Vesicular Stomatitis Virus Chimeras Expressing the Oropouche Virus Glycoproteins Elicit

Total Page:16

File Type:pdf, Size:1020Kb

Vesicular Stomatitis Virus Chimeras Expressing the Oropouche Virus Glycoproteins Elicit bioRxiv preprint doi: https://doi.org/10.1101/2021.02.19.432025; this version posted February 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Vesicular stomatitis virus chimeras expressing the Oropouche virus glycoproteins elicit 2 protective immune responses in mice. 3 4 Sarah Hulsey Stubbs1, Marjorie Cornejo Pontelli2, Nischay Mishra3, Changhong Zhou1, Juliano 5 de Paula Souza4, Rosa Maria Mendes Viana4, W. Ian Lipkin3, David M. Knipe1, Eurico Arruda4, 6 Sean P. J. Whelan2* 7 8 9 10 1Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 11 2Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, 12 Saint Louis, Missouri, USA 13 3Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New 14 York, New York, USA 15 4Department of Cell and Molecular Biology, Virology Research Center, Ribeirao Preto School of 16 Medicine, University of São Paulo, Ribeirao Preto, São Paulo, Brazil 17 18 *correspondence [email protected] 19 20 21 22 23 24 25 26 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.19.432025; this version posted February 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 27 Importance 28 Oropouche virus (OROV), an orthobunyavirus found in Central and South America, is an 29 emerging public health challenge that causes debilitating febrile illness. OROV is transmitted by 30 arthropods, and increasing mobilization has the potential to significantly increase the spread of 31 OROV globally. Despite this, no therapeutics or vaccines have been developed to combat 32 infection. Using vesicular stomatitis (VSV) as a backbone, we developed a chimeric virus 33 bearing the OROV glycoproteins (VSV-OROV) and tested its ability to elicit a neutralizing 34 antibody response. Our results demonstrate that VSV-OROV produces a strong neutralizing 35 antibody response that is at least partially targeted to the N-terminal region of Gc. Importantly, 36 vaccination with VSV-OROV reduces viral loads in mice challenged with wildtype virus. This 37 data provides the first evidence that targeting the OROV glycoproteins may be an effective 38 vaccination strategy to combat OROV infection. bioRxiv preprint doi: https://doi.org/10.1101/2021.02.19.432025; this version posted February 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 39 Abstract 40 Oropouche virus (OROV) infection of humans is associated with a debilitating febrile 41 illness that can progress to meningitis or encephalitis. First isolated from a forest worker in 42 Trinidad and Tobago in 1955, the arbovirus OROV has since been detected throughout the 43 Amazon basin with an estimated 500,000 human infections. Like other members of the family 44 Peribunyaviridae, the viral genome exists as 3 single-stranded negative-sense RNA segments. 45 The medium sized segment encodes a viral glycoprotein complex (GPC) that is proteolytically 46 processed into two viral envelope proteins Gn and Gc responsible for attachment and membrane 47 fusion. There are no therapeutics or vaccines to combat OROV infection, and we have little 48 understanding of protective immunity to infection. Here we generated a replication competent 49 chimeric vesicular stomatitis virus (VSV), in which the endogenous glycoprotein was replaced by 50 the GPC of OROV. Serum from mice immunized with VSV-OROV specifically neutralized wild 51 type OROV, and using peptide arrays we mapped multiple epitopes within an N-terminal variable 52 region of Gc recognized by the immune sera. VSV-OROV lacking this variable region of Gc was 53 also immunogenic in mice producing neutralizing sera that recognize additional regions of Gc. 54 Challenge of both sets of immunized mice with wild type OROV shows that the VSV-OROV 55 chimeras reduce wild type viral infection and suggest that antibodies that recognize the variable 56 N-terminus of Gc afford less protection than those that target more conserved regions of Gc. bioRxiv preprint doi: https://doi.org/10.1101/2021.02.19.432025; this version posted February 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 57 Introduction 58 Oropouche virus (OROV), first isolated in 1959 from a forest worker in Trinidad and 59 Tobago, causes a debilitating febrile illness in humans that can progress to meningitis or 60 encephalitis (1, 2). OROV is the most prevalent arbovirus after dengue in Brazil (3, 4), and is 61 currently circulating in Argentina, Bolivia, Colombia, Ecuador, and Venezuela (5-7). In urban 62 areas across the Amazon region seroprevalence rates of up to 15-33%, suggest that OROV 63 infection is underappreciated (8, 9). The virus infects a broad range of species and has both a 64 sylvatic and urban cycle. During the sylvatic cycle, the virus infects sloths, monkeys, rodents, and 65 birds, with Coquillettidia venezuelensis and Ochlerotatus serratus serving as vectors (1). In the 66 urban cycle, Culicoides paraensis and Culex quinquefasciatus serve as vectors of OROV (1), with 67 human infections paralleling increases in the vector population during the rainy season (10). 68 Infection is predominantly seen in individuals returning from forested areas (11), with limited 69 evidence of direct human to human transmission (12). Climate change, expansion and 70 dissemination of vectors, globalization of travel, and habitat loss likely contribute to increases in 71 OROV infections (13). Despite the growing dissemination of OROV, and the risks posed by this 72 emergent threat, there are currently no therapeutics to combat OROV infection. 73 Oropouche virus, a member of the family Peribunyaviridae, contains a single-stranded, 74 negative-sense RNA genome divided on three segments providing a total genome size of 11, 985 75 nucleotides. The large segment (l) encodes the large protein (L) which acts as the RNA dependent 76 RNA polymerase, the medium segment (m) encodes the viral glycoprotein complex (GPC), and 77 the small segment (s) encodes the nucleocapsid protein that sheaths the genomic and 78 antigenomic RNA. Two non-structural proteins, NSs and NSm are coded by the small and medium 79 segments, respectively. The GPC is synthesized as a single polyprotein that undergoes co- 80 translational cleavage by host-cell proteases into the two glycoproteins, Gn and Gc and liberates 81 the intervening NSm protein (14). The Gc protein acts as the viral fusogen (15), and Gn mediates 82 attachment and shields and protects Gc from premature triggering (16). Extrapolating from studies bioRxiv preprint doi: https://doi.org/10.1101/2021.02.19.432025; this version posted February 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 83 with La Crosse (17-20) and Schamllenberg (16, 21) viruses, both in the same orthobunyavirus 84 genus of the Peribunyaviridae, antibodies against the glycoproteins may protect against infection 85 and are therefore an important objective of vaccine strategies against OROV. 86 Vesicular stomatitis virus (VSV), the prototype of the family Rhabdoviridae, infects cells 87 by a single attachment and fusion glycoprotein (G) (22). The development of reverse genetic 88 approaches to manipulate the VSV genome (23) permitted replacement of the attachment and 89 fusion machinery with those of heterologous lipid enveloped viruses (24-28). In the case of Zaire 90 ebolavirus, the resulting VSV-ZEBOV chimera is a live attenuated vaccine, ERVEBO® that is 91 approved for use in humans (29-31). Analogous vaccine candidates are in pre-clinical and clinical 92 development for multiple enveloped viruses (25, 27, 32), including severe acute respiratory 93 syndrome 2 coronavirus (33). In addition to providing a platform for development of candidate 94 vaccines, the VSV-chimeric viruses have also permitted investigation of viral tropism, cellular 95 entry pathways, and helped understand correlates of immune protection (30, 34-38). 96 Building on this proven approach, we generate a VSV-chimera in which the native 97 glycoprotein gene is replaced by the GPC of OROV. The resulting VSV-OROV chimera replicates 98 to high-titers in BSRT7 cells in culture, and efficiently incorporates the Gn and Gc of OROV into 99 particles. Following single dose or prime-boost intramuscular injection of mice, VSV-OROV elicits 100 the production of immune specific sera that neutralize wild-type OROV. Using peptide arrays 101 corresponding to the OROV glycoproteins we find significant reactivity to the more variable N- 102 terminal domain of Gc that precedes the domains that are structurally homologous to other class 103 II fusion proteins. We generate two additional VSV-OROV chimeras lacking portions of the 104 variable N-terminus of Gc, termed the “head” and “stalk” domain. Although both variants yielded 105 replication competent virus deletion of the stalk domain led to the accumulation of mutations in 106 Gc. Immunization of mice with the VSV-OROV lacking the head domain of Gc generated immune 107 sera reactive with new regions of Gc.
Recommended publications
  • Isolation of Oropouche Virus from Febrile Patient, Ecuador
    RESEARCH LETTERS Testing of tissues from vacuum aspiration and from chorionic 5. Driggers RW, Ho CY, Korhonen EM, Kuivanen S, villi sampling revealed that placenta and chorion contained Jääskeläinen AJ, Smura T, et al. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. Zika virus RNA. Isolation of Zika virus from the karyotype N Engl J Med. 2016;374:2142–51. http://dx.doi.org/10.1056/ cell culture confirmed active viral replication in embryonic NEJMoa1601824 cells. All the tests performed suggest that the spontaneous abortion in this woman was likely associated with a symp- Address for correspondence: Azucena Bardají, ISGlobal, Hospital Clínic, tomatic Zika virus infection occurring early in pregnancy. Universitat de Barcelona, Rosselló, 132, 5-1, 08036 Barcelona, Spain; These findings provide further evidence of the association email: [email protected] between Zika virus infection early in pregnancy and trans- placental infection, as well as embryonic damage, leading to poor pregnancy outcomes (2). Given that embryo loss had probably occurred days before maternal-related symp- toms, we hypothesize that spontaneous abortion happened early during maternal viremia. The prolonged viremia in the mother beyond the first week after symptom onset concurs with other recent reports (1,5). However, persistent viremia 3 weeks after pregnancy outcome has not been described Isolation of Oropouche Virus previously and underscores the current lack of knowledge from Febrile Patient, Ecuador regarding the persistence of Zika virus infection. Because we identified Zika virus RNA in placental tissues, our find- ings reinforce the evidence for early gestational placental Emma L. Wise, Steven T.
    [Show full text]
  • Orthobunyaviruses: from Virus Binding to Penetration Into Mammalian Host Cells
    viruses Review Orthobunyaviruses: From Virus Binding to Penetration into Mammalian Host Cells Stefan Windhaber 1 , Qilin Xin 2 and Pierre-Yves Lozach 1,2,* 1 CellNetworks—Cluster of Excellence and Center for Integrative Infectious Diseases Research (CIID), Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany; [email protected] 2 Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Ecole Pratique des Hautes Etudes (EPHE), Viral Infections and Comparative Pathology (IVPC), UMR754-University Lyon, 69007 Lyon, France; [email protected] * Correspondence: [email protected] Abstract: With over 80 members worldwide, Orthobunyavirus is the largest genus in the Peribunyaviri- dae family. Orthobunyaviruses (OBVs) are arthropod-borne viruses that are structurally simple, with a trisegmented, negative-sense RNA genome and only four structural proteins. OBVs are potential agents of emerging and re-emerging diseases and overall represent a global threat to both public and veterinary health. The focus of this review is on the very first steps of OBV infection in mammalian hosts, from virus binding to penetration and release of the viral genome into the cytosol. Here, we address the most current knowledge and advances regarding OBV receptors, endocytosis, and fusion. Keywords: arbovirus; Bunyamwera; cell entry; emerging virus; endocytosis; fusion; La Crosse; Oropouche; receptor; Schmallenberg Citation: Windhaber, S.; Xin, Q.; Lozach, P.-Y. Orthobunyaviruses: 1. Introduction From Virus Binding to Penetration into Mammalian Host Cells. Viruses Orthobunyavirus consists of over 80 members that are globally distributed, which is a 2021, 13, 872. https://doi.org/ genus of the family Peribunyaviridae (Bunyavirales order) along with Herbevirus, Pacuvirus, 10.3390/v13050872 and Shangavirus (Table1)[ 1].
    [Show full text]
  • California Encephalitis, Hantavirus Pulmonary Syndrome, Hantavirus Hemorrhagic Fever with Renal 166 Syndrome, and Bunyavirus Hemorrhagic Fevers Raphael Dolin
    i. Bunyaviridae California Encephalitis, Hantavirus Pulmonary Syndrome, Hantavirus Hemorrhagic Fever With Renal 166 Syndrome, and Bunyavirus Hemorrhagic Fevers Raphael Dolin SHORT VIEW SUMMARY Definition Major Causes of Human Diseases Diagnostic tests are typically performed in } Bunyavirales is a large order of RNA viruses (See Table 166.1) reference laboratories. consisting of 10 families and more than 350 } California encephalitis group: Therapy named species. They are enveloped, } La Crosse virus (LACV) } Treatment is primarily supportive because specific single-stranded RNA viruses with a segmented Jamestown Canyon virus (JCV) } antiviral therapy is not available. Ribavirin has genome. Bunyavirales members can be found Rift Valley fever virus (RVFV) } been studied in some bunyavirus infections, and worldwide and are able to infect invertebrates, Crimean-Congo hemorrhagic fever virus (CCHFV) } data from in vitro and in vivo models hold vertebrates, and plants. Hantaviruses } promise. Ribavirin has shown clinical benefit in Hemorrhagic fever with renal syndrome Epidemiology } HFRS and in CCHF. However, comprehensive (HFRS) } Bunyaviruses are significant human pathogens clinical trials have not been conducted. } Hantavirus pulmonary syndrome with the ability to cause severe disease, } Severe fever with thrombocytopenia syndrome Prevention ranging from febrile illness, encephalitis, and virus (SFTSV) } No specific preventive measures are available, hepatitis to hemorrhagic fever. but experimental vaccines for some With exception of hantaviruses,
    [Show full text]
  • Zoonotic Potential of International Trade in CITES-Listed Species Annexes B, C and D JNCC Report No
    Zoonotic potential of international trade in CITES-listed species Annexes B, C and D JNCC Report No. 678 Zoonotic potential of international trade in CITES-listed species Annex B: Taxonomic orders and associated zoonotic diseases Annex C: CITES-listed species and directly associated zoonotic diseases Annex D: Full trade summaries by taxonomic family UNEP-WCMC & JNCC May 2021 © JNCC, Peterborough 2021 Zoonotic potential of international trade in CITES-listed species Prepared for JNCC Published May 2021 Copyright JNCC, Peterborough 2021 Citation UNEP-WCMC and JNCC, 2021. Zoonotic potential of international trade in CITES- listed species. JNCC Report No. 678, JNCC, Peterborough, ISSN 0963-8091. Contributing authors Stafford, C., Pavitt, A., Vitale, J., Blömer, N., McLardy, C., Phillips, K., Scholz, L., Littlewood, A.H.L, Fleming, L.V. & Malsch, K. Acknowledgements We are grateful for the constructive comments and input from Jules McAlpine (JNCC), Becky Austin (JNCC), Neville Ash (UNEP-WCMC) and Doreen Robinson (UNEP). We also thank colleagues from OIE for their expert input and review in relation to the zoonotic disease dataset. Cover Photographs Adobe Stock images ISSN 0963-8091 JNCC Report No. 678: Zoonotic potential of international trade in CITES-listed species Annex B: Taxonomic orders and associated zoonotic diseases Annex B: Taxonomic orders and associated zoonotic diseases Table B1: Taxonomic orders1 associated with at least one zoonotic disease according to the source papers, ranked by number of associated zoonotic diseases identified.
    [Show full text]
  • Pdf/2052-6202-1-1.Pdf Doi: 10.7243/2052-6202-1-1
    Virology Discovery ISSN 2052-6202 Research Open Access A systematic review of molecular diagnostic methods for the detection of arboviruses in clinical specimens in Brazil and the importance of a differential diagnosis Marcos Lázaro Moreli* and Vivaldo Gomes da Costa *Correspondence: [email protected] Department of Biomedicine, Federal University of Goiás, Jataí, Brazil. Abstract Arboviruses (Arthropod-borne viruses) compose a large group of zoonotic viruses that have complex cycles and often cause diseases in humans. This study was aimed at performing a systematic review of molecular diagnostic methods for the detection of arboviruses in clinical samples from Brazil to emphasize the importance of a differential diagnosis. Articles on arbovirus diagnostic methods were searched in databases using descriptors and selection criteria. A total of 19 articles were found that described techniques that may be used for the differential diagnosis of arboviruses. RT-PCR, nested RT-PCR and real-time RT-PCR were the main methods. The samples were collected from the Brazilian Amazon and the state of São Paulo for the diagnosis of dengue, Oropouche fever, yellow fever, Saint Louis encephalitis and Mayaro virus disease. Classical diagnostic methods were rarely used. In addition, molecular methods are not yet fully standardized because several methods did not detect arboviruses. Furthermore, a diagnosis that is based only on clinical and epidemiological data would be premature. Therefore, new entomological research and new differential molecular methods should be performed for the possible isolation of these unknown viruses to contribute to the diagnosis of arboviruses. Thus, additional research should be conducted because these diseases are emerging and reemerging in several countries.
    [Show full text]
  • Bunyaviruses and the Type I Interferon System
    Elliott, R.M., and Weber, F. (2009) Bunyaviruses and the type I interferon system. Viruses, 1 (3). pp. 1003-1021. ISSN 1999-4915 Copyright © 2009 The Authors http://eprints.gla.ac.uk/80049 Deposited on: 21 May 2013 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk Viruses 2009, 1, 1003-1021; doi:10.3390/v1031003 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Bunyaviruses and the Type I Interferon System Richard M. Elliott 1 and Friedemann Weber 2,* 1 Centre for Biomolecular Sciences, School of Biology, University of St. Andrews, St. Andrews, KY16 9ST, Scotland, UK; E-Mail: [email protected] 2 Department of Virology, University of Freiburg, D-79008 Freiburg, Germany * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-761-203-6614; Fax: +49-761-203-6634. Received: 21 September 2009; in revised form: 11 November 2009 / Accepted: 20 November 2009 / Published: 23 November 2009 Abstract: The family Bunyaviridae contains more than 350 viruses that are distributed throughout the world. Most members of the family are transmitted by arthopods, and several cause disease in man, domesticated animals and crop plants. Despite being recognized as an emerging threat, details of the virulence mechanisms employed by bunyaviruses are scant. In this article we summarise the information currently available on how these viruses are able to establish infection when confronted with a powerful antiviral interferon system. Keywords: bunyaviruses; interferon system; NSs proteins 1. Introduction Viruses in the family Bunyaviridae are classified into five genera: Orthobunyavirus, Phlebovirus, Hantavirus, Nairovirus, and Tospovirus on the basis of molecular and serological characteristics.
    [Show full text]
  • Oropouche Fever Outbreak, Manaus, Brazil, 2007–2008
    LETTERS 4. Kapczynski DR, Gonder E, Liljebjelke K, Oropouche Fever washing the wells, 100 μL of serum Lippert R, Petkov D, Tilley B. Vaccine- diluted 1:400 was added into infected induced protection from egg production Outbreak, Manaus, losses in commercial turkey breeder hens and uninfected wells. After incubation following experimental challenge with a Brazil, 2007–2008 and washing the wells, a peroxidase- triple-reassortant H3N2 avian infl uenza conjugated goat anti-human IgM was virus. Avian Dis. 2009;53:7–15. DOI: To the Editor: Oropouche virus added; fi nally, the ABTS substrate 10.1637/8199-122707-Reg.1 (OROV) is an arbovirus, Orthobu- (KPL, Inc., Gaithersburg, MD, USA) 5. Spackman E, Senne DA, Myers TJ, Bulaga nyavirus, transmitted among sloths, LL, Garber LP, Perdue ML, et al. Devel- was added into the wells. The plates opment of a real-time reverse transcriptase marsupials, primates, and birds by the were incubated and read on a spec- PCR assay for type A infl uenza virus and mosquitoes Aedes serratus and Culex trophotometer at 405 nm. The cutoff the avian H5 and H7 hemagglutinin sub- quinquefasciatus. Notably, this virus for the test was determined to be the types. J Clin Microbiol. 2002;40:3256–60. has adapted to an urban cycle involving DOI: 10.1128/JCM.40.9.3256-3260.2002 mean of optical densities read in all 6. Senne DA. Annual reports on National man, with midges (Culicoides paraen- wells containing uninfected cells plus Veterinary Services Laboratories avian sis) as the main vector (1). Oropouche 3 standard deviations. infl uenza and Newcastle disease virus fever is the second most frequent ar- Of the 631 patients in the study, diagnostics.
    [Show full text]
  • Bunyaviruses and the Type I Interferon System
    Viruses 2009, 1, 1003-1021; doi:10.3390/v1031003 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Bunyaviruses and the Type I Interferon System Richard M. Elliott 1 and Friedemann Weber 2,* 1 Centre for Biomolecular Sciences, School of Biology, University of St. Andrews, St. Andrews, KY16 9ST, Scotland, UK; E-Mail: [email protected] 2 Department of Virology, University of Freiburg, D-79008 Freiburg, Germany * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-761-203-6614; Fax: +49-761-203-6634. Received: 21 September 2009; in revised form: 11 November 2009 / Accepted: 20 November 2009 / Published: 23 November 2009 Abstract: The family Bunyaviridae contains more than 350 viruses that are distributed throughout the world. Most members of the family are transmitted by arthopods, and several cause disease in man, domesticated animals and crop plants. Despite being recognized as an emerging threat, details of the virulence mechanisms employed by bunyaviruses are scant. In this article we summarise the information currently available on how these viruses are able to establish infection when confronted with a powerful antiviral interferon system. Keywords: bunyaviruses; interferon system; NSs proteins 1. Introduction Viruses in the family Bunyaviridae are classified into five genera: Orthobunyavirus, Phlebovirus, Hantavirus, Nairovirus, and Tospovirus on the basis of molecular and serological characteristics. The term ‘bunyavirus’ refers to a member of the Bunyaviridae family, while the terms ‘orthobunyavirus’, ‘phlebovirus’, etc., refer to viruses in the eponymous genus. Members of the first four genera above are able to infect mammalian hosts, whereas the tospoviruses (which are not discussed here) are important plant pathogens.
    [Show full text]
  • Oropouche Virus Could Emerge As a Serious Public Health Problem, Researcher Says 23 August 2017
    Oropouche virus could emerge as a serious public health problem, researcher says 23 August 2017 likely grow, because the virus, transmitted by the midge Culicoides paraensis, is now found beyond Amazonian villages and is spreading to the big cities. "C. paraensis is distributed throughout the Americas, and Oropouche virus therefore has considerable emergence potential," he said. "The virus may well spread from the Amazon region and central plateau to the most densely populated regions of the country." The incidence of Oropouche fever is also rising in Vector is no longer confined to villages in the Amazon urban areas of Peru and Caribbean countries. In but is spreading to major cities throughout Brazil, Brazil, the virus has been isolated from birds in Rio researcher warns . Credit: Elton Alisson / Agência Grande do Sul state and from a marmoset in Minas FAPESP Gerais state. The presence of neutralizing antibodies (which bind to the virus, tell the immune system to destroy it, and prevent it from infecting the organism) has been detected in primates in the Due to the Zika epidemic, which began in 2015, city of Goiânia. and the outbreak of yellow fever early in 2017, Brazil runs a serious risk of being afflicted by "We recently diagnosed a patient from Ilhéus [city Oropouche, another virus that is widely distributed in the northeastern state of Bahia] with Oropouche throughout South and Central America and the fever, in partnership with Eurico Arruda [a professor Caribbean. Oropouche has adapted to urban in FMRP-USP's Department of Cellular Biology]. environments and is spreading ever closer to This shows the virus is circulating around Brazil," Brazil's major cities.
    [Show full text]
  • Tropical Infectious Diseases
    THIRD EDITION TROPICAL INFECTIOUS DISEASES RICHARD L. GUERRANT MDThomasDAV'ID H. WALKERMD PETER F. WELLER MO FACP FIOSA çarmage and Martha Walls Distinguished H. Hunter Professor of Professor of Medicine, Harvard Medical University Chair in Tropical Diseases International Medicine School Director, Center for Biodefense and Director, Center for Global Health, Professor, Immunology and Infectious Emerging Infectious Diseases Division of Infectious Diseasesand Diseases Department, Harvard School of Professor and Chair, Department of International Health Pubüc Health University ofVirginia School of Medicine Pathology Crnef, Infectious Disease Division University ofTexas Medical Branch Charlottesville, VA, USA Vice Chair of Research, Department of Galveston, TX, USA Medicine, Beth Israel DeaconessMedica! Center Boston, MA, USA Edinburgh, London, New York, Oxford, Philadelphia, SI Louis, Sydney I Toronlo SAUNDERS ELSEVIER SAUNDERS is an imprint of EIsevier Inc. @ 20 I I, EIsevier Inc. AlI rights reserved. First edition 1999 Secondedition 2006 No pa;rt of this publication mar be reproduced or transmitted in any form or by any means,electronic or mechanical,including photocopying,recording, or any information storageand retrieval system,without permission in writing Eramthe publisher. Oetails on how to seekpermission, further information about the Publisher'spermissions policies and our arrangementswith organizationssuch asthe Copyright ClearanceCenter and the Copyright LicensingAgency, can be found at our website: www.elsevier. comi permissions. This book and the individual contributions containedin it are protected under copyright by the Publisher (other than as mar be noted herein). Chapter 41, Plague,Paul S. Mead is in the public domain apart from any borrowed figures. Chapter60, Enterovirus Infections,lncluding Poliomyelitis,MarkA. Pallanschis in the public domainapart from any borrowed figures.
    [Show full text]
  • Appendix: Important Anthroponoses, Zoonoses, and Sapronoses1
    CDC - Emerging Human Infectious Diseases: Anthroponoses, Zoonoses, and Sapronoses Appendix: Important Anthroponoses, Zoonoses, and Sapronoses1 Anthroponoses Measles*; rubella; mumps; influenza; common cold; viral hepatitis; poliomyelitis; AIDS*; infectious mononucleosis; herpes simplex; smallpox; trachoma; chlamydial pneumonia and cardiovascular disease*; mycoplasmal infections*; typhoid fever; cholera; peptic ulcer disease*; pneumococcal pneumonia; invasive group A streptococcal infections; vancomycin-resistant enterococcal disease*; meningococcal disease*; whooping cough*; diphtheria*; Haemophilus infections* (including Brazilian purpuric fever*); syphilis; gonorrhea; tuberculosis* (multidrug- resistant strains); candidiasis*; ringworm (Trichophyton rubrum); Pneumocystis pneumonia* (human genotype); microsporidial infections*; cryptosporidiosis* (human genotype); giardiasis* (human genotype); amebiasis; and trichomoniasis. Zoonoses Transmitted by Direct Contact, Alimentary (Foodborne and Waterborne), or Aerogenic (Airborne) Routes Rabies; hemorrhagic fever with renal syndrome*; hantavirus pulmonary syndrome*; Venezuelan*; Brazilian*; Argentinian and Bolivian hemorrhagic fevers; Lassa; Marburg; and Ebola hemorrhagic fevers*; Hendra and Nipah hemorrhagic bronchopneumonia*; hepatitis E*; herpesvirus simiae B infection; human monkeypox*;Q fever; sennetsu fever; cat scratch disease; psittacosis; mammalian chlamydiosis*; leptospirosis; zoonotic streptococcosis; listeriosis; erysipeloid; campylobacterosis*; salmonellosis*; hemorrhagic colitis*;
    [Show full text]
  • Clinical and Ecoepidemiological Situation of Human Arboviruses in Brazilian Amazonia
    ................ECO 92: Pu6licHedthInThAmazm. ............... Clinical and ecoepidemiological situation of human arboviruses in Brazilian Amazonia PEDROE C. VASCONCELOS',MLM P. A. TRAVASSOSDA ROSA', NICOLASDÉGALLIER~, JORGE E S. TRAVASSOSDA ROSA', FRANCISCOP. PDIHEIRO~ 'Centro Colaborador lnvestigaçäo e Adestrnriieiito em Arbovisoses da Orgariizaçüo Murzdial da Saúde, Seiviço de Arbovír*us,Iiistituto Evaiidro Chagas, Fundaçü0 Nacional de Sadde, Ministério da Saúde, Belém, PA 66065, Brazil, =ORSTOM,Iiistituto Evaridro Chagas, Belérii, PA 66065, Brazil arid 3PariAmericari Health Organizatiori, Wasliiiigtoii DC 20037-2895, USA The main aspects of clinic manifestations and epidemiological data about human arboviruses in the Brazilian Amazonian region is reviewed. Thirty four types of arboviruses from 183 types iso- lated in the Amazonia have been associated with human diseases. Four of them are important in public health and are involved with epidemics; they are namely, Dengue (DEN), Mayaro (MAY), Oropouche (ORO) and Yellow Fever (YF) viruses. ORO and DEN are associated with human epidemic diseases in urban areas while MAY and YF in rural areas. Basically, ORO causes a fe- brile disease, sometimes accompanied with aseptic meningitis. MAY and DEN are associated with rash febrile disease, while YF determines hemorrhagic fever. Thirty other arboviruses are involved with febrile illnesses in a few and sporadic cases. All arboviruses (apart from DEN) are maintained within a sylvatic cycle in the forest, where several species of hemathophagous insects act as vectors and wild vertebrates are involved as hosts. DEN has a cycle where the Aedes aegypti mosquito is the vector and man is the host. With the exception of the four viruses associated with epidemics which determine great economical and social impacts, including death (as in the case of YF), the real involvement of these viruses as systematic agents of human disease is unknown.
    [Show full text]