bioRxiv preprint doi: https://doi.org/10.1101/616920; this version posted June 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 An alanine permease mutation or exposure to D-cycloserine increases the susceptibility of 2 MRSA to -lactam antibiotics 3 4 Laura A. Gallagher1, Rebecca K. Shears2, Claire Fingleton1, Laura Alvarez3, Elaine M. 5 Waters1,2, Jenny Clarke2, Laura Bricio-Moreno2, Christopher Campbell1, Akhilesh K. Yadav3, 6 Fareha Razvi4, Eoghan O'Neill5, Alex J. O’Neill6, Felipe Cava3, Paul D. Fey4, Aras Kadioglu2 and 7 James P. O’Gara1* 8 9 1School of Natural Sciences, National University of Ireland, Galway, Ireland. 10 2Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and 11 Global Health, University of Liverpool, UK. 12 3MIMS-Molecular Infection Medicine Sweden, Molecular Biology Department, Umeå 13 University, Umeå, Sweden. 14 4Department of Pathology and Microbiology, University of Nebraska Medical Center, 15 Omaha, Nebraska, USA. 16 5Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Connolly 17 Hospital, Dublin 15, Ireland. 18 6Antimicrobial Research Centre, School of Molecular and Cellular Biology, Faculty of 19 Biological Sciences, University of Leeds, Leeds, UK. 20 21 22 23 *Correspondence:
[email protected] 24 25 Running title: Re-sensitization of AMR pathogens to -lactams 26 27 1 bioRxiv preprint doi: https://doi.org/10.1101/616920; this version posted June 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.