The Ipn Regulates Anxiety Independently of Drug Addiction

Total Page:16

File Type:pdf, Size:1020Kb

The Ipn Regulates Anxiety Independently of Drug Addiction University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2019 The Ipn Regulates Anxiety Independently Of Drug Addiction Ian Alexander Mclaughlin University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Neuroscience and Neurobiology Commons Recommended Citation Mclaughlin, Ian Alexander, "The Ipn Regulates Anxiety Independently Of Drug Addiction" (2019). Publicly Accessible Penn Dissertations. 3600. https://repository.upenn.edu/edissertations/3600 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3600 For more information, please contact [email protected]. The Ipn Regulates Anxiety Independently Of Drug Addiction Abstract ABSTRACT THE INTERPEDUNCULAR NUCLEUS REGULATES ANXIETY Ian A. McLaughlin Dr. Mariella De Biasi This work is devoted to better understanding how a component of one of the principle anatomical intersections of cognitive, emotional, and motivational signaling regulates anxiety and addiction. The majority of my work focused on the interpeduncular nucleus (IPN). The IPN and its principle source of afferent signals, the medial habenula (MHb), comprise a junction of signaling within the diencephalic conduction system (DDC). Along with the medial forebrain bundle, the DDC is a highly conserved pathway by which signals from the limbic forebrain reach the midbrain and hindbrain. Work in our lab and others has implicated the MHb-IPN axis in the aversive affective and somatic withdrawal syndrome that manifests following cessation of chronic exposure to habit-forming drugs, including alcohol, nicotine, and opioids. Given that functional role, I sought to establish if this pathway regulates affect independently of chronic drug exposure. In addition to my primary work, additional experiments I performed contributed to the growing understanding of how this pathway functions within the context of addiction. In particular, I contributed to studies focused on how the presence of the α5 nicotinic acetylcholine receptor subunit (nAChRs) in the IPN and its neighboring structure, the ventral tegmental area (VTA), influences predispositions to alcohol and nicotine addictions in animal models. Using in vivo chemogenetics, viral tracing and receptor subunit rescue, microdialysis, and behavioral analyses, I worked to evaluate how perturbations of signaling within the IPN or VTA affected mouse behavior. Overall, I have found that the IPN does indeed regulate affect independently of chronic drug exposure, and that signaling via the α5 nAChR subunit within both the IPN and VTA significantly regulates drug-taking behavior. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Neuroscience First Advisor Mariella . De Biasi Keywords addiction, anxiety, interpeduncular, serotonin Subject Categories Neuroscience and Neurobiology This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/3600 THE IPN REGULATES ANXIETY INDEPENDENTLY OF DRUG ADDICTION Ian McLaughlin A DISSERTATION in Neuroscience Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2019 Supervisor of Dissertation _________________________ Mariella De Biasi, PhD Associate Professor of Neuroscience in Psychiatry Graduate Group Chairperson _________________________ Joshua I. Gold, PhD. Professor of Neuroscience Dissertation Committee: Seema Bhatnagar, PhD. Associate Professor of Anesthesiology & Critical Care Julie Blendy, PhD. Professor of Pharmacology Irwin Lucki, PhD. Emeritus Professor of Psychology in Psychiatry Rebecca Ashare, PhD, Assistant Professor of Psychology in Psychiatry THE INTERPEDUNCULAR NUCLEUS REGULATES ANXIETY INDEPENDENTLY OF DRUG ADDICTION COPYRIGHT 2019 Ian Alexander McLaughlin This work is licensed under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 License To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/3.0/us/ Dedication page This work is devoted to my parents, without whom I’d never have developed the curiosity to sustain the stamina necessary to keep pushing the following boulder up this hill. To my wife, Bo, whose enthusiasm, brilliance, ambition, humor, and patience have been an example to which I aspire. And to my daughter, Milü, of whom I’ve been dreaming since before I started this work, and whose smiles kept me sane while writing about it. .,,,***************/,,,,,.... ..../#*,,,,,,*******,,,,,,/((#(#######################################(((((( ,*************/***//,***,.. .......... ..,,,,***********************,,,,,*(#########################(((((((((((( ******//////////*///***,,.......... .... ..,,****////////////////****///**,,,****//(/*,,,,,,,,,,,,******/((((((((( ***//*/////////////(*,.,........ ..,,, ...,,***///////////////((//**/((##(#(*****///((((//*******************////// //**/////////*,. ....... .. .,******//////////((((((((((/*//#%#%%##%%#**///((((#((///**********///////////( //////(/. .....,,,,,.. ,*////////(((((((((((((((((((///#%#////(#%&(////((##(((/////******////////////// #(((*. .............. .....,,*((((((//((((((#((((((((((((#(//(%#(#((((##&(///(((##((((////*//*//////////////// /,. ...........,,,*******/**.,*/((##%%%#((((######(((((((((((#((((%&&&&&&@%%%(((((((###(((//////////////////////// . ..........,,,,,,,,,,,,,,,,,.,*((##%%%(*****/(####((((((((((((##(#(%&&&&%&@@&((((((((((((((//////////////////////// ............,,,,,,,,,,,,,,,,,,,.,,*//(##%(,,****//(((((((((((((((######%@@@@@@@#(((((((((((((((//////////////////////// ......,,,,,,,,,,,,,,,,,,,,,,,...,,***/(((.***//////(((///////(((((#####%@@@@@%/((((((((((((((((//////////////////////// ...,,,,,,,,,,,,,,,,,,,,......,,,,**//(((.,**//////(,,*//(((///((((######&@%(((((((((((((((((((//////////////////(//(//( ,,,,,,,,,,,,,,,,,,,.,,,,,..,,****////((.,**//////(//,*//((((//(((((((#######((((((((((((((((///////////////////////(((( ,,,,,,,,,,,,,,,,...,,,,..,***///////(((.,**//////(/,**/////((((((((((((((((((////////(/(/////////////////////(((((((((( ,.,,,,,,,,,,,,..,,,,,,..**/////////((#,*////(((((..,*//((((((((((((((((((////////////////////////((/(((/((((((((((((((( ,,,,,,,,,,,,..,,,,,**,,*///(((((((((##*/((((####,,*//(((((((((((((((((((/////////////(((((((((((((((((((((((((((((((((( ,,,,,,,,,,,.,,,,,/##*,/((((((((((#####/((((####//((##############(((((((((((((((((((((((((((((((((((((((((((((((((((((( ,,,,,,,,,,,,,,,*(##/*/((((((####(###%/(((/((((((((###%%%%%%%%#########((((((((((((((((((((((((((((((((((((((((((((((((( ,,,,,,*,,,,,,,*(##(//((#############%(((((#####%%(##%%%%%%%%%%%%%########################(((((((((((((((((((((((((((((( ,,,*****,,,,,*/##((/((#############%%(#######%%%%&(#%%%%%%%%%%%%%%%%%%%%%%%%%#####################(#(((#((((((((((((((( ,******,,,*,**####(/((###########%%%&((###%%%%%%&&(#%%&&&&&%%%%%%%%%%%%%%%%%%%%%%#%#############################((#(((( *******,,,***/%####((######%%%%%%%%%%###%%%%%%%&%(#%%%%&&&&&%%%%%%%%&&&&%%%%%%%%%%%%%%%%############################### *************/%####(###%%%%%%%%%%%%&#%%%%%%%%&%%%%%&&&&%%%%%%%%%&&%%&&%%%%%%%%%%%%%%%%############################# *****/*******/#%####(#%%%%%%%%%%%%&&#%%%%%%%%%&&&&&&&&&&%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%########################### ****///*****//(%%%%%%#%%%%%%%%%%%%&&%%%%%%%%%%%&&&&&&%%%%%%%%%%%%%%#%%###%#%%%%%%%%%%%%%%%%########################## ***/////***////%%%%%%%#%%%%%%%%%%%&&%%%%%%%%%%%%%%%%%#%%%%%%%%%%%%#%@@&%&%#####%%%%%%%%%%%########################### /////////*/////(%%%%%%%#%%%%%%%%%%%&%%%%%%%%%%%#########%%%%%%%%%##%&%&&&&%%####%%%%%%%%%%%%%%####################### ////////////////(%%%%%%%#%%%%%%%%%%%%#%%%%%###(((((((#####%#####%%###&@@@@@@@&##%%%%&&&%%%%%%%%%%########%########### /////////(///////(%%%%%%#########(########(//////(((###########%%%##%@&&&@&&@@&##%%%%&&&&%%%%%%%%%##%%%%%%%########## (((((((((/((////(((#%%%%%(((/////((((((////////((((###########%%%%%#%@@@@@&@@@&&%##%%%&&&&&%%%%%%%%%%%%%%%%%%%%%%##%### ###((((((((((////(((#%%%((((//////////////((((#############%%&%%%%&@@@@@@@@@&&&%#%%%%&&&&&%%%%%%%%%%%%%%%%%%%%%%%%%## #####(((((((((((((((((%&&%((((((((//////((((((###############%%&%%%%&@@@@@@@@@&&&%%%%%%&&&&&%%%%%%%%%%%%%%%%%%%%%%%%%%% %###((((((((((((((((((##&#####(((((((((##############%####%%%%%%%%&&@@@@@@@&&&&%%%%%&&&&&&&%%%%%%%%%%%%%%%%%%%%%%%%%% %###((((((((((((#(((((###%#######(########%%%%%%%%%%%#%##%%%%%%%%%%&&&&@@@@@&&%%%%%%&&&&&&&&%%%%%%%%%%%%%%%%%%%%%%%%% %#####(((((((((((##(((#####%#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&&&@@@@@&&%%%%%%&&&&&&&&&&%%%%%%%%%%%%%%%%%%%%%%%% %%######(((((((((##########%##%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&@@@@&&&&%%&&%&&&&&&&&&&&&%&%%%%%%%%%%%%%%%%%%%%% &%%%#######(##(###########%%%#%%%%%%%%%&&%%&%%&%%%%%%%%%%%%%%%%%%%%%%%&@@&&&&%%%&&&&&&&&&&&&&&&&&&%%%%%%%%%%%%%%%%%%%%% &&%%%%#####################%%%%%%%%%%&&&&&&&&&&&&&&%%%%%%%%%%%%%%%%%%&&&&&&%%&&&&&&&&&&&&&&&&&&&&&&%%%&%%%%%%%%%%%%%%%% &&&&%%#%##################((##%%%%&&&&&&&&&&&&&&&&&&&&%%%%&%%%%%%%%%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&%%%%%%%%&%%%%%%% %&%%##(##########(((((((##%%%%%%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&%%%%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&%%%%%%%% %%%%#%%%###(((((######%%%%%%%%%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&%&%&&%%%%% %&&%%%%##############%%%%%%%%%&&&@@&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&%%% ##%@%%&&%%%%####%%%%%%%%%%%%&&&&@@&%%%%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&%&&& %%%%%@&%%%%%%%%%%%%%%%%%%%&&&&&@@@%%%%%%%%%%%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0190743 A1 Bain Et Al
    US 2012O190743A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0190743 A1 Bain et al. (43) Pub. Date: Jul. 26, 2012 (54) COMPOUNDS FOR TREATING DISORDERS Publication Classification OR DISEASES ASSOCATED WITH (51) Int. Cl NEUROKININ 2 RECEPTORACTIVITY A6II 3L/23 (2006.01) (75) Inventors: Jerald Bain, Toronto (CA); Joel CD7C 69/30 (2006.01) Sadavoy, Toronto (CA); Hao Chen, 39t. ii; C Columbia, MD (US); Xiaoyu Shen, ( .01) Columbia, MD (US) A6IPI/00 (2006.01) s A6IP 29/00 (2006.01) (73) Assignee: UNITED PARAGON A6IP II/00 (2006.01) ASSOCIATES INC., Guelph, ON A6IPI3/10 (2006.01) (CA) A6IP 5/00 (2006.01) A6IP 25/00 (2006.01) (21) Appl. No.: 13/394,067 A6IP 25/30 (2006.01) A6IP5/00 (2006.01) (22) PCT Filed: Sep. 7, 2010 A6IP3/00 (2006.01) CI2N 5/071 (2010.01) (86). PCT No.: PCT/US 10/48OO6 CD7C 69/33 (2006.01) S371 (c)(1) (52) U.S. Cl. .......................... 514/552; 554/227; 435/375 (2), (4) Date: Apr. 12, 2012 (57) ABSTRACT Related U.S. Application Data Compounds, pharmaceutical compositions and methods of (60) Provisional application No. 61/240,014, filed on Sep. treating a disorder or disease associated with neurokinin 2 4, 2009. (NK) receptor activity. Patent Application Publication Jul. 26, 2012 Sheet 1 of 12 US 2012/O190743 A1 LU 1750 15OO 1250 OOO 750 500 250 O O 20 3O 40 min SampleName: EM2OO617 Patent Application Publication Jul. 26, 2012 Sheet 2 of 12 US 2012/O190743 A1 kixto CFUgan <tro CFUgan FIG.2 Patent Application Publication Jul.
    [Show full text]
  • WO 2015/072852 Al 21 May 2015 (21.05.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/072852 Al 21 May 2015 (21.05.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 36/84 (2006.01) A61K 31/5513 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/045 (2006.01) A61P 31/22 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 31/522 (2006.01) A61K 45/06 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/NL20 14/050780 KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (22) International Filing Date: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 13 November 2014 (13.1 1.2014) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 61/903,430 13 November 2013 (13. 11.2013) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: RJG DEVELOPMENTS B.V.
    [Show full text]
  • Lmmunohistochemical Localization of Neuronal Nicotinic Receptors in the Rodent Central Nervous System
    The Journal of Neuroscience, October 1987, 7(10): 3334-3342 lmmunohistochemical Localization of Neuronal Nicotinic Receptors in the Rodent Central Nervous System L. W. Swanson,1v2 D. M. Simmons, I12 P. J. Whiting,’ and J. Lindstrom’ ‘The Salk Institute for Biological Studies, and 2Howard Hughes Medical Institute, La Jolla, California 92037 The distribution of nicotinic acetylcholine receptors (AChR) are structurally unrelated (Kubo et al., 1986a, b) to nicotinic in the rat and mouse central nervous system has been ACh receptors (AChR, Noda et al., 1983a, b), which act by mapped in detail using monoclonal antibodies to receptors regulating directly the opening of a cation channel that is an purified from chicken and rat brain. Initial studies in the intrinsic component of the molecule. Furthermore, subtypes of chicken brain indicate that different neuronal AChRs are con- neuronal AChRs have been identified on the basis of pharma- tained in axonal projections to the optic lobe in the midbrain cological and structural properties (Whiting et al., 1987a). To from neurons in the lateral spiriform nucleus and from retinal understand the functional significanceof ACh in a particular ganglion cells. Monoclonal antibodies to the chicken and rat neural system, it is therefore necessaryto establishthe cellular brain AChRs also label apparently identical regions in all localization of ACh, and the cellular localization and type of major subdivisions of the central nervous system of rats and cholinergic receptor with which it interacts. Immunohistochem- mice, and this pattern is very similar to previous reports of istry provides a sensitive method for localizing cholinergic neu- 3H-nicotine binding, but quite different from that of a-bun- rons with antibodies to the synthetic enzyme choline acetyl- garotoxin binding.
    [Show full text]
  • Retrograde Inhibition by a Specific Subset of Interpeduncular Α5 Nicotinic Neurons Regulates Nicotine Preference
    Retrograde inhibition by a specific subset of interpeduncular α5 nicotinic neurons regulates nicotine preference Jessica L. Ablesa,b,c, Andreas Görlicha,1, Beatriz Antolin-Fontesa,2,CuidongWanga, Sylvia M. Lipforda, Michael H. Riada, Jing Rend,e,3,FeiHud,e,4,MinminLuod,e,PaulJ.Kennyc, Nathaniel Heintza,f,5, and Ines Ibañez-Tallona,5 aLaboratory of Molecular Biology, The Rockefeller University, New York, NY 10065; bDepartment of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029; cDepartment of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029; dNational Institute of Biological Sciences, Beijing 102206, China; eSchool of Life Sciences, Tsinghua University, Beijing 100084, China; and fHoward Hughes Medical Institute, The Rockefeller University, New York, NY 10065 Contributed by Nathaniel Heintz, October 23, 2017 (sent for review October 5, 2017; reviewed by Jean-Pierre Changeux and Lorna W. Role) Repeated exposure to drugs of abuse can produce adaptive changes nicotine withdrawal, and optical activation of IPN GABAergic cells that lead to the establishment of dependence. It has been shown that is sufficient to produce a withdrawal syndrome, while blockade of allelic variation in the α5 nicotinic acetylcholine receptor (nAChR) gene GABAergic cells in the IPN reduced symptoms of withdrawal (17). CHRNA5 is associated with higher risk of tobacco dependence. In the Taken together these studies highlight the critical role of α5in brain, α5-containing nAChRs are expressed at very high levels in the regulating behavioral responses to nicotine. Here we characterize two subpopulations of GABAergic interpeduncular nucleus (IPN). Here we identified two nonoverlapping Amigo1 Epyc α + α Amigo1 α Epyc neurons in the IPN that express α5: α5- and α5- neu- 5 cell populations ( 5- and 5- ) in mouse IPN that respond α Amigo1 α Epyc differentially to nicotine.
    [Show full text]
  • Selective Blockade of NK2 Or NK3 Receptors Produces Anxiolytic- and Antidepressant-Like Effects in Gerbils ⁎ N
    Pharmacology, Biochemistry and Behavior 83 (2006) 533–539 www.elsevier.com/locate/pharmbiochembeh Selective blockade of NK2 or NK3 receptors produces anxiolytic- and antidepressant-like effects in gerbils ⁎ N. Salomé, J. Stemmelin, C. Cohen , G. Griebel Sanofi-Aventis, Department of Psychopharmacology, 31 av Paul Vaillant-Couturier, 92220 Bagneux, France Received 17 October 2005; received in revised form 1 March 2006; accepted 9 March 2006 Available online 19 April 2006 Abstract There is a growing interest in the potential anxiolytic- and antidepressant-like effects of compounds that target neurokinin receptors. Since the structure and the pharmacology of the human neurokinin receptor resembles that of gerbils, rather than that of mice or rats, we decided to investigate the anxiolytic- and /or antidepressant-like effects of NK1 (SSR240600), NK2 (saredutant) and NK3 (osanetant) receptor antagonists in gerbils. It was found that saredutant (3–10 mg/kg, p.o.) and osanetant (3–10 mg/kg, p.o.) produced anxiolytic-like effects in the gerbil social interaction test. These effects were similar to those obtained with the V1b receptor antagonist SSR149415 (3–10 mg/kg, p.o.), diazepam (1 mg/kg, p.o.) and buspirone (10 mg/kg, p.o.). Fluoxetine and SSR240600 were devoid of effects in this test. In the tonic immobility test in gerbils, saredutant (5–10 mg/kg, i.p.) and osanetant (5–10 mg/kg, i.p.) produced similar effects to those observed with fluoxetine (7.5–15 mg/kg, i.p.), SSR149415 (10–30 mg/kg, p.o.) and buspirone (3 mg/kg, i.p.). Diazepam and SSR240600 were inactive in this paradigm.
    [Show full text]
  • Nicotine Aversion Is Mediated by Gabaergic Interpeduncular Nucleus Inputs to Laterodorsal Tegmentum
    ARTICLE DOI: 10.1038/s41467-018-04654-2 OPEN Nicotine aversion is mediated by GABAergic interpeduncular nucleus inputs to laterodorsal tegmentum Shannon L. Wolfman1, Daniel F. Gill1, Fili Bogdanic2, Katie Long3, Ream Al-Hasani4, Jordan G. McCall4,5,6, Michael R. Bruchas5,6 & Daniel S. McGehee1,2 1234567890():,; Nicotine use can lead to dependence through complex processes that are regulated by both its rewarding and aversive effects. Recent studies show that aversive nicotine doses activate excitatory inputs to the interpeduncular nucleus (IPN) from the medial habenula (MHb), but the downstream targets of the IPN that mediate aversion are unknown. Here we show that IPN projections to the laterodorsal tegmentum (LDTg) are GABAergic using optoge- netics in tissue slices from mouse brain. Selective stimulation of these IPN axon terminals in LDTg in vivo elicits avoidance behavior, suggesting that these projections contribute to aversion. Nicotine modulates these synapses in a concentration-dependent manner, with strong enhancement only seen at higher concentrations that elicit aversive responses in behavioral tests. Optogenetic inhibition of the IPN–LDTg connection blocks nicotine condi- tioned place aversion, suggesting that the IPN–LDTg connection is a critical part of the circuitry that mediates the aversive effects of nicotine. 1 Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA. 2 Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA. 3 Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL 60637, USA. 4 St. Louis College of Pharmacy, Center for Clinical Pharmacology and Division of Basic Research of the Department of Anesthesiology, Washington University School of Medicine, St.
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • Chrna5-Expressing Neurons in the Interpeduncular Nucleus Mediate Aversion Primed by Prior Stimulation Or Nicotine Exposure
    6900 • The Journal of Neuroscience, August 1, 2018 • 38(31):6900–6920 Systems/Circuits Chrna5-Expressing Neurons in the Interpeduncular Nucleus Mediate Aversion Primed by Prior Stimulation or Nicotine Exposure X Glenn Morton,1 Nailyam Nasirova,1 Daniel W. Sparks,3 Matthew Brodsky,1 Sanghavy Sivakumaran,3 X Evelyn K. Lambe,3,4,5 and XEric E. Turner1,2 1Center for Integrative Brain Research, Seattle Children’s Research Institute, 2Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98101, 3Department of Physiology, 4Department of Obstetrics and Gynecology, and 5Department of Psychiatry, University of Toronto, Toronto, Ontario M5S 1A8, Canada Genetic studies have shown an association between smoking and variation at the CHRNA5/A3/B4 gene locus encoding the ␣5, ␣3, and ␤4 nicotinic receptor subunits. The ␣5 receptor has been specifically implicated because smoking-associated haplotypes contain a coding variant in the CHRNA5 gene. The Chrna5/a3/b4 locus is conserved in rodents and the restricted expression of these subunits suggests neural pathways through which the reinforcing and aversive properties of nicotine may be mediated. Here, we show that, in the interpe- duncular nucleus (IP), the site of the highest Chrna5 mRNA expression in rodents, electrophysiological responses to nicotinic acetylcho- line receptor stimulation are markedly reduced in ␣5-null mice. IP neurons differ markedly from their upstream ventral medial habenula cholinergic partners, which appear unaltered by loss of ␣5. To probe the functional role of ␣5-containing IP neurons, we used BAC recombineering to generate transgenic mice expressing Cre-recombinase from the Chrna5 locus. Reporter expression driven by Chrna5 Cre demonstrates that transcription of Chrna5 is regulated independently from the Chrna3/b4 genes transcribed on the opposite strand.
    [Show full text]
  • Antidepressant Potential of Nitrogen-Containing Heterocyclic Moieties: an Updated Review
    Review Article Antidepressant potential of nitrogen-containing heterocyclic moieties: An updated review Nadeem Siddiqui, Andalip, Sandhya Bawa, Ruhi Ali, Obaid Afzal, M. Jawaid Akhtar, Bishmillah Azad, Rajiv Kumar Department of ABSTRACT Pharmaceutical Chemistry, Depression is currently the fourth leading cause of disease or disability worldwide. Antidepressant is Faculty of Pharmacy, Jamia Hamdard approved for the treatment of major depression (including paediatric depression), obsessive-compulsive University, Hamdard disorder (in both adult and paediatric populations), bulimia nervosa, panic disorder and premenstrual Nagar, New Delhi - dysphoric disorder. Antidepressant is a psychiatric medication used to alleviate mood disorders, such as 110 062, India major depression and dysthymia and anxiety disorders such as social anxiety disorder. Many drugs produce an antidepressant effect, but restrictions on their use have caused controversy and off-label prescription a Address for correspondence: risk, despite claims of superior efficacy. Our current understanding of its pathogenesis is limited and existing Dr. Sandhya Bawa, E-mail: sandhyabawa761@ treatments are inadequate, providing relief to only a subset of people suffering from depression. Reviews of yahoo.com literature suggest that heterocyclic moieties and their derivatives has proven success in treating depression. Received : 08-02-11 Review completed : 15-02-11 Accepted : 17-02-11 KEY WORDS: Antidepressant, depression, heterocyclic epression is a chronic, recurring and potentially life- monoamine oxidase inhibitors (MAOIs, e.g. Nardil®) tricyclic D threatening illness that affects up to 20% of the population antidepressants (TCAs, e.g. Elavil). They increases the synaptic across the globe.[1] The etiology of the disease is suboptimal concentration of either two (5-HT and NE) or all three (5-HT, concentrations of the monoamine neurotransmitters serotonin NE and dopamine (DA)) neurotransmitters.
    [Show full text]
  • Additional Evidence for Anxiolytic- and Antidepressant-Like Activities of Saredutant (SR48968), an Antagonist at the Neurokinin
    Available online at www.sciencedirect.com Pharmacology, Biochemistry and Behavior 89 (2008) 36–45 www.elsevier.com/locate/pharmbiochembeh Additional evidence for anxiolytic- and antidepressant-like activities of saredutant (SR48968), an antagonist at the neurokinin-2 receptor in various rodent-models ⁎ Caroline Louis, Jeanne Stemmelin, Denis Boulay, Olivier Bergis, Caroline Cohen, Guy Griebel Sanofi-Aventis Research & Development, Psychopharmacology Department, 31 Avenue Paul Vaillant-Couturier, 92220 Bagneux, France Received 12 August 2007; received in revised form 23 October 2007; accepted 30 October 2007 Available online 5 November 2007 Abstract Central tachykinins have been shown to play a role in the modulation of stress-related behaviours. Saredutant, a tachykinin NK2 receptor antagonist, displayed mixed anxiolytic- and antidepressant-like activities in rodents. The present study aimed at further characterizing its psychotropic properties. Saredutant was tested in the rat social interaction test to further confirm its anxiolytic-like activity, and in a variety of behavioural models sensitive to antidepressant drugs. In the rat social interaction test, saredutant (20 mg/kg, i.p.) significantly increased the time spent in interaction, as did the prototypical anxiolytic agents, diazepam (1 mg/kg, i.p.) and buspirone (1 mg/kg, s.c.), but not the antidepressant, fluoxetine. In a differential reinforcement of low rate-72s task, saredutant (3 mg/kg, i.p.) displayed an antidepressant-like activity by increasing reinforced response rate and percentage of responses emitted in the inter-response time bin [49–96 s]. In bulbectomized rats, saredutant (20 mg/kg, i.p.) restored the deficit of acquisition of passive avoidance. In rat pups separated from their mother, saredutant (3–10 mg/kg, s.c.) reduced ultrasonic distress calls.
    [Show full text]
  • Cholesterol Synthetic Enzymein Rabbit Nervous System By
    Proc. Nati. Acad. Sci. USA Vol. 85, pp. 9821-9825, December 1988 Neurobiology Localization of mRNA for low density lipoprotein receptor and a cholesterol synthetic enzyme in rabbit nervous system by in situ hybridization (3-hydroxy-3-methylglutaryl-coenzyme A synthase/apoprotein E/myelination/Watanabe heritable-hyperlipidemic rabbit) LARRY W. SWANSON*, DONNA M. SIMMONS*, SANDRA L. HOFMANNt, JOSEPH L. GOLDSTEINt, AND MICHAEL S. BROWNt *The Salk Institute for Biological Studies and Howard Hughes Medical Institute, La Jolla, CA 92037; and tDepartments of Molecular Genetics and Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235 Contributed by Joseph L. Goldstein, September 15, 1988 ABSTRACT The low density lipoprotein receptor and one macrophages. Thus, apoE and the LDL receptor play a role of its ligands, apoprotein E, are known to be synthesized in the in the healing of peripheral nerves. central nervous system. In the current study, we used in situ A role for apoE in the central nervous system (CNS) was hybridization to localize the receptor mRNA in selected neu- demonstrated by Boyles et al. (5), who showed by immuno- rons and glia throughout the nervous system of 9-day-old cytochemistry that astrocytes produce apoE. This finding rabbits. Particularly high levels were found in sensory ganglia, stimulated a search for LDL receptors in the brain. Hofmann sensory nuclei, and motor-related nuclei. The same regions et al. (7), using RNA blotting to measure LDL receptor contained high levels of mRNA for 3-hydroxy-3-methylglu- mRNA, and Pitas et al. (8), using immunocytochemistry, taryl-coenzyme A synthase, a regulated enzyme in cholesterol identified LDL receptors in rabbit, bovine, rat, and monkey biosynthesis.
    [Show full text]
  • The Accessory Optic System: Basic Organization with an Update on Connectivity, Neurochemistry, and Function
    UC Irvine UC Irvine Previously Published Works Title The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function. Permalink https://escholarship.org/uc/item/3v25z604 Journal Progress in brain research, 151 ISSN 0079-6123 Authors Giolli, Roland A Blanks, Robert H I Lui, Fausta Publication Date 2005 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Chapter 13 The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function Roland A. Giolli1, , , Robert H.I. Blanks1, 2 and Fausta Lui3 1Department of Anatomy and Neurobiology, University of California, College of Medicine, Irvine, CA 92697, USA 2Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd., P.O. Box 3091, Boca Raton, FL 33431, USA 3Dipartimento di Scienze Biomediche, Sezione di Fisiologia, Universita di Modena e Reggio Emilia, Via Campi 287, 41100, Modena, Italy Available online 10 October 2005. Abstract The accessory optic system (AOS) is formed by a series of terminal nuclei receiving direct visual information from the retina via one or more accessory optic tracts. In addition to the retinal input, derived from ganglion cells that characteristically have large receptive fields, are direction-selective, and have a preference for slow moving stimuli, there are now well-characterized afferent connections with a key pretectal nucleus (nucleus of the optic tract) and the ventral lateral geniculate nucleus. The efferent connections of the AOS are robust, targeting brainstem and other structures in support of visual-oculomotor events such as optokinetic nystagmus and visual–vestibular interaction. This chapter reviews the newer experimental findings while including older data concerning the structural and functional organization of the AOS.
    [Show full text]