Substantial Vegetation Response to Early Jurassic Global Warming with Impacts on Oceanic Anoxia

Total Page:16

File Type:pdf, Size:1020Kb

Substantial Vegetation Response to Early Jurassic Global Warming with Impacts on Oceanic Anoxia ARTICLES https://doi.org/10.1038/s41561-019-0349-z Substantial vegetation response to Early Jurassic global warming with impacts on oceanic anoxia Sam M. Slater 1*, Richard J. Twitchett2, Silvia Danise3 and Vivi Vajda 1 Rapid global warming and oceanic oxygen deficiency during the Early Jurassic Toarcian Oceanic Anoxic Event at around 183 Ma is associated with a major turnover of marine biota linked to volcanic activity. The impact of the event on land-based eco- systems and the processes that led to oceanic anoxia remain poorly understood. Here we present analyses of spore–pollen assemblages from Pliensbachian–Toarcian rock samples that record marked changes on land during the Toarcian Oceanic Anoxic Event. Vegetation shifted from a high-diversity mixture of conifers, seed ferns, wet-adapted ferns and lycophytes to a low-diversity assemblage dominated by cheirolepid conifers, cycads and Cerebropollenites-producers, which were able to sur- vive in warm, drought-like conditions. Despite the rapid recovery of floras after Toarcian global warming, the overall community composition remained notably different after the event. In shelf seas, eutrophication continued throughout the Toarcian event. This is reflected in the overwhelming dominance of algae, which contributed to reduced oxygen conditions and to a marked decline in dinoflagellates. The substantial initial vegetation response across the Pliensbachian/Toarcian boundary compared with the relatively minor marine response highlights that the impacts of the early stages of volcanogenic global warming were more severe for continental ecosystems than marine ecosystems. he Early Jurassic Toarcian Oceanic Anoxic Event (T-OAE; Land ecosystem impacts ~183 million years ago, Ma) is characterized by a period of The Pliensbachian (pre-T-OAE) vegetation, based on the palynol- rapid global warming (in the region of ~6.5 °C)1, marine ogy of the studied section, was dominated by conifers/seed ferns T 2–5 6–9 mass extinction and oceanic oxygen deficiency , reflected in (represented by bisaccate pollen) alongside abundant wet-adapted the widespread deposition of organic-rich black shales10. The event ferns and lycophytes (club mosses) (Fig. 2). The first marked is also associated with a major negative carbon isotope excursion change in the spore–pollen assemblages (see Supplementary (CIE)11 lasting about 300,000–500,000 yr (refs. 12,13), signifying a Fig. 2 for selected taxa) is recorded across the Pliensbachian/ massive release of isotopically light carbon into the atmosphere. Toarcian boundary, as shown by the non-metric multidimensional Proposed causal mechanisms include elevated CO2 flux driven by scaling ordination (nMDS; Fig. 3), where Pliensbachian samples emplacement of the Karoo–Ferrar large igneous province (LIP) plot at a distance from Toarcian ones indicating a notably different in the Southern Hemisphere, and the release of thermogenic and/ taxonomic composition. Overall richness and diversity dropped at or biogenic methane1,14–21. Efforts to understand the biological the onset of the Toarcian (Fig. 2). Bisaccate pollen, produced by consequences of this event have hitherto primarily focused on conifers and seed ferns, reduced markedly in abundance, mirrored marine ecosystems, and responses include the temporary and/or by an increase in Classopollis and Chasmatosporites, produced by complete disappearance of marine plankton groups (such as dino- cheirolepid conifers and cycads27, respectively (both of which are flagellates)22,23, and widespread extinction among higher trophic warm/dry environmental indicators28). Palynological data from the groups of marine invertebrates2–5,24–26. Few studies have addressed Polish Basin also record a reduction in bisaccate pollen through the effects of the Toarcian event on land-based ecosystems; here the T-OAE interval, suggesting that this may be a widespread sig- we examine the rich fossil archives of spores and pollen (derived nal29. The pre-CIE proliferation of warm-adapted plants and the from land plants) in association with marine plankton to assess the decline of wet-adapted ferns and lycophytes through the Yorkshire impact on terrestrial environments and test links between continen- section suggest that the climate had already substantially warmed tal and marine ecosystem changes. before the CIE (Fig. 4). One of the most complete and well-preserved Pliensbachian– During the CIE, spore–pollen richness and diversity decreased Toarcian sequences is found in Yorkshire, UK11 (Fig. 1, considerably (Fig. 2), signifying substantial losses amongst the ter- Supplementary Fig. 1). The succession was deposited in a marine restrial vegetation and the presence of highly depauperate floral shelf setting, allowing us to directly link the terrestrial vegetation, communities. Throughout this episode, bisaccate pollen-producers represented by abundant wind- and water-transported spores and underwent a second decline in abundance and were replaced by pollen, and marine plankton signals in the same samples. We ana- cheirolepid conifers (Fig. 2). In the latter half of the CIE, we recorded lysed 54 samples taken from an 85 m section spanning the T-OAE. a sudden and prominent abundance peak in Cerebropollenites mac- The dataset comprises 40,014 spore, pollen and marine plank- roverrucosus (Fig. 2, Supplementary Fig. 2), probably produced by an ton occurrences, and 28,141 palynofacies particles (see Methods extinct relative of the extant conifers hemlock (Tsuga)30 or Japanese for details of the palynofacies analysis; raw data are provided in umbrella-pine (Sciadopitys)31. High abundances of Cerebropollenites Supplementary Data 1 and 2). Changes in fossil assemblages are have been recorded from early Toarcian successions of Greenland32, summarized in Fig. 2. suggesting that this was a widespread floral response. Interestingly, 1Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden. 2Department of Earth Sciences, The Natural History Museum, London, UK. 3Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Florence, Italy. *e-mail: [email protected] NATURE GEOSCIENCE | www.nature.com/naturegeoscience ARTICLES NATURE GEOSCIENCE a N 58° N SaltwickBay Study area Kettleness 54° N Staithes Whitby Port Mulgrave 54°30′ N Runswick Bay 1 km 4° W 0° 0°40′ W b Europe Asia North America Tethys South Africa Ocean America Pangaea Australia Antarctica 500 km Fig. 1 | Location of the study area and palaeogeographic maps of the early Toarcian. a, Sample localities from the North Yorkshire coast, UK. b, Palaeogeographic maps of the early Toarcian; the red star marks the study area. Grey areas represent land; blue areas represent seas. Credit: Maps adapted from ref. 24, Geological Society of America; ref. 25, PLOS (a); ref. 43, SpringerNature Ltd (b, global); ref. 60, Elsevier (b, European and global). C. thiergartii, an ancestral or sister species to C. macroverrucosus, event. Samples from the post-CIE part of the Mulgrave Shale is a marker species for the Triassic/Jurassic boundary, where it Member strongly overlap with samples from the CIE interval. This first appears at the CIE peak and maximum atmospheric CO2 lev- indicates that vegetation during the CIE was more similar to post- els in the aftermath of that mass extinction33. The proliferation of CIE floras than pre-CIE floras. When samples are labelled according Cerebropollenites during multiple past hyperthermal events suggests to their lithologies (Supplementary Fig. 3), laminated mudstones that the source plants were adapted to hot, arid climates and/or dis- display some clustering relative to other samples; however, there is turbed settings that would have occurred during these episodes of relatively weak grouping of lithologies in the nMDS plot, suggesting ecological turnover. that temporal shifts in assemblages are not dominantly controlled Following the CIE, floral richness and diversity rebounded rap- by lithology but represent actual changes in parent vegetation. idly (Fig. 2), and Cerebropollenites-producers returned to pre-event abundances, signifying a short-lived (estimated at <250,000 years Marine ecosystem impacts based on the duration of the CIE12,13) but substantial floral response Our sample set, derived from a marine shelf setting, also provides (Figs. 2, 4). Terrestrial vegetation returned to its pre-event richness insights into marine ecosystem changes. Abundances of dinoflagel- and diversity but not to its pre-CIE composition, indicating a turn- late cysts and spiny acritarchs declined markedly at the onset of the over in floral communities. Cupressaceae and Cheirolepidaceae CIE, and were replaced by a substantial increase in sphaeromorphs apparently filled the niches previously occupied by bisaccate (Fig. 2, Supplementary Fig. 2). These sphaeromorphs, which co- pollen-producers before the Toarcian event. Perinopollenites- occur with abundant amorphous organic matter (AOM), are com- producers, which are indicators of wet environments34, gradually parable to the prasinophyte algae Halosphaeropsis liassica, a marker increased in abundance following the CIE, whereas arid-adapted taxon for the T-OAE35. The prasinophyte Tasmanites also increased cycads declined, signifying a return to a more temperate climate in abundance at the onset of the CIE, reflecting an overhaul of the following the event. ‘normal’ marine ecosystem. These shifts in abundance are accom- In the nMDS plot (Fig. 3), samples group according to their panied by a major increase in AOM (Fig.
Recommended publications
  • Climate Change and Human Health: Risks and Responses
    Climate change and human health RISKS AND RESPONSES Editors A.J. McMichael The Australian National University, Canberra, Australia D.H. Campbell-Lendrum London School of Hygiene and Tropical Medicine, London, United Kingdom C.F. Corvalán World Health Organization, Geneva, Switzerland K.L. Ebi World Health Organization Regional Office for Europe, European Centre for Environment and Health, Rome, Italy A.K. Githeko Kenya Medical Research Institute, Kisumu, Kenya J.D. Scheraga US Environmental Protection Agency, Washington, DC, USA A. Woodward University of Otago, Wellington, New Zealand WORLD HEALTH ORGANIZATION GENEVA 2003 WHO Library Cataloguing-in-Publication Data Climate change and human health : risks and responses / editors : A. J. McMichael . [et al.] 1.Climate 2.Greenhouse effect 3.Natural disasters 4.Disease transmission 5.Ultraviolet rays—adverse effects 6.Risk assessment I.McMichael, Anthony J. ISBN 92 4 156248 X (NLM classification: WA 30) ©World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dis- semination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications—whether for sale or for noncommercial distribution—should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • A Model for the Oceanic Mass Balance of Rhenium and Implications for the Extent of Proterozoic Ocean Anoxia
    UC Riverside UC Riverside Previously Published Works Title A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic ocean anoxia Permalink https://escholarship.org/uc/item/1gh1h920 Journal GEOCHIMICA ET COSMOCHIMICA ACTA, 227 ISSN 0016-7037 Authors Sheen, Alex I Kendall, Brian Reinhard, Christopher T et al. Publication Date 2018-04-15 DOI 10.1016/j.gca.2018.01.036 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 227 (2018) 75–95 www.elsevier.com/locate/gca A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic ocean anoxia Alex I. Sheen a,b,⇑, Brian Kendall a, Christopher T. Reinhard c, Robert A. Creaser b, Timothy W. Lyons d, Andrey Bekker d, Simon W. Poulton e, Ariel D. Anbar f,g a Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada b Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada c School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA d Department of Earth Sciences, University of California, Riverside, CA 92521, USA e School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK f School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA g School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA Received 13 July 2017; accepted in revised form 30 January 2018; available online 8 February 2018 Abstract Emerging geochemical evidence suggests that the atmosphere-ocean system underwent a significant decrease in O2 content following the Great Oxidation Event (GOE), leading to a mid-Proterozoic ocean (ca.
    [Show full text]
  • Cascading of Habitat Degradation: Oyster Reefs Invaded by Refugee Fishes Escaping Stress
    Ecological Applications, 11(3), 2001, pp. 764±782 q 2001 by the Ecological Society of America CASCADING OF HABITAT DEGRADATION: OYSTER REEFS INVADED BY REFUGEE FISHES ESCAPING STRESS HUNTER S. LENIHAN,1 CHARLES H. PETERSON,2 JAMES E. BYERS,3 JONATHAN H. GRABOWSKI,2 GORDON W. T HAYER, AND DAVID R. COLBY NOAA-National Ocean Service, Center for Coastal Fisheries and Habitat Research, 101 Pivers Island Road, Beaufort, North Carolina 28516 USA Abstract. Mobile consumers have potential to cause a cascading of habitat degradation beyond the region that is directly stressed, by concentrating in refuges where they intensify biological interactions and can deplete prey resources. We tested this hypothesis on struc- turally complex, species-rich biogenic reefs created by the eastern oyster, Crassostrea virginica, in the Neuse River estuary, North Carolina, USA. We (1) sampled ®shes and invertebrates on natural and restored reefs and on sand bottom to compare ®sh utilization of these different habitats and to characterize the trophic relations among large reef-as- sociated ®shes and benthic invertebrates, and (2) tested whether bottom-water hypoxia and ®shery-caused degradation of reef habitat combine to induce mass emigration of ®sh that then modify community composition in refuges across an estuarine seascape. Experimen- tally restored oyster reefs of two heights (1 m tall ``degraded'' or 2 m tall ``natural'' reefs) were constructed at 3 and 6 m depths. We sampled hydrographic conditions within the estuary over the summer to monitor onset and duration of bottom-water hypoxia/anoxia, a disturbance resulting from density strati®cation and anthropogenic eutrophication. Reduc- tion of reef height caused by oyster dredging exposed the reefs located in deep water to hypoxia/anoxia for .2 wk, killing reef-associated invertebrate prey and forcing mobile ®shes into refuge habitats.
    [Show full text]
  • Son of Perdition Free Download
    SON OF PERDITION FREE DOWNLOAD Wendy Alec | 490 pages | 01 Apr 2010 | Warboys Publishing (Ireland) Limited | 9780956333001 | English | Dublin, Ireland Who Is the Son of Perdition? The unembodied spirits who supported Lucifer in the war in heaven and were cast out Moses and mortals who commit Son of Perdition unpardonable sin against the Holy Ghost will inherit the same condition as Lucifer and Cain, and thus are called "sons of Son of Perdition. Contrasting beliefs. Recently Popular Media x. Verse Only. BLB Searches. So who is he? The bible describes the behavior of one who worships Jesus Christ. The purposes of the Son of Perdition oppose those of Jesus. A verification email has been sent to the address you provided. Blue Letter Bible study tools make reading, Son of Perdition and studying the Bible easy and rewarding. Extinction event Holocene extinction Human extinction List of extinction events Genetic erosion Son of Perdition pollution. Christianity portal. Re-type Password. Even a believer who maintains the faith can become discouraged and lose the peace of the Holy Spirit when he is cut off from the body of Christ. Biblical texts. By proceeding, you consent to our cookie usage. Back Psalms 1. The Son of Perdition is the progeny of abuse and desolation. Sort Canonically. The Millennium. No Number. Advanced Options Exact Match. However, scripture declares that "the soul can never die" Son of Perdition and that in the Resurrection the spirit and the body are united "never to be divided" Alma ; cf. Individual instructors or editors may still require Son of Perdition use of URLs.
    [Show full text]
  • Causes of Sea Level Rise
    FACT SHEET Causes of Sea OUR COASTAL COMMUNITIES AT RISK Level Rise What the Science Tells Us HIGHLIGHTS From the rocky shoreline of Maine to the busy trading port of New Orleans, from Roughly a third of the nation’s population historic Golden Gate Park in San Francisco to the golden sands of Miami Beach, lives in coastal counties. Several million our coasts are an integral part of American life. Where the sea meets land sit some of our most densely populated cities, most popular tourist destinations, bountiful of those live at elevations that could be fisheries, unique natural landscapes, strategic military bases, financial centers, and flooded by rising seas this century, scientific beaches and boardwalks where memories are created. Yet many of these iconic projections show. These cities and towns— places face a growing risk from sea level rise. home to tourist destinations, fisheries, Global sea level is rising—and at an accelerating rate—largely in response to natural landscapes, military bases, financial global warming. The global average rise has been about eight inches since the centers, and beaches and boardwalks— Industrial Revolution. However, many U.S. cities have seen much higher increases in sea level (NOAA 2012a; NOAA 2012b). Portions of the East and Gulf coasts face a growing risk from sea level rise. have faced some of the world’s fastest rates of sea level rise (NOAA 2012b). These trends have contributed to loss of life, billions of dollars in damage to coastal The choices we make today are critical property and infrastructure, massive taxpayer funding for recovery and rebuild- to protecting coastal communities.
    [Show full text]
  • Effects of Natural and Human-Induced Hypoxia on Coastal Benthos
    Biogeosciences, 6, 2063–2098, 2009 www.biogeosciences.net/6/2063/2009/ Biogeosciences © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License. Effects of natural and human-induced hypoxia on coastal benthos L. A. Levin1, W. Ekau2, A. J. Gooday3, F. Jorissen4, J. J. Middelburg5, S. W. A. Naqvi6, C. Neira1, N. N. Rabalais7, and J. Zhang8 1Integrative Oceanography Division, Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093-0218, USA 2Fisheries Biology, Leibniz Zentrum fur¨ Marine Tropenokologie,¨ Leibniz Center for Tropical Marine Ecology, Fahrenheitstr. 6, 28359 Bremen, Germany 3National Oceanography Centre, Southampton, European Way, Southampton SO14 3ZH, UK 4Laboratory of Recent and Fossil Bio-Indicators (BIAF), Angers University, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France 5Faculty of Geosciences, Utrecht University, P.O. Box 80021, 3508 TA Utrecht, The Netherlands 6National Institution of Oceanography, Dona Paula, Goa 403004, India 7Louisiana Universities Marine Consortium, Chauvin, Louisiana 70344, USA 8State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 Zhongshan Road North, Shanghai 200062, China Received: 17 January 2009 – Published in Biogeosciences Discuss.: 3 April 2009 Revised: 21 August 2009 – Accepted: 21 August 2009 – Published: 8 October 2009 Abstract. Coastal hypoxia (defined here as <1.42 ml L−1; Mobile fish and shellfish will migrate away from low-oxygen 62.5 µM; 2 mg L−1, approx. 30% oxygen saturation) devel- areas. Within a species, early life stages may be more subject ops seasonally in many estuaries, fjords, and along open to oxygen stress than older life stages. coasts as a result of natural upwelling or from anthropogenic Hypoxia alters both the structure and function of benthic eutrophication induced by riverine nutrient inputs.
    [Show full text]
  • Chapter 1 Ozone and Climate
    1 Ozone and Climate: A Review of Interconnections Coordinating Lead Authors John Pyle (UK), Theodore Shepherd (Canada) Lead Authors Gregory Bodeker (New Zealand), Pablo Canziani (Argentina), Martin Dameris (Germany), Piers Forster (UK), Aleksandr Gruzdev (Russia), Rolf Müller (Germany), Nzioka John Muthama (Kenya), Giovanni Pitari (Italy), William Randel (USA) Contributing Authors Vitali Fioletov (Canada), Jens-Uwe Grooß (Germany), Stephen Montzka (USA), Paul Newman (USA), Larry Thomason (USA), Guus Velders (The Netherlands) Review Editors Mack McFarland (USA) IPCC Boek (dik).indb 83 15-08-2005 10:52:13 84 IPCC/TEAP Special Report: Safeguarding the Ozone Layer and the Global Climate System Contents EXECUTIVE SUMMARY 85 1.4 Past and future stratospheric ozone changes (attribution and prediction) 110 1.1 Introduction 87 1.4.1 Current understanding of past ozone 1.1.1 Purpose and scope of this chapter 87 changes 110 1.1.2 Ozone in the atmosphere and its role in 1.4.2 The Montreal Protocol, future ozone climate 87 changes and their links to climate 117 1.1.3 Chapter outline 93 1.5 Climate change from ODSs, their substitutes 1.2 Observed changes in the stratosphere 93 and ozone depletion 120 1.2.1 Observed changes in stratospheric ozone 93 1.5.1 Radiative forcing and climate sensitivity 120 1.2.2 Observed changes in ODSs 96 1.5.2 Direct radiative forcing of ODSs and their 1.2.3 Observed changes in stratospheric aerosols, substitutes 121 water vapour, methane and nitrous oxide 96 1.5.3 Indirect radiative forcing of ODSs 123 1.2.4 Observed temperature
    [Show full text]
  • Ecosystems Mario V
    Ecosystems Mario V. Balzan, Abed El Rahman Hassoun, Najet Aroua, Virginie Baldy, Magda Bou Dagher, Cristina Branquinho, Jean-Claude Dutay, Monia El Bour, Frédéric Médail, Meryem Mojtahid, et al. To cite this version: Mario V. Balzan, Abed El Rahman Hassoun, Najet Aroua, Virginie Baldy, Magda Bou Dagher, et al.. Ecosystems. Cramer W, Guiot J, Marini K. Climate and Environmental Change in the Mediterranean Basin -Current Situation and Risks for the Future, Union for the Mediterranean, Plan Bleu, UNEP/MAP, Marseille, France, pp.323-468, 2021, ISBN: 978-2-9577416-0-1. hal-03210122 HAL Id: hal-03210122 https://hal-amu.archives-ouvertes.fr/hal-03210122 Submitted on 28 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Climate and Environmental Change in the Mediterranean Basin – Current Situation and Risks for the Future First Mediterranean Assessment Report (MAR1) Chapter 4 Ecosystems Coordinating Lead Authors: Mario V. Balzan (Malta), Abed El Rahman Hassoun (Lebanon) Lead Authors: Najet Aroua (Algeria), Virginie Baldy (France), Magda Bou Dagher (Lebanon), Cristina Branquinho (Portugal), Jean-Claude Dutay (France), Monia El Bour (Tunisia), Frédéric Médail (France), Meryem Mojtahid (Morocco/France), Alejandra Morán-Ordóñez (Spain), Pier Paolo Roggero (Italy), Sergio Rossi Heras (Italy), Bertrand Schatz (France), Ioannis N.
    [Show full text]
  • Global Climate Coalition Primer on Climate Change Science
    ~ ~ Chairman F.SOHWAB Poraohe TECH-96-29 1st Viae C".lrrn.n C. MAZZA 1/18/96 Hyundal 2nd Vic. Ohalrrnan C. SMITH Toyota P S_cret.ry C. HELFMAN TO: AIAM Technical Committee BMW Treasurer .,J.AMESTOY Mazda FROM: Gregory J. Dana Vice President and Technical Director BMW c ••woo Flat RE: GLOBAL CLIMATE COALITION-(GCC)· Primer on Honda Hyundal Climate Change Science· Final Draft lauzu Kia , Land Rover Enclosed is a primer on global climate change science developed by the Mazda Mlt8ublehl GCC. If any members have any comments on this or other GCC NIB.an documents that are mailed out, please provide me with your comments to Peugeot forward to the GCC. Poreche Renault RolI&-Aoyoe S ••b GJD:ljf ""al'"u .z.ukl Toyota VOlkswagen Volvo President P. HUTOHINSON ASSOCIATION OF INTERNATIONAL AUTOMOBILE MANUFACTURERS. INC. 1001 19TH ST. NORTH. SUITE 1200 • ARLINGTON, VA 22209. TELEPHONE 703.525.7788. FAX 703.525.8817 AIAM-050771 Mobil Oil Corporation ENVIRONMENTAL HEALTH AND SAFETY DEPARTh4ENT P.O. BOX1031 PRINCETON, NEW JERSEY 08543-1031 December 21, 1995 'To; Members ofGCC-STAC Attached is what I hope is the final draft ofthe primer onglobal climate change science we have been working on for the past few months. It has been revised to more directly address recent statements from IPCC Working Group I and to reflect comments from John Kinsman and Howard Feldman. We will be discussing this draft at the January 18th STAC meeting. Ifyou are coming to that meeting, please bring any additional comments on the draft with you. Ifyou have comments but are unable to attend the meeting, please fax them to Eric Holdsworth at the GeC office.
    [Show full text]
  • Uranium Isotope Evidence for Two Episodes of Deoxygenation During Oceanic Anoxic Event 2
    Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2 Matthew O. Clarksona,1,2, Claudine H. Stirlinga, Hugh C. Jenkynsb, Alexander J. Dicksonb,c, Don Porcellib, Christopher M. Moyd, Philip A. E. Pogge von Strandmanne, Ilsa R. Cookea, and Timothy M. Lentonf aDepartment of Chemistry, University of Otago, Dunedin 9054, New Zealand; bDepartment of Earth Sciences, University of Oxford, Oxford OX1 3AN, United Kingdom; cDepartment of Earth Sciences, Royal Holloway University of London, Egham TW20 0EX, United Kingdom; dDepartment of Geology, University of Otago, Dunedin 9054, New Zealand; eLondon Geochemistry and Isotope Centre, Institute of Earth and Planetary Sciences, University College London and Birkbeck, University of London, London WC1E 6BT, United Kingdom; and fEarth System Science, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QE, United Kingdom Edited by Thure E. Cerling, University of Utah, Salt Lake City, UT, and approved January 22, 2018 (received for review August 30, 2017) Oceanic Anoxic Event 2 (OAE 2), occurring ∼94 million years ago, successions in many ocean basins. The preferential burial of iso- was one of the most extreme carbon cycle and climatic perturba- topically light carbon (C) also contributed to a broad positive carbon tions of the Phanerozoic Eon. It was typified by a rapid rise in isotope excursion (CIE) across OAE 2 that is utilized as a global atmospheric CO2, global warming, and marine anoxia, leading to chemostratigraphic marker of the event (1). Silicate weathering and the widespread devastation of marine ecosystems. However, the organic carbon burial are vital components of the global carbon cycle precise timing and extent to which oceanic anoxic conditions ex- and represent important negative feedback mechanisms that se- panded during OAE 2 remains unresolved.
    [Show full text]
  • Earth: Atmospheric Evolution of a Habitable Planet
    Earth: Atmospheric Evolution of a Habitable Planet Stephanie L. Olson1,2*, Edward W. Schwieterman1,2, Christopher T. Reinhard1,3, Timothy W. Lyons1,2 1NASA Astrobiology Institute Alternative Earth’s Team 2Department of Earth Sciences, University of California, Riverside 3School of Earth and Atmospheric Science, Georgia Institute of Technology *Correspondence: [email protected] Table of Contents 1. Introduction ............................................................................................................................ 2 2. Oxygen and biological innovation .................................................................................... 3 2.1. Oxygenic photosynthesis on the early Earth .......................................................... 4 2.2. The Great Oxidation Event ......................................................................................... 6 2.3. Oxygen during Earth’s middle chapter ..................................................................... 7 2.4. Neoproterozoic oxygen dynamics and the rise of animals .................................. 9 2.5. Continued oxygen evolution in the Phanerozoic.................................................. 11 3. Carbon dioxide, climate regulation, and enduring habitability ................................. 12 3.1. The faint young Sun paradox ................................................................................... 12 3.2. The silicate weathering thermostat ......................................................................... 12 3.3. Geological
    [Show full text]
  • Lessons Learned from COVID-19: Insights for Climate Change Mitigation Jackson Bellamy NAADSN Postgraduate Fellow
    December 18, 2020 Lessons Learned from COVID-19: Insights for Climate Change Mitigation Jackson Bellamy NAADSN Postgraduate Fellow Background COVID-19 has had a dramatic impact on our daily lives, forcing us to change our behaviour in the best interest of public health. The global response to COVID-19 has been unified and public health measures imposed by all levels of governments have been effective at slowing the spread of the virus. Governments and the public have trusted expert opinion throughout the pandemic to inform their actions and guide recovery strategies. The COVID-19 pandemic has shown us just how effective collective action can be at tackling a crisis, especially in Canada where public health measures have been incredibly successful. Lessons can be learned from our handling of the COVID-19 crisis which can be applied to climate change. Lesson #1 Collective action can be an incredibly effective force for addressing a crisis and is integral to achieving positive outcomes. Climate change is a global problem that demands a global solution and meaningful collective action that is guided by science (i.e. expert opinion) would be effective at mitigating global climate change. Although the spread of coronavirus differs from climate change in that at a national level countries that manage to effectively address coronavirus benefit greatly from their own policies by reducing the spread and countries that do manage to take effective action on climate change would still be affected by those that don’t (Keohane & Victor, 2016), collective action will achieve a positive outcome in either case. The effectiveness of collective action is demonstrated by the success of governments in addressing coronavirus using this approach.
    [Show full text]