Clinical and Ecoepidemiological Situation of Human Arboviruses in Brazilian Amazonia

Total Page:16

File Type:pdf, Size:1020Kb

Clinical and Ecoepidemiological Situation of Human Arboviruses in Brazilian Amazonia ................ECO 92: Pu6licHedthInThAmazm. ............... Clinical and ecoepidemiological situation of human arboviruses in Brazilian Amazonia PEDROE C. VASCONCELOS',MLM P. A. TRAVASSOSDA ROSA', NICOLASDÉGALLIER~, JORGE E S. TRAVASSOSDA ROSA', FRANCISCOP. PDIHEIRO~ 'Centro Colaborador lnvestigaçäo e Adestrnriieiito em Arbovisoses da Orgariizaçüo Murzdial da Saúde, Seiviço de Arbovír*us,Iiistituto Evaiidro Chagas, Fundaçü0 Nacional de Sadde, Ministério da Saúde, Belém, PA 66065, Brazil, =ORSTOM,Iiistituto Evaridro Chagas, Belérii, PA 66065, Brazil arid 3PariAmericari Health Organizatiori, Wasliiiigtoii DC 20037-2895, USA The main aspects of clinic manifestations and epidemiological data about human arboviruses in the Brazilian Amazonian region is reviewed. Thirty four types of arboviruses from 183 types iso- lated in the Amazonia have been associated with human diseases. Four of them are important in public health and are involved with epidemics; they are namely, Dengue (DEN), Mayaro (MAY), Oropouche (ORO) and Yellow Fever (YF) viruses. ORO and DEN are associated with human epidemic diseases in urban areas while MAY and YF in rural areas. Basically, ORO causes a fe- brile disease, sometimes accompanied with aseptic meningitis. MAY and DEN are associated with rash febrile disease, while YF determines hemorrhagic fever. Thirty other arboviruses are involved with febrile illnesses in a few and sporadic cases. All arboviruses (apart from DEN) are maintained within a sylvatic cycle in the forest, where several species of hemathophagous insects act as vectors and wild vertebrates are involved as hosts. DEN has a cycle where the Aedes aegypti mosquito is the vector and man is the host. With the exception of the four viruses associated with epidemics which determine great economical and social impacts, including death (as in the case of YF), the real involvement of these viruses as systematic agents of human disease is unknown. Further stud- ies are needed to clarify unclear aspects of the epidemiological cycles of these viruses. Os principais aspectos clhicos e ecoepideniioldgicos das arboviroses outros arbovirus téni sido associados a doença febril benigna, eni associadas coni doeriça liuniana lia Aniaiônia brasileira sdo revistos. poucos e esporádicos casos. Afora o DEN, todos os arbovirus Triti fa e quatro arbovirus dentre OS f 83 tipos até o nionieiito isolados envol~*idosconi doença Iianiaiia na Aniazônia brasileira sä0 niaritidos na Aniazôiiia téni sido bicriniinados coni doença liuniana. Desses, 4 através de uni ciclo silwstre desenvolvido na floresta, onde diversas sä0 impor tan tes eni ternios de saúde pública pois estdo associados espécies de iiisetos heniatófagos e vertebrados silvestres atuani conio coni epidemias; sä0 os vírus Dengue (DEN), Mayaro (MAY), Oro- vetores e hospedeiros, respectivaniente. O vírus DEN teni uni ciclo pouche (ORO) e Febre Amarela (FA). DEN e ORO estä0 associados itrbano eni que o mosquito Aedes aegypli é o vetor e o lionieni ama coni doença liuniana epidéniica eni áreas urbanas enquanto MAY e FA coiiio Iiospedeiro. Excetuando os quatro his associados a epideniias eni áreas predoniiriantenieiire rurais. Basicanierite, o ~frusORO que causani uni grande inipacto socio-econômico, inclusive levando a deterniina uni quadro febril algunias vezes acompanhado coni niorte (no caso particular da FA), o verdadeiro papel desses vírus nieiiingite asséptica. MAY e DEN são responsáveis por quadros febris conio agentes sistenidticos de doença humana é desconliecido. NOVOS exantenidticos, enquanto o vírus FA deterniiria, iia sua apresentação estudos sdo iiecessários para esclarecer aspectos ainda obscuros dos clássica, unia siri tonratologia ripica de febre hemorrdnica. Trinta ciclos epideniioldnicos da maioria desses arbovirus. he arboviruses constitute an ecological group of vi- However, the number of types causing human diseases is ruses some types of their representing a very impor- low. Thus, of .over 200 distinct serotypes isolated in Brazil, T tant public health problem, worldwide. Very often, a few more than 30 have actually determined human dis- A arboviruses have been responsible for large epidem- ease. A small number has been incriminated as causative ics with serious impacts on human and veterinary health. agents of epidemics. On the other hand, despite the low In Brazil, the arboviruses are spread in several regions. number of epidemic arboviruses, the social and economical impacts of these outbreaks are important. Correspondence to: Pedro Femando da Costa Vasconcelos, Av. Almirante Moreover, up to the present, in Brazilian Amazonia, Barroso, 492, Caixa Postal 1128, Beltm, PA 66065, Brasil 183 distinct arboviruses have been isolated up to the end of Volume 44(2/3) March/June 1992 Ci&nciae Cultura (Journal of the Brazilian Association for lhe Advancement of Science) 117 ORSTOH Fonds Documentaire .....e.......... ECO 92: Pu6li Hedth In ThAmon, . , . 1991 (1). Of these, 34 have been associated, with human to June). Indeed, three outbreaks have been recorded in infections, on the basis of virus isolation or antibody detec- Belém during the last 30 years. The first, in 1961, (3), the tion. Twenty-seven of them, are members of 3 genus: second in 1968-1969 (4) and the third in 1979-1980, with Alphavirus, Bunyavirus and Flavivirw, and only 7 from several other localities also involved (5). Until 1980, all other genera. With few exceptions, all the virus isolations epidemics reported in Brazil had occurred in Pará State. have been obtained from individuals infected in nature. From the end of 1980 to the first quarter of 1981, a large Three agents, however, have to date been isolated from epidemic was reported in Manaus, Amazonas State. This people who had undergone a laboratory infection (Table 1). outbreak was also extended to Barcelos county. A third epi- On the other hand, only four arboviral diseases are consid- demic was registered beyond the limits of Pará State, in ered presently to be important to public health in Ama- Mazaglo, a rural locality of Amapií State (6). In 1988, new zonia. They are, Oropouche (ORO), Dengue (DEN), areas were affected by epidemics of ORO fever. Porto Mayaro (MAY) and Yellow Fever (YF). All of them, have Franco and Tocantin6polis, in MaranhFio and Goiás States, been associated with epidemic outbreaks, the first two respectively, reported thousands of cases (7). In 1991, a (ORO and DEN) in urban areas, and the latter two (MAY large epidemic was reported in Rondônia State in Ari- and YF), mainly in rural areas. Certainly, these four quemes and Ouro Preto do Oeste towns. In these towns an arboviruses are responsible for over 90% of all cases of epidemiological survey estimated that about 90,000 infec- arboviral diseases in the Amazonia. tions occurred during a 45-day period (8). This account reviews our current knowledge about the Based upon the population at risk during epidemics and pathogenic arboviruses to man in the Amazon region of estimated incidence rates taken from serological surveys, at Brazil, which will be discussed according to taxonomic sta- least 500,000 people were probably infected by ORO virus tus. in the last 30 years (1961-1991) in the Brazilian Amazon basin (1). Clinical manifestation presented by infected patients is Oropouche (ORO) basically a febrile disease. Oropouche fever is characterized by an abrupt onset. Fever, headache, myalgia, arthralgia, Oropouche fever virus is a Bunyavirzrs (Bunyaviridae), anorexia, dizziness, chills and photophobia are the symp- serologically related to the Simbu Table 1 -Arboviruses isolated in the Amazon region which are responsible for human disease (in Amazonia and the Car- group. ibbean) according to type of disease and souIrce of isolation. The outbreaks of Soicrce of' isolatiori Oropouche fever vi- Hiinlati Vertebrare rus have caused im- Geriris Airrigetiic groiip Virils Natirrcrl Lahit$ Senriiiel Wild Arrhroporl portant social and Febrile illness Alphavirus A Mucambo t + i- Febrile illness Alphavirus A Pixuna - + + economic impacts, Febrile illness Arenavirus Tacaribe Flexal - + - because the epidem- Febrile illness Bunyavirus Anopheles A Tacaiuma f - + ics are explosive and,' Febrile illness Bunyavirus Bunyamwera Xingu - - t in a short time thou- Febrile illness Bunyavirus C Apeu + + + Febrile illness Bunyavirus C Caraparu + + + sands of patients are Febrile illness Bunyavirus C Cariiparulike + i- + attacked simultane- Febrile illness Bunyavirus C 1r:lqui + + f ously. Patients some- Febrile illness Bunyavirus C Marituba + + + times present a severe Febrile illness Bunyavirus C Murutucu t + + Febrile illness Bunyavirus C Nepuyo + + + disease including Febrile illness Bunyavirus C Oriboca + + + neurologic involve- Febrile illness Bunyavirus Califomia Guaroa - - + ment (2), although, Febrile illness Bunyavirus Guama Clitu + + + Febrile illness Bunyavirus Guama Guama + + + no fatality has been Febrile illness Bunyavirus Simbu Oropouche + + + recorded to date due Febrile illness Flavivirus B Bussuquara t + + to ORO virus. When Febrile illness Flavivirus B Ilhéus + + + Febrile illness - environmental Phlebovirus Phlebotomus fever Alenquer - + Febrile illness Phlebovirus Phlebotomus fever Candiru - - + (ecologic) and epide- Febrile illness Phlebovirus Phlebotomus fever Monimbi - - - Febrile illness Phlebovirus Phlebotomus fever Serra None - m i o 10.2u i c a 1 (su scep t i b 1es , v ira1 Vesiculovirus VSV Jurona + - - - + Febrile illness Vesiculovirus ' vsv Piry - + - + - and vector circula- Rash febrile disease
Recommended publications
  • Arboviral Infection Surveillance Protocol
    April 2013 Arboviral Infection Surveillance Protocol Arboviruses endemic to the U.S. include Eastern equine encephalitis virus (EEE), La Crosse encephalitis virus (LAC), Saint Louis encephalitis virus (SLE), West Nile virus (WNV), Western equine encephalitis virus (WEE), and the tickborne Powassan encephalitis virus (POW). See other materials for information on non-endemic arboviruses (e.g., dengue fever and yellow fever) Provider Responsibilities 1. Report suspect and confirmed cases of arbovirus infection (including copies of lab results) to the local health department within one week of diagnosis. Supply requested clinical information to the local health department to assist with case ascertainment. 2. Assure appropriate testing is completed for patients with suspected arboviral infection. The preferred diagnostic test is testing of virus-specific IgM antibodies in serum or cerebrospinal fluid (CSF). In West Virginia, appropriate arbovirus testing should include EEE, LAC, SLE, and WNV. Testing for a complete arboviral panel is available free of charge through the West Virginia Office of Laboratory Services (OLS). Laboratory Responsibilities 1. Report positive laboratory results for arbovirus infection to the local health department within 1 week. 2. Submit positive arboviral samples to the Office of Laboratory Services within 1 week. 3. Appropriate testing for patients with suspected arboviral infection includes testing of virus-specific IgM antibodies in serum or CSF. In West Virginia, testing should routinely be conducted for WNV, EEE, SLE, and LAC. A complete arboviral panel is available free of charge through OLS. For more information go to: http://www.wvdhhr.org/labservices/labs/virology/arbovirus.cfm Local Health Responsibilities 1. Conduct an appropriate case investigation.
    [Show full text]
  • Control of Communicable Diseases Manual
    TABLE OF CONTENTS EDITORIAL BOARD .............................................................................. iii COLLABORATORS AND OTHER PRIMARY REVIEWERS ................. v FOREWORD: GEORGES C. BENJAMIN, MD, FACP ........................... xviii FOREWORD: LEE JONG-WOOK .......................................................... xx PREFACE ................................................................................................. xxi USER’S GUIDE TO CCDM18 ................................................................ xxiii REPORTING OF COMMUNICABLE DISEASES ............................... xxvi RESPONSE TO AN OUTBREAK REPORT ....................................... xxviii DELIBERATE USE OF BIOLOGICAL AGENTS TO CAUSE HARM AGENTS .......................................................................................... xxxii ACQUIRED IMMUNODEFICIENCY SYNDROME ............................... 1 ACTINOMYCOSIS ................................................................................. 10 AMOEBIASIS ........................................................................................... 12 ANGIOSTRONGYLIASIS ...................................................................... 16 ABDOMINAL ...................................................................................... 18 INTESTINAL ....................................................................................... 18 ANISAKIASIS .......................................................................................... 19 ANTHRAX .............................................................................................
    [Show full text]
  • MDHHS BOL Mosquito-Borne and Tick-Borne Disease Testing
    MDHHS BUREAU OF LABORATORIES MOSQUITO-BORNE AND TICK-BORNE DISEASE TESTING MOSQUITO-BORNE DISEASES The Michigan Department of Health and Human Services Bureau of Laboratories (MDHHS BOL) offers comprehensive testing on clinical specimens for the following viral mosquito-borne diseases (also known as arboviruses) of concern in Michigan: California Group encephalitis viruses including La Crosse encephalitis virus (LAC) and Jamestown Canyon virus (JCV), Eastern Equine encephalitis virus (EEE), St. Louis encephalitis virus (SLE), and West Nile virus (WNV). Testing is available free of charge through Michigan healthcare providers for their patients. Testing for mosquito-borne viruses should be considered in patients presenting with meningitis, encephalitis, or other acute neurologic illness in which an infectious etiology is suspected during the summer months in Michigan. Methodologies include: • IgM detection for five arboviruses (LAC, JCV, EEE, SLE, WNV) • Molecular detection (PCR) for WNV only • Plaque Reduction Neutralization Test (PRNT) is also available and may be performed on select samples when indicated The preferred sample for arbovirus serology at MDHHS BOL is cerebral spinal fluid (CSF), followed by paired serum samples (acute and convalescent). In cases where CSF volume may be small, it is recommended to also include an acute serum sample. Please see the following document for detailed instructions on specimen requirements, shipping and handling instructions: http://www.michigan.gov/documents/LSGArbovirus_IgM_Antibody_Panel_8347_7.doc Michigan residents may also be exposed to mosquito-borne viruses when traveling domestically or internationally. In recent years, the most common arboviruses impacting travelers include dengue, Zika and chikungunya virus. MDHHS has the capacity to perform PCR for dengue, chikungunya and Zika virus and IgM for dengue and Zika virus to confirm commercial laboratory arbovirus findings or for complicated medical investigations.
    [Show full text]
  • What Is Veterinary Public Health? Zoonosis
    Your Zoonosis Connection Veterinary Public Health Division Volume 4, Issue 1 March 2012 612 Canino Rd., Houston, Texas 77076 Phone: 281-999-3191 Fax: 281-847-1911 Harris County Rabies Update Inside this issue: Rabies continues to be a serious health threat to people and domestic What is Veterinary 2 animals. In the United States prior to 1960, the majority of all animal cases re- Public Health ported to the Centers for Disease Control and Prevention were seen in do- Rabies Submissions 3 mestic animals. Now more than 90% of the cases occur in wild animals. Since the 1950s, human rabies deaths have declined from more than a 100 annually Continuing Education 3 to a couple each year. This reduction in the number of human deaths associat- ed with rabies can be attributed to the implementation of rabies vaccination Zoonosis Trivia 4 laws, oral rabies vaccination programs, improved public health practices and the increased administration of post-exposure prophylaxis. Did you know? Veterinarians are In Harris County, rabies was last documented in a dog in 1979 and in a cat in uniquely qualified to 1986. However, rabies continues to be enzootic in our bat population. In address issues and 2011, 4.3% of bats submitted for testing were positive for rabies, which has de- concerns related to clined from 7.9% in 2010 (see table below). Last year, one horse and two the interactions of skunks tested positive for rabies in Harris County. The horse was infected people, animals, and with the South Central Skunk strain of rabies, which often spills over into oth- the environment.
    [Show full text]
  • Isolation of Oropouche Virus from Febrile Patient, Ecuador
    RESEARCH LETTERS Testing of tissues from vacuum aspiration and from chorionic 5. Driggers RW, Ho CY, Korhonen EM, Kuivanen S, villi sampling revealed that placenta and chorion contained Jääskeläinen AJ, Smura T, et al. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. Zika virus RNA. Isolation of Zika virus from the karyotype N Engl J Med. 2016;374:2142–51. http://dx.doi.org/10.1056/ cell culture confirmed active viral replication in embryonic NEJMoa1601824 cells. All the tests performed suggest that the spontaneous abortion in this woman was likely associated with a symp- Address for correspondence: Azucena Bardají, ISGlobal, Hospital Clínic, tomatic Zika virus infection occurring early in pregnancy. Universitat de Barcelona, Rosselló, 132, 5-1, 08036 Barcelona, Spain; These findings provide further evidence of the association email: [email protected] between Zika virus infection early in pregnancy and trans- placental infection, as well as embryonic damage, leading to poor pregnancy outcomes (2). Given that embryo loss had probably occurred days before maternal-related symp- toms, we hypothesize that spontaneous abortion happened early during maternal viremia. The prolonged viremia in the mother beyond the first week after symptom onset concurs with other recent reports (1,5). However, persistent viremia 3 weeks after pregnancy outcome has not been described Isolation of Oropouche Virus previously and underscores the current lack of knowledge from Febrile Patient, Ecuador regarding the persistence of Zika virus infection. Because we identified Zika virus RNA in placental tissues, our find- ings reinforce the evidence for early gestational placental Emma L. Wise, Steven T.
    [Show full text]
  • Mayaro Fever: Molecular Diagnosis of 5 Cases in Mato Grosso State
    Journal of Bacteriology & Mycology: Open Access Case Report Open Access Mayaro fever: molecular diagnosis of 5 cases in Mato Grosso state Abstract Volume 9 Issue 2 - 2021 Mayaro fever is an arboviroses which can be assymptomatic or progress to acute febrile Matheus Yung Perin,1 Maíra Sant Anna disease, and may cause long-term arthritis. It is common in flrestal areas, however there are Genaro,2 Isabelle Silva Côsso,2 Renata some discriotions axons urban location, and it is responsible for 1% of dengue-like cases 3 on endemic DenV regions. Moreover, previous assays could identify MayV in mosquitoes. Desengrini Slhessarenko 1Medcine Resident at Hospital São Mateus, Brazil In this report case, during the recruting of chikungunya patients, it was observed 5 cases of 2Doctor At Universidade de Cuiabá, Brazil patients with Mayaro acute infection, detected by RT-PCR, and they have been submitted 3Department of Virology, Universidade de Federal de Mato to treatment of viral arthritis. Grosso, Brazil Keywords: mayaro fever, febrile disease, MAYV infection, Mato Grosso state, Correspondence: Matheus Yung Perin, Medcine Resident at chikungunya patients, arboviroses Hospital São Mateus, Brazil, Tel +55 66 9 9908-9093, Email Received: May 17, 2021 | Published: May 26, 2021 Introduction it has been collected a sample of peripheral blood of each patient and then, a new appointment was scheduled. Five patients were included Mayaro Virus (MAYV) is an arthritogenic Alphavirus belonging in this study, however, two of them never returned to the research to family Togaviridae. MAYV infection may be asymptomatic or ambulatory for the scheduled consultation; they have only made their progress to acute febrile disease, frequently accompanied by long-term serum available for the trial.
    [Show full text]
  • Fragile Transmission Cycles of Tick-Borne Encephalitis Virus May Be Disrupted by Predicted Climate Change
    doi 10.1098/rspb.2000.1204 Fragiletransmissionc yclesof tick-borne encephalitisvirusmaybedisruptedbypredicted climatechange Sarah E.Randolph * and David J.Rogers Department of Zoology,University of Oxford, SouthP arks Road, Oxford OX13PS, U K Repeatedpredictions that vector-bornedisease prevalencewill increase withglobal warming are usually basedon univariatemodels. T oaccommodatethe fullrange of constraints, the present-daydistribution of tick-borneencephalitis virus (TBEv) was matched statistically tocurrent climatic variables,to provide a multivariatedescription of present-day areas of disease risk.This was then appliedto outputs ofageneral circulationmodel that predicts howclimatic variablesmay change in the future, andfuture distributions ofTBEv were predicted forthem. Theexpected summer rise intemperature anddecrease inmoisture appearsto drive the distributionof TBEv into higher-latitude and higher-altitude regions progressively throughthe 2020s,2050s and 208 0s.The ¢ naltoe-hold in the 2080smay be con¢ ned to a small partof Scandinavia,including new foci in southern Finland. The reason for this apparentcontraction of the rangeof TBEv is that its transmission cycles dependon a particularpattern oftick seasonal dynamics, whichmay be disrupted byclimate change.The observed marked increase inincidence of tick-borne encephalitisin most parts ofEuropesince 1993may be dueto non-biological causes, such aspoliticaland sociologicalchanges. Keywords: ticks; tick-borneencephalitis; global warming ;climate matching;risk maps the winter withminimum temperatures below 712 8C. 1.INTRODUCTION Further south,in areas with medium tohigh tick densi- Tick-borneencephalitis (TBE) ,causedby two subtypes of ties, further increases intick abundance were related to a £avivirus(TBEv) transmitted bythe ticks Ixodes ricinus combinationof milder winters (fewer dayswith minimum and I.persulcatus ,is the most signi¢cant vector-borne temperatures below 7 7 8C)and extended spring and disease inEurope and Eurasia.
    [Show full text]
  • 2018 DSHS Arbovirus Activity
    Health and Human Texas Department of State Services Health Services Arbovirus Activity in Texas 2018 Surveillance Report August 2019 Texas Department of State Health Services Zoonosis Control Branch Overview Viruses transmitted by mosquitoes are referred to as arthropod-borne viruses or arboviruses. Arboviruses reported in Texas may include California (CAL) serogroup viruses, chikungunya virus (CHIKV), dengue virus (DENV), eastern equine encephalitis virus (EEEV), Saint Louis encephalitis virus (SLEV), western equine encephalitis virus (WEEV), West Nile virus (WNV), and Zika virus (ZIKV), many of which are endemic or enzootic in the state. In 2018, reported human arboviral disease cases were attributed to WNV (82%), DENV (11%), CHIKV (4%), ZIKV (2%), and CAL (1%) (Table 1). In addition, there were two cases reported as arbovirus disease cases which could not be diagnostically or epidemiologically differentiated between DENV and ZIKV. Animal infections or disease caused by WNV and SLEV were also reported during 2018. Local transmission of DENV, SLEV, and WNV was documented during 2018 (Figure 1). No reports of EEEV or WEEV were received during 2018. Table 1. Year-End Arbovirus Activity Summary, Texas, 2018 Positive Human* Arbovirus Mosquito Avian Equine TOTAL TOTAL Fever Neuroinvasive Severe Deaths PVD‡ Pools (Human) CAL 1 1 1 CHIK 7 7 7 DEN 20 20 20 SLE 2 0 2 WN 1,021 6 19 38 108 146 11 24 1,192 Zika** 4 4 TOTAL 1,023 6 19 65 109 0 178 11 24 1,226 CAL - California serogroup includes California encephalitis, Jamestown Canyon, Keystone, La Crosse, Snowshoe hare and Trivittatus viruses CHIK - Chikungunya DEN - Dengue SLE - Saint Louis encephalitis WN - West Nile ‡PVD - Presumptive viremic blood donors are people who had no symptoms at the time of donating blood through a blood collection agency, but whose blood tested positive when screened for the presence of West Nile virus or Zika virus.
    [Show full text]
  • Non-Replicating Adenovirus Based Mayaro Virus Vaccine Elicits Protective Immune Responses and Cross Protects Against Other Alphaviruses
    RESEARCH ARTICLE Non-replicating adenovirus based Mayaro virus vaccine elicits protective immune responses and cross protects against other alphaviruses 1,2 1 1 1 John M. PowersID , Nicole N. HaeseID , Michael Denton , Takeshi Ando , 1 1 1 1 Craig Kreklywich , Kiley Bonin , Cassilyn E. StreblowID , Nicholas KreklywichID , 1 1¤ 1 3 Patricia SmithID , Rebecca Broeckel , Victor DeFilippis , Thomas E. MorrisonID , Mark 4 1,5 a1111111111 T. Heise , Daniel N. StreblowID * a1111111111 a1111111111 1 Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America, 2 Department of Molecular and Medical Genetics, Oregon Health and Science University, a1111111111 Portland, Oregon, United States of America, 3 Department of Immunology and Microbiology, University of a1111111111 Colorado School of Medicine, Aurora, Colorado, United States of America, 4 Department of Genetics, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America, 5 Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America ¤ Current address: Rocky Mountain Laboratories, NIH/NIAID, Hamilton, Montana, United States of America OPEN ACCESS * [email protected] Citation: Powers JM, Haese NN, Denton M, Ando T, Kreklywich C, Bonin K, et al. (2021) Non- replicating adenovirus based Mayaro virus vaccine Abstract elicits protective immune responses and cross protects against other alphaviruses. PLoS Negl Mayaro virus (MAYV) is an alphavirus endemic to South and Central America associated Trop Dis 15(4): e0009308. https://doi.org/10.1371/ journal.pntd.0009308 with sporadic outbreaks in humans. MAYV infection causes severe joint and muscle pain that can persist for weeks to months.
    [Show full text]
  • Orthobunyaviruses: from Virus Binding to Penetration Into Mammalian Host Cells
    viruses Review Orthobunyaviruses: From Virus Binding to Penetration into Mammalian Host Cells Stefan Windhaber 1 , Qilin Xin 2 and Pierre-Yves Lozach 1,2,* 1 CellNetworks—Cluster of Excellence and Center for Integrative Infectious Diseases Research (CIID), Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany; [email protected] 2 Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Ecole Pratique des Hautes Etudes (EPHE), Viral Infections and Comparative Pathology (IVPC), UMR754-University Lyon, 69007 Lyon, France; [email protected] * Correspondence: [email protected] Abstract: With over 80 members worldwide, Orthobunyavirus is the largest genus in the Peribunyaviri- dae family. Orthobunyaviruses (OBVs) are arthropod-borne viruses that are structurally simple, with a trisegmented, negative-sense RNA genome and only four structural proteins. OBVs are potential agents of emerging and re-emerging diseases and overall represent a global threat to both public and veterinary health. The focus of this review is on the very first steps of OBV infection in mammalian hosts, from virus binding to penetration and release of the viral genome into the cytosol. Here, we address the most current knowledge and advances regarding OBV receptors, endocytosis, and fusion. Keywords: arbovirus; Bunyamwera; cell entry; emerging virus; endocytosis; fusion; La Crosse; Oropouche; receptor; Schmallenberg Citation: Windhaber, S.; Xin, Q.; Lozach, P.-Y. Orthobunyaviruses: 1. Introduction From Virus Binding to Penetration into Mammalian Host Cells. Viruses Orthobunyavirus consists of over 80 members that are globally distributed, which is a 2021, 13, 872. https://doi.org/ genus of the family Peribunyaviridae (Bunyavirales order) along with Herbevirus, Pacuvirus, 10.3390/v13050872 and Shangavirus (Table1)[ 1].
    [Show full text]
  • Emergence of Monkeypox — West and Central Africa, 1970–2017
    Morbidity and Mortality Weekly Report Emergence of Monkeypox — West and Central Africa, 1970–2017 Kara N. Durski, MPH1; Andrea M. McCollum, PhD2; Yoshinori Nakazawa, PhD2; Brett W. Petersen, MD2; Mary G. Reynolds, PhD2; Sylvie Briand, MD, PhD1; Mamoudou Harouna Djingarey, MD3; Victoria Olson, PhD2; Inger K. Damon, MD, PhD2, Asheena Khalakdina, PhD1 The recent apparent increase in human monkeypox cases Monkeypox is a zoonotic orthopoxvirus with a similar dis- across a wide geographic area, the potential for further spread, ease presentation to smallpox in humans, with the additional and the lack of reliable surveillance have raised the level of distinguishing symptom of lymphdenopathy. After an initial concern for this emerging zoonosis. In November 2017, the febrile prodrome, a centrifugally distributed maculopapular World Health Organization (WHO), in collaboration with rash develops, with lesions often present on the palms of CDC, hosted an informal consultation on monkeypox with the hands and soles of the feet. The infection can last up to researchers, global health partners, ministries of health, and 4 weeks, until crusts separate and a fresh layer of skin is formed. orthopoxvirus experts to review and discuss human monkeypox Sequelae include secondary bacterial infections, respiratory in African countries where cases have been recently detected and distress, bronchopneumonia, gastrointestinal involvement, also identify components of surveillance and response that need dehydration, encephalitis, and ocular infections, which can improvement. Endemic human monkeypox has been reported result in permanent corneal scarring. No specific treatment for from more countries in the past decade than during the previ- a monkeypox virus infection currently exists, and patients are ous 40 years.
    [Show full text]
  • Serological Evidence of Multiple Zoonotic Viral Infections Among Wild Rodents in Barbados
    pathogens Article Serological Evidence of Multiple Zoonotic Viral Infections among Wild Rodents in Barbados Kirk Osmond Douglas 1,*, Claire Cayol 2 , Kristian Michael Forbes 3, Thelma Alafia Samuels 4, Olli Vapalahti 5, Tarja Sironen 5 and Marquita Gittens-St. Hilaire 6,7 1 Centre for Biosecurity Studies, The University of the West Indies, Cave Hill, St. Michael BB11000, Barbados 2 Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, 901 83 Umeå, Sweden; [email protected] 3 Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA; [email protected] 4 Epidemiology Research Unit, Caribbean Institute for Health Research (CAIHR), The University of the West Indies, Mona, Kingston 7, Jamaica; alafi[email protected] 5 Department of Virology, Faculty of Medicine, University of Helsinki, Medicum, Haartmaninkatu 3, 0290 Helsinki, Finland; olli.vapalahti@helsinki.fi (O.V.); tarja.sironen@helsinki.fi (T.S.) 6 Faculty of Medical Sciences, The University of the West Indies, Cave Hill, St. Michael BB11000, Barbados; [email protected] 7 Best–dos Santos Public Health Laboratory, Enmore #6, Lower Collymore Rock, St. Michael BB11155, Barbados * Correspondence: [email protected]; Tel.: +246-417-7468 Abstract: Background: Rodents are reservoirs for several zoonotic pathogens that can cause human infectious diseases, including orthohantaviruses, mammarenaviruses and orthopoxviruses. Evidence exists for these viruses circulating among rodents and causing human infections in the Americas, Citation: Douglas, K.O.; Cayol, C.; but much less evidence exists for their presence in wild rodents in the Caribbean. Methods: Here, Forbes, K.M.; Samuels, T.A.; we conducted serological and molecular investigations of wild rodents in Barbados to determine Vapalahti, O.; Sironen, T.; Gittens-St.
    [Show full text]