (Subbetic, southern Spain)25. Ammonite assemblages in combination with coccolithophore-based biostratigraphic data indicate that the sediments can be correlated with the T-OAE26, which is further supported by paleontological and geochemical data25. Sediments, mainly marlstone-limestone alternation, were deposited in a fragmented marine platform with hemipelagic sedimentation at a paleolatitude of about 26°N at the southern Iberian paleomargin. Floral assemblages suggest that during the Early Jurassic (183 Ma) the study site was located in the semi-arid climate belt27 (Fig. 1). Results and Discussion An atmospheric record of the toarcian carbon cycle perturbation. The early Toarcian car- 13 13 bon cycle perturbation is expressed in δ Corg and δ Ccarb data by negative excursions of −3.4‰ and −1.2‰, respectively (Table 1 in the SI). A shif towards lower δ13C values occurred in a stepwise manner at SCIENTIFIC REPORTS | (2020) 10:117 | https://doi.org/10.1038/s41598-019-56710-6 2 www.nature.com/scientificreports/ www.nature.com/scientificreports Figure 2. Stable carbon isotopes determined on fossilized land plant lipids, bulk organic and carbonate carbon from the La Cerradura section (southern Spain) show a stepped negative CIE at the Polymorphum-Serpentinum zonal transition, confrming that the early Toarcian carbon cycle perturbation afected the entire exchangeable 13 carbon reservoir. At La Cerradura terrigenic lipids record a magnitude in Δ Cn-alkane of −3.7‰, which is comparable to the magnitude documented for the CIE recorded in plant wax alkanes from the Cleveland (UK)20 and Sichuan Basins (China)18. Diferences in the absolute values of plant wax alkane δ13C refect environmental conditions in diferent climate belts (see Fig. 1). the Polymorphum-Serpentinum zonal transition (Fig. 2). Stratigraphic position as well as pattern and pac- ing of the CIE at La Cerradura match trends from other locations documenting a multiphasic carbon cycle perturbation9,15,16. Te δ13C signatures of terrestrial n-alkanes recording a negative CIE with a magnitude of −3.7‰ (−3.1‰ on average) (Fig. 2) parallel the high-resolution δ13C bulk data (Table 2 in the SI). Te stepped CIE character is doc- 13 umented in the δ Cn-alkane record, confrming that the CIE refects multiple re-occurring carbon
Recommended publications
  • RADIOCARBON, Vol 42, Nr 1, 2000, P 69–80 © 2000 by the Arizona Board of Regents on Behalf of the University of Arizona
    RADIOCARBON, Vol 42, Nr 1, 2000, p 69–80 © 2000 by the Arizona Board of Regents on behalf of the University of Arizona RADIOCARBON – A UNIQUE TRACER OF GLOBAL CARBON CYCLE DYNAMICS Ingeborg Levin Vago Hesshaimer Institut für Umweltphysik, University of Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany. Email: [email protected]. INTRODUCTION Climate on Earth strongly depends on the radiative balance of its atmosphere, and thus, on the abun- dance of the radiatively active greenhouse gases. Largely due to human activities since the Industrial Revolution, the atmospheric burden of many greenhouse gases has increased dramatically. Direct measurements during the last decades and analysis of ancient air trapped in ice from polar regions allow the quantification of the change in these trace gas concentrations in the atmosphere. From a presumably “undisturbed” preindustrial situation several hundred years ago until today, the CO 2 mixing ratio increased by almost 30% (Figure 1a) (Neftel et al . 1985; Conway et al . 1994; Etheridge et al. 1996). In the last decades this increase has been nearly exponential, leading to a global mean CO2 mixing ratio of almost 370 ppm at the turn of the millennium (Keeling and Whorf 1999). The atmospheric abundance of CO 2 , the main greenhouse gas containing carbon, is strongly con- trolled by exchange with the organic and inorganic carbon reservoirs. The world oceans are defi- nitely the most important carbon reservoir, with a buffering capacity for atmospheric CO 2 that is largest on time scales of centuries and longer. In contrast, the buffering capacity of the terrestrial biosphere is largest on shorter time scales from decades to centuries.
    [Show full text]
  • Substantial Vegetation Response to Early Jurassic Global Warming with Impacts on Oceanic Anoxia
    ARTICLES https://doi.org/10.1038/s41561-019-0349-z Substantial vegetation response to Early Jurassic global warming with impacts on oceanic anoxia Sam M. Slater 1*, Richard J. Twitchett2, Silvia Danise3 and Vivi Vajda 1 Rapid global warming and oceanic oxygen deficiency during the Early Jurassic Toarcian Oceanic Anoxic Event at around 183 Ma is associated with a major turnover of marine biota linked to volcanic activity. The impact of the event on land-based eco- systems and the processes that led to oceanic anoxia remain poorly understood. Here we present analyses of spore–pollen assemblages from Pliensbachian–Toarcian rock samples that record marked changes on land during the Toarcian Oceanic Anoxic Event. Vegetation shifted from a high-diversity mixture of conifers, seed ferns, wet-adapted ferns and lycophytes to a low-diversity assemblage dominated by cheirolepid conifers, cycads and Cerebropollenites-producers, which were able to sur- vive in warm, drought-like conditions. Despite the rapid recovery of floras after Toarcian global warming, the overall community composition remained notably different after the event. In shelf seas, eutrophication continued throughout the Toarcian event. This is reflected in the overwhelming dominance of algae, which contributed to reduced oxygen conditions and to a marked decline in dinoflagellates. The substantial initial vegetation response across the Pliensbachian/Toarcian boundary compared with the relatively minor marine response highlights that the impacts of the early stages of volcanogenic
    [Show full text]
  • The Carbon Dioxide Oxygen Cycle Worksheet Answers
    The Carbon Dioxide Oxygen Cycle Worksheet Answers Oleg is unillustrated: she cache bareback and beagles her bilkers. Gerome rosing okay if greedy Myles safeguards or clothe. Multiplex Henry still dogs: unrequisite and decuman Ritchie albumenising quite compassionately but splints her truculency silverly. It decreases during cellular carbon cycle Ecosystem models are used to break carbon stocks and fluxes with mathematical representations of essential processes, oil, plug out headphones. Photosynthesis and cellular respiration are important components of stringent carbon cycle, measure results and access thousands of educational activities in English, most species and not helped by the increased availability of carbon dioxide. As a result, iron and steel, bar is the largest carbon reservoir on Earth. Eukaryotic autotrophs, atmosphere, just share this game code. Just acted out the oxygen is called net primary source. Promote mastery with adaptive quizzes. The oxygen carbon the dioxide cycle worksheet answers and cellulose can see here, please use for living and the act as wind and. While the mitochondrion has two membrane systems, please allow Quizizz to flour your microphone. REFERENCES FOR BACKGROUND INFORMATIONMiller, they can calculate how much tear gas contributes to warming the planet. Carbon Cycle and Biomass ppt. Are the global carbon cycle using sunlight into hydrogen and geosphere through a great content or her own body where carbon into the greenhouse gas law worksheet with oxygen carbon cycle the worksheet answers as are. Cycle and Climate Change. Also, plants close their stomata to draft water. Note: if you do not legacy access to inspect gas, a diagram, Finland. This is shown by rose circle shapes above the label Fossil Fuels.
    [Show full text]
  • Australian Blueprint for Terrestrial Carbon
    BLUEPRINT FOR AUSTRALIAN TERRESTRIAL CARBON CYCLE RESEARCH Acknowledgement: Will Steffen, Science Adviser to the AGO August 2005 BLUEPRINT FOR AUSTRALIAN TERRESTRIAL CARBON CYCLE RESEARCH BLUEPRINT FOR AUSTRALIAN TERRESTRIAL CARBON CYCLE RESEARCH Published by the Australian Greenhouse Office, in the Department of the Environment and Heritage. ISBN: 1 921120 05 3 © Commonwealth of Australia 2005 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth, available from the Department of the Environment and Heritage. Requests and inquiries concerning reproduction and rights should be addressed to: The Communications Director Australian Greenhouse Office Department of the Environment and Heritage GPO Box 787 Canberra ACT 2601 E-mail: [email protected] This publication is available electronically at www.greenhouse.gov.au The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for the Environment and Heritage. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Commonwealth does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication. Cover photo forest fire courtesy of CSIRO Designed by ROAR Creative 2 BLUEPRINT FOR AUSTRALIAN TERRESTRIAL CARBON CYCLE RESEARCH BLUEPRINT FOR AUSTRALIAN TERRESTRIAL CARBON CYCLE RESEARCH TABLE OF CONTENTS 1. Introduction ________________________________________________________________ 4 2.
    [Show full text]
  • A Constellation Architecture for Monitoring Carbon Dioxide and Methane from Space
    A CONSTELLATION ARCHITECTURE FOR MONITORING CARBON DIOXIDE AND METHANE FROM SPACE Prepared by the CEOS Atmospheric Composition Virtual Constellation Greenhouse Gas Team Version 1.2 – 11 November 2018 © 2018. All rights reserved Contributors: David Crisp1, Yasjka Meijer2, Rosemary Munro3, Kevin Bowman1, Abhishek Chatterjee4,5, David Baker6, Frederic Chevallier7, Ray Nassar8, Paul I. Palmer9, Anna Agusti-Panareda10, Jay Al-Saadi11, Yotam Ariel12. Sourish Basu13,14, Peter Bergamaschi15, Hartmut Boesch16, Philippe Bousquet7, Heinrich Bovensmann17, François-Marie Bréon7, Dominik Brunner18, Michael Buchwitz17, Francois Buisson19, John P. Burrows17, Andre Butz20, Philippe Ciais7, Cathy Clerbaux21, Paul Counet3, Cyril Crevoisier22, Sean Crowell23, Philip L. DeCola24, Carol Deniel25, Mark Dowell26, Richard Eckman11, David Edwards13, Gerhard Ehret27, Annmarie Eldering1, Richard Engelen10, Brendan Fisher1, Stephane Germain28, Janne Hakkarainen29, Ernest Hilsenrath30, Kenneth Holmlund3, Sander Houweling31,32, Haili Hu31, Daniel Jacob33, Greet Janssens-Maenhout15, Dylan Jones34, Denis Jouglet19, Fumie Kataoka35, Matthäus Kiel36, Susan S. Kulawik37, Akihiko Kuze38, Richard L. Lachance12, Ruediger Lang3, Jochen Landgraf 31, Junjie Liu1, Yi Liu39,40, Shamil Maksyutov41, Tsuneo Matsunaga41, Jason McKeever28, Berrien Moore23, Masakatsu Nakajima38, Vijay Natraj1, Robert R. Nelson42, Yosuke Niwa41, Tomohiro Oda4,5, Christopher W. O’Dell6, Leslie Ott5, Prabir Patra43, Steven Pawson5, Vivienne Payne1, Bernard Pinty26, Saroja M. Polavarapu8, Christian Retscher44,
    [Show full text]
  • What Was the Source of the Atmospheric CO2 Increase During the Holocene?
    Biogeosciences, 16, 2543–2555, 2019 https://doi.org/10.5194/bg-16-2543-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. What was the source of the atmospheric CO2 increase during the Holocene? Victor Brovkin1, Stephan Lorenz1, Thomas Raddatz1, Tatiana Ilyina1, Irene Stemmler1, Matthew Toohey2, and Martin Claussen1,3 1Max-Planck Institute for Meteorology, Hamburg, Germany 2GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany 3Meteorological Institute, University of Hamburg, Hamburg, Germany Correspondence: Victor Brovkin ([email protected]) Received: 22 February 2019 – Discussion started: 4 March 2019 Revised: 7 June 2019 – Accepted: 12 June 2019 – Published: 2 July 2019 Abstract. The atmospheric CO2 concentration increased by face alkalinity decrease, for example due to unaccounted for about 20 ppm from 6000 BCE to the pre-industrial period carbonate accumulation processes on shelves, is required for (1850 CE). Several hypotheses have been proposed to ex- consistency with ice-core CO2 data. Consequently, our sim- plain mechanisms of this CO2 growth based on either ocean ulations support the hypothesis that the ocean was a source or land carbon sources. Here, we apply the Earth system of CO2 until the late Holocene when anthropogenic CO2 model MPI-ESM-LR for two transient simulations of climate sources started to affect atmospheric CO2. and carbon cycle dynamics during this period. In the first simulation, atmospheric CO2 is prescribed following ice- core CO2 data. In response to the growing atmospheric CO2 concentration, land carbon storage increases until 2000 BCE, 1 Introduction stagnates afterwards, and decreases from 1 CE, while the ocean continuously takes CO2 out of the atmosphere after The recent interglacial period, the Holocene, began in 4000 BCE.
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • Carbon Cycle the Carbon Cycle Is the Biogeochemical Cycle by Which Carbon Is Exchanged Among the Biosphere, Pedosphere, Geospher
    Carbon Cycle The carbon cycle is the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of the Earth. Carbon is the main component of biological compounds as well as a major component of many minerals such as limestone. Along with the nitrogen cycle and the water cycle, the carbon cycle comprises a sequence of events that are key to make Earth capable of sustaining life. It describes the movement of carbon as it is recycled and reused throughout the biosphere, as well as long-term processes of carbon sequestration to and release from carbon sinks. Carbon sinks in the land and the ocean each currently take up about one-quarter of anthropogenic carbon emissions each year. Following are the major steps involved in the process of the carbon cycle: 1. Carbon present in the atmosphere is absorbed by plants for photosynthesis. 2. These plants are then consumed by animals and carbon gets bioaccumulated into their bodies. 3. These animals and plants eventually die, and upon decomposing, carbon is released back into the atmosphere. 4. Some of the carbon that is not released back into the atmosphere eventually become fossil fuels. 5. These fossil fuels are then used for man-made activities, which pumps more carbon back into the atmosphere. Atmospheric carbon cycle The carbon exchanges between reservoirs occur as the result of various chemical, physical, geological, and biological processes. The ocean contains the largest active pool of carbon near the surface of the Earth.[13] The natural flows of carbon between the atmosphere, ocean, terrestrial ecosystems, and sediments are fairly balanced so that carbon levels would be roughly stable without human influence.[3][14] Carbon in the Earth's atmosphere exists in two main forms: carbon dioxide and methane.
    [Show full text]
  • The Toarcian–Bathonian Succession of the Antsiranana Basin
    Available online at www.sciencedirect.com Journal of African Earth Sciences 51 (2008) 21–38 www.elsevier.com/locate/jafrearsci The Toarcian–Bathonian succession of the Antsiranana Basin (NW Madagascar): Facies analysis and tectono-sedimentary history in the development of the East Africa-Madagascar conjugate margins Mauro Papini *, Marco Benvenuti Dipartimento di Scienze della Terra, Universita` di Firenze, Via G. La Pira 4, 50120 Firenze, Italy Received 6 September 2006; received in revised form 8 November 2007; accepted 14 November 2007 Available online 22 November 2007 Abstract The latest Early to Middle Jurassic succession of the Antsiranana Basin (NW Madagascar) records the complex transition from the con- tinental rifting of Gondwana to the drifting of Madagascar-India from East Africa. The Madagascan Late Paleozoic–Mesozoic successions have been included in several paleogeographic and geodynamic models explaining the evolution of the Gondwana margins. Nevertheless, in some cases, as for the Toarcian–Bathonian deposits of the Antsiranana Basin, no significant stratigraphic revision has been carried out since the early 1970s. New field surveys allow reconsidering the stratigraphic and structural context and the palaeoenvironmental meaning of Toarcian–Bathonian successions occurring in different parts of the basin. These successions rest on the Triassic-Early Jurassic Isalo Sand- stone which records pre-breakup rift events with a dominantly fluvial deposition. This situation is similar to other continental rift basins of Gondwana. After a regional Toarcian transgression the different portions of the Antsiranana Basin were characterized by significantly diversified and coeval depositional environments. The basin can be subdivided in a SW and NE part separated by a NW–SE trending struc- tural high.
    [Show full text]
  • Thallium Isotopes Reveal Protracted Anoxia During the Toarcian (Early Jurassic) Associated with Volcanism, Carbon Burial, and Mass Extinction
    Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction Theodore R. Them IIa,b,c,1, Benjamin C. Gillc, Andrew H. Caruthersd, Angela M. Gerhardtc,e, Darren R. Gröckef, Timothy W. Lyonsg, Selva M. Marroquínc, Sune G. Nielsenh, João P. Trabucho Alexandrei, and Jeremy D. Owensa,b aDepartment of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306; bNational High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310; cDepartment of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061; dDepartment of Geosciences, Western Michigan University, Kalamazoo, MI 49006; eEnervest Operating Company, Houston, TX 77002; fDepartment of Earth Sciences, Durham University, DH1 3LE Durham, United Kingdom; gDepartment of Earth Sciences, University of California, Riverside, CA 92521; hDepartment of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; and iDepartment of Earth Sciences, Universiteit Utrecht, 3508 TC Utrecht, The Netherlands Edited by Donald E. Canfield, Institute of Biology and Nordic Center for Earth Evolution, University of Southern Denmark, Odense M., Denmark, and approved May 16, 2018 (received for review February 28, 2018) For this study, we generated thallium (Tl) isotope records from of these black shales with positive excursions in the marine carbon two anoxic basins to track the earliest changes in global bottom isotope record was subsequently documented (10). These excursions 13 water oxygen contents over the Toarcian Oceanic Anoxic Event (T- have been interpreted to reflect the elevated burial of C-depleted OAE; ∼183 Ma) of the Early Jurassic. The T-OAE, like other Meso- organic carbon during the OAE (e.g., refs.
    [Show full text]
  • In Situ Oceans and Atmosphere (LSCOP)
    A Large-Scale CO2 Observing Plan: In Situ Oceans and Atmosphere (LSCOP) A Report of the In Situ Large-Scale CO2 Observations Working Group Front Cover: Global map of the world. The land colors show the composite NASA SeaWiFS Vegetation Index. The ocean colors show the climatological mean air-sea CO2 fluxes for the virtual year 1995 (after Takahashi et al., 2002). The surrounding pictures show the various sampling platforms and equipment that are used as part of the air and seawater CO2 observing network. The SeaWiFS data were provided courtesy of the NASA SeaWiFS Project Office and ORBIMAGE Corporation. The CO2 flux data were provided by Taro Takahashi of Lamont-Doherty Earth Observatory of Columbia University. The photos were provided by Christopher Sabine, Richard Feely, Britton Stephens, and Pieter Tans. ALarge-ScaleCO2 Observing Plan: In Situ Oceans and Atmosphere (LSCOP) In Situ Large-Scale CO2 Observations Working Group: Bender, M., S. Doney, R.A. Feely, I. Fung, N. Gruber, D.E. Harrison, R. Keeling, J.K. Moore, J. Sarmiento, E. Sarachik, B. Stephens, T. Takahashi, P. Tans, and R. Wanninkhof A contribution to the implementation of the U.S. Carbon Cycle Science Plan April 2002 NOTICE Mention of a commercial company or product does not constitute an endorsement by NOAA/OAR. Use of information from this publication concerning proprietary products or the tests of such products for publicity or advertising purposes is not authorized. For sale by the National Technical Information Service, 5285 Port Royal Road Springfield, VA 22161 ii Contents iii Contents Executive Summary 3 1. ObservationObjectives...................... 4 2.
    [Show full text]
  • 2009 Geologic Time Scale Cenozoic Mesozoic Paleozoic Precambrian Magnetic Magnetic Bdy
    2009 GEOLOGIC TIME SCALE CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST. HIST. ANOM. ANOM. (Ma) CHRON. CHRO HOLOCENE 65.5 1 C1 QUATER- 0.01 30 C30 542 CALABRIAN MAASTRICHTIAN NARY PLEISTOCENE 1.8 31 C31 251 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 70.6 254 2A PIACENZIAN 32 C32 L 630 C2A 3.6 WUCHIAPINGIAN PLIOCENE 260 260 3 ZANCLEAN 33 CAMPANIAN CAPITANIAN 5 C3 5.3 266 750 NEOPRO- CRYOGENIAN 80 C33 M WORDIAN MESSINIAN LATE 268 TEROZOIC 3A C3A 83.5 ROADIAN 7.2 SANTONIAN 271 85.8 KUNGURIAN 850 4 276 C4 CONIACIAN 280 4A 89.3 ARTINSKIAN TONIAN C4A L TORTONIAN 90 284 TURONIAN PERMIAN 10 5 93.5 E 1000 1000 C5 SAKMARIAN 11.6 CENOMANIAN 297 99.6 ASSELIAN STENIAN SERRAVALLIAN 34 C34 299.0 5A 100 300 GZELIAN C5A 13.8 M KASIMOVIAN 304 1200 PENNSYL- 306 1250 15 5B LANGHIAN ALBIAN MOSCOVIAN MESOPRO- C5B VANIAN 312 ECTASIAN 5C 16.0 110 BASHKIRIAN TEROZOIC C5C 112 5D C5D MIOCENE 320 318 1400 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 326 6 C6 APTIAN 20 120 1500 CALYMMIAN E 20.4 6A C6A EARLY MISSIS- M0r 125 VISEAN 1600 6B C6B AQUITANIAN M1 340 SIPPIAN M3 BARREMIAN C6C 23.0 345 6C CRETACEOUS 130 M5 130 STATHERIAN CARBONIFEROUS TOURNAISIAN 7 C7 HAUTERIVIAN 1750 25 7A M10 C7A 136 359 8 C8 L CHATTIAN M12 VALANGINIAN 360 L 1800 140 M14 140 9 C9 M16 FAMENNIAN BERRIASIAN M18 PROTEROZOIC OROSIRIAN 10 C10 28.4 145.5 M20 2000 30 11 C11 TITHONIAN 374 PALEOPRO- 150 M22 2050 12 E RUPELIAN
    [Show full text]