Sequestration and Biosynthesis of Cyanogenic Glucosides in Passion Vine Butterflies and Consequences for the Diversification of Their Host Plants

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Sequestration and biosynthesis of cyanogenic glucosides in passion vine butterflies and consequences for the diversification of their host plants Pinheiro de Castro, Érika C.; Zagrobelny, Mika; Zurano, Juan Pablo; Zikan Cardoso, Márcio; Feyereisen, René; Bak, Søren Published in: Ecology and Evolution DOI: 10.1002/ece3.5062 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Pinheiro de Castro, É. C., Zagrobelny, M., Zurano, J. P., Zikan Cardoso, M., Feyereisen, R., & Bak, S. (2019). Sequestration and biosynthesis of cyanogenic glucosides in passion vine butterflies and consequences for the diversification of their host plants. Ecology and Evolution, 9(9), 5079-5093. https://doi.org/10.1002/ece3.5062 Download date: 30. Sep. 2021 Received: 18 August 2018 | Revised: 13 January 2019 | Accepted: 26 February 2019 DOI: 10.1002/ece3.5062 ORIGINAL RESEARCH Sequestration and biosynthesis of cyanogenic glucosides in passion vine butterflies and consequences for the diversification of their host plants Érika C. Pinheiro de Castro1 | Mika Zagrobelny1 | Juan Pablo Zurano2 | Márcio Zikan Cardoso3 | René Feyereisen1 | Søren Bak1 1Department of Plant and Environmental Sciences, University of Copenhagen, Abstract Frederiksberg C, Copenhagen, Denmark The colorful heliconiine butterflies are distasteful to predators due to their content 2 Department of Systematic and of defense compounds called cyanogenic glucosides (CNglcs), which they biosynthe‐ Ecology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil size from aliphatic amino acids. Heliconiine larvae feed exclusively on Passiflora plants 3Department of Ecology, Federal University where ~30 kinds of CNglcs have been reported. Among them, some CNglcs derived of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil from cyclopentenyl glycine can be sequestered by some Heliconius species. In order to understand the evolution of biosynthesis and sequestration of CNglcs in these Correspondence Søren Bak, Department of Plant and butterflies and its consequences for their arms race with Passiflora plants, we ana‐ Environmental Sciences, University of lyzed the CNglc distribution in selected heliconiine and Passiflora species. Copenhagen, Frederiksberg C, Copenhagen, Denmark. Sequestration of cyclopentenyl CNglcs is not an exclusive trait of Heliconius, since Email: [email protected] these compounds were present in other heliconiines such as Philaethria, Dryas and Funding information Agraulis, and in more distantly related genera Cethosia and Euptoieta. Thus, it is likely Independent Research Fund Denmark | that the ability to sequester cyclopentenyl CNglcs arose in an ancestor of the Natural Sciences, Grant/Award Number: 1323‐00088; Brazilian National Council Heliconiinae subfamily. Biosynthesis of aliphatic CNglcs is widespread in these but‐ for Scientific Development (CNPq), Grant/ terflies, although some species from the sara‐sapho group seem to have lost this abil‐ Award Number: 306985/2013-6 ity. The CNglc distribution within Passiflora suggests that they might have diversified their cyanogenic profile to escape heliconiine herbivory. This systematic analysis im‐ proves our understanding on the evolution of cyanogenesis in the heliconiine–Passi‐ flora system. KEYWORDS coevolution, cyanide, Heliconius, Lepidoptera, Passiflora, specialized metabolites 1 | INTRODUCTION evolved under the selection pressure from the chemical defenses of their hosts and adapted to handle their toxicity and even to utilize Land plants have been exposed to herbivores for over 430 million these metabolites for their own benefit (Nishida, 2014). years. To cope with this, plants produce a remarkable diversity of spe‐ The distasteful and colorful butterflies of the Heliconiini tribe cialized metabolites that act as chemical protections (Fürstenberg‐ selectively feed as larvae on plants from the Passiflora genus re‐ Hägg, Zagrobelny, & Bak, 2013). In turn, specialist herbivores have gardless of the plants’ chemical defenses which, effective against This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. Ecology and Evolution. 2019;9:5079–5093. www.ecolevol.org | 5079 5080 | PINHEIRO DE CASTRO et AL. most other herbivores. Due to their larval‐feeding specialization, that the ability to detoxify CNglcs preceded their ability to sequester heliconiines are also called passion vine butterflies. The species these compounds and perhaps even older than the ability to biosyn‐ diversity (more than 70 heliconiine and 600 passion vines) and thesize them (de Castro et al., 2018). multiplicity of feeding guilds found in the heliconiine–Passiflora CNglcs are some of the most ancient and widespread defense system offer a unique comparative potential to address many in‐ compounds produced by plants: Whereas other defense compounds triguing questions on evolutionary and chemical ecology (Gilbert, are typically restricted to a specific plant group, such as glucosino‐ 1991; Jiggins, 2017). The basal heliconiine genera Podotricha, lates in Brassicaceae, CNglcs are broadly distributed in 2,500 species Philaethria, Dryas, Dryadula, Dione, Agraulis, and Eueides (Kozak from ferns to flowering families (Gleadow & Møller, 2014). In insects, et al., 2015) are overall generalists, feeding on many Passiflora CNglc distribution is restricted to a few lineages within Coleoptera species. In contrast, different degrees of host specialization are and Hemiptera, which seem to obtain these compounds from their observed within Heliconius, the most diverse heliconiine genus, diet, and to some lepidopterans (moths and butterflies) where both with some close phylogenetic associations between infragenic biosynthesis and/or sequestration is rather widespread (Zagrobelny, groups of Heliconius and their Passiflora hosts (Arias et al., 2016; Castro, Møller, & Bak, 2018). Engler‐Chaouat & Gilbert, 2007). Heliconius species that perform CNglcs are glycosylated cyanide‐containing compounds that are pupal mating (erato and sara‐sapho groups), an unusual behavior not intrinsically poisonous as glucosides. However, tissue damage where adult males search for female pupae for mating and either caused by, for example, herbivore or predator attack leads to CNglcs penetrate the pupa or mate the female as soon as it emerges, are coming in contact with hydrolytic enzymes (β‐glucosidases and α‐hy‐ characterized by being specialists on Passiflora plants of the sub‐ droxynitrile lyases), which convert these compounds into toxic hy‐ genera Decaloba or Astrophea. Species of melpomene, silvaniforms, drogen cyanide (HCN) and aglycones (Pentzold et al., 2017). Protein and primitive groups (aoede, doris, wallacei), which comprise the and nonprotein amino acids are precursors for the biosynthesis of nonpupal mating clade, are overall specialists on Passiflora species CNglcs and can accordingly be classified as aliphatic, aromatic, or of the subgenus Passiflora (Benson, Brown, & Gilbert, 1975). cyclopentenoid (Figure 1). The aromatic and aliphatic CNglcs are The chemical defense of the genus Passiflora is comprised of dif‐ derived from protein amino acids like phenylalanine and valine and ferent types of cyanogenic glucosides (CNglcs), and the great suc‐ are broadly distributed in the Plant Kingdom (Zagrobelny et al., cess of heliconiines feeding on Passiflora could be due to the prior 2004). Contrarily, cyclopentenyl CNglcs are synthesized from the ability of these butterflies to biosynthesize CNglcs (Nahrstedt & nonprotein amino acid cyclopentenyl glycine and have been so far Davis, 1981). Subsequently, it has been hypothesized that the ability found in five closely related plant families of the Order Malpighiales: to handle the toxicity of CNglcs was one of the crucial traits that al‐ Passifloraceae, Turneraceae, Achariaceae, Salicaceae, and Violaceae lowed the ancestor of heliconiines to feed on these plants, implying (Bjarnholt et al., 2008; Tober & Conn, 1985). OH OH GlcO GlcO OH GlcO OH GlcO OH NC NC NC NC Tetraphyllin A (S) Gynocardin (1S, 4R)Dihydrogynocardin (1S,4R) Epivolkenin (1S, 4R) Deidaclin (R) Teraktophyllin (1R, 4S) Tetraphyllin B (1S, 4S) Volkenin (1R, 4R) CH3 HC3 CH3 HC3 GlcO OR RO OSOO2 NC NC RO CN RO CN (1S, 4R) (1S, 4R) R: Ant = Passibiflorin R: Glc = Tetraphylin B sulphate S R: Glc = Linamarin R: Glc = Lotaustralin R: Bov = Passicapsin R: Rha-Glc = Passicoccin S R: Glc-Glc = Linustatin R: Glc-Glc = Neolinustatin R: Alo = Passitrifasciatin Aromatics R: Glc = Prunasin Sugar Residue Abbreviations RO R: Alo = Passiedulin Aliphatics Glc: glucosyl Rha: rhamnosyl Alo: allosyl R: Glc-Glc = Amygdalin NC Cyclopentenoids Ant: antiarosyl Bov: bocinosyl H R: Rha-Glc = unamed FIGURE 1 Cyanogenic glucoside (CNglcs) structures reported in Passiflora species. Compounds with a gray background were also reported in heliconiines butterflies (Nahrstedt & Davis, 1981; Engler, Spencer, & Gilbert, 2000). Structures with name in gray are enantiomers PINHEIRO DE CASTRO et AL. | 5081 The biosynthetic pathway of aromatic and aliphatic CNglcs has sequester cyclopentenyl CNglcs from Passiflora. The analyses of the been characterized in several plant species. For example, in Lotus cyanogenic potential of Heliconius and other heliconiine species have japonicus the
Recommended publications
  • Origins of Six Species of Butterflies Migrating Through Northeastern

    Origins of Six Species of Butterflies Migrating Through Northeastern

    diversity Article Origins of Six Species of Butterflies Migrating through Northeastern Mexico: New Insights from Stable Isotope (δ2H) Analyses and a Call for Documenting Butterfly Migrations Keith A. Hobson 1,2,*, Jackson W. Kusack 2 and Blanca X. Mora-Alvarez 2 1 Environment and Climate Change Canada, 11 Innovation Blvd., Saskatoon, SK S7N 0H3, Canada 2 Department of Biology, University of Western Ontario, Ontario, ON N6A 5B7, Canada; [email protected] (J.W.K.); [email protected] (B.X.M.-A.) * Correspondence: [email protected] Abstract: Determining migratory connectivity within and among diverse taxa is crucial to their conservation. Insect migrations involve millions of individuals and are often spectacular. However, in general, virtually nothing is known about their structure. With anthropogenically induced global change, we risk losing most of these migrations before they are even described. We used stable hydrogen isotope (δ2H) measurements of wings of seven species of butterflies (Libytheana carinenta, Danaus gilippus, Phoebis sennae, Asterocampa leilia, Euptoieta claudia, Euptoieta hegesia, and Zerene cesonia) salvaged as roadkill when migrating in fall through a narrow bottleneck in northeast Mexico. These data were used to depict the probabilistic origins in North America of six species, excluding the largely local E. hegesia. We determined evidence for long-distance migration in four species (L. carinenta, E. claudia, D. glippus, Z. cesonia) and present evidence for panmixia (Z. cesonia), chain (Libytheana Citation: Hobson, K.A.; Kusack, J.W.; Mora-Alvarez, B.X. Origins of Six carinenta), and leapfrog (Danaus gilippus) migrations in three species. Our investigation underlines Species of Butterflies Migrating the utility of the stable isotope approach to quickly establish migratory origins and connectivity in through Northeastern Mexico: New butterflies and other insect taxa, especially if they can be sampled at migratory bottlenecks.
  • Annotated Checklist of the Butterflies of Bentsen-Rio Grande Valley State

    Annotated Checklist of the Butterflies of Bentsen-Rio Grande Valley State

    AN ANNOTATED CHECKLIST OF THE BUTTERFLIES (LEPIDOPTERA: RHOPALOCERA) OF BENTSEN-RIO GRANDE STATE VALLEY PARK AND VICINITY JUNE, 1974 Published by TEXAS PARKS & WILDLIFE DEPARTMENT BENTSEN-RIO GRANDE VALLEY STATE PARK P.O. 30X 988; MISSION, TEXAS 78572 INTRODUCTION The species listed here in are primarily a result of the collecting by the authors during the period 1972-1973. Certain important records of the previous several years are also included. Additionally, the checklist incorporates records of a number of other lepidopterists. The primary focus of the checklist, then, is upon recent collecting, rather than being an attempt to list all known records from the Mid-Valley area. All lepidopterists collecting in the park and vicinity are urged to send copies of their records to the authors and/or the park authorities. A number of species on the list have been taken in Hidalgo Co. but not yet within the actual confines of the park; the annotations will indicate which species these are. Some of these have been taken at Santa Ana National Wildlife Refuge, approximately thirty miles down river, in habitats similar to those within the park. Others have been taken within several miles of the park, in nearby towns and along roadsides. These species can be reasonably expected to occur in the park, and their inclusion upon this list should alert the collector to their possible presence. The annotations have been kept necessarily brief. They are intended to aid the visiting lepidopterist in evaluating the significance of his catches. Local larval food plants are given where known. Much, however, is still to be learned regarding the life histories of even some of the commoner species.
  • INSECTA: LEPIDOPTERA) DE GUATEMALA CON UNA RESEÑA HISTÓRICA Towards a Synthesis of the Papilionoidea (Insecta: Lepidoptera) from Guatemala with a Historical Sketch

    INSECTA: LEPIDOPTERA) DE GUATEMALA CON UNA RESEÑA HISTÓRICA Towards a Synthesis of the Papilionoidea (Insecta: Lepidoptera) from Guatemala with a Historical Sketch

    ZOOLOGÍA-TAXONOMÍA www.unal.edu.co/icn/publicaciones/caldasia.htm Caldasia 31(2):407-440. 2009 HACIA UNA SÍNTESIS DE LOS PAPILIONOIDEA (INSECTA: LEPIDOPTERA) DE GUATEMALA CON UNA RESEÑA HISTÓRICA Towards a synthesis of the Papilionoidea (Insecta: Lepidoptera) from Guatemala with a historical sketch JOSÉ LUIS SALINAS-GUTIÉRREZ El Colegio de la Frontera Sur (ECOSUR). Unidad Chetumal. Av. Centenario km. 5.5, A. P. 424, C. P. 77900. Chetumal, Quintana Roo, México, México. [email protected] CLAUDIO MÉNDEZ Escuela de Biología, Universidad de San Carlos, Ciudad Universitaria, Campus Central USAC, Zona 12. Guatemala, Guatemala. [email protected] MERCEDES BARRIOS Centro de Estudios Conservacionistas (CECON), Universidad de San Carlos, Avenida La Reforma 0-53, Zona 10, Guatemala, Guatemala. [email protected] CARMEN POZO El Colegio de la Frontera Sur (ECOSUR). Unidad Chetumal. Av. Centenario km. 5.5, A. P. 424, C. P. 77900. Chetumal, Quintana Roo, México, México. [email protected] JORGE LLORENTE-BOUSQUETS Museo de Zoología, Facultad de Ciencias, UNAM. Apartado Postal 70-399, México D.F. 04510; México. [email protected]. Autor responsable. RESUMEN La riqueza biológica de Mesoamérica es enorme. Dentro de esta gran área geográfi ca se encuentran algunos de los ecosistemas más diversos del planeta (selvas tropicales), así como varios de los principales centros de endemismo en el mundo (bosques nublados). Países como Guatemala, en esta gran área biogeográfi ca, tiene grandes zonas de bosque húmedo tropical y bosque mesófi lo, por esta razón es muy importante para analizar la diversidad en la región. Lamentablemente, la fauna de mariposas de Guatemala es poco conocida y por lo tanto, es necesario llevar a cabo un estudio y análisis de la composición y la diversidad de las mariposas (Lepidoptera: Papilionoidea) en Guatemala.
  • BUTTERFLIES in Thewest Indies of the Caribbean

    BUTTERFLIES in Thewest Indies of the Caribbean

    PO Box 9021, Wilmington, DE 19809, USA E-mail: [email protected]@focusonnature.com Phone: Toll-free in USA 1-888-721-3555 oror 302/529-1876302/529-1876 BUTTERFLIES and MOTHS in the West Indies of the Caribbean in Antigua and Barbuda the Bahamas Barbados the Cayman Islands Cuba Dominica the Dominican Republic Guadeloupe Jamaica Montserrat Puerto Rico Saint Lucia Saint Vincent the Virgin Islands and the ABC islands of Aruba, Bonaire, and Curacao Butterflies in the Caribbean exclusively in Trinidad & Tobago are not in this list. Focus On Nature Tours in the Caribbean have been in: January, February, March, April, May, July, and December. Upper right photo: a HISPANIOLAN KING, Anetia jaegeri, photographed during the FONT tour in the Dominican Republic in February 2012. The genus is nearly entirely in West Indian islands, the species is nearly restricted to Hispaniola. This list of Butterflies of the West Indies compiled by Armas Hill Among the butterfly groupings in this list, links to: Swallowtails: family PAPILIONIDAE with the genera: Battus, Papilio, Parides Whites, Yellows, Sulphurs: family PIERIDAE Mimic-whites: subfamily DISMORPHIINAE with the genus: Dismorphia Subfamily PIERINAE withwith thethe genera:genera: Ascia,Ascia, Ganyra,Ganyra, Glutophrissa,Glutophrissa, MeleteMelete Subfamily COLIADINAE with the genera: Abaeis, Anteos, Aphrissa, Eurema, Kricogonia, Nathalis, Phoebis, Pyrisitia, Zerene Gossamer Wings: family LYCAENIDAE Hairstreaks: subfamily THECLINAE with the genera: Allosmaitia, Calycopis, Chlorostrymon, Cyanophrys,
  • Final Lower Rio Grande Valley and Santa Ana National Wildlife

    Final Lower Rio Grande Valley and Santa Ana National Wildlife

    Final Lower Rio Grande Valley and Santa Ana National Wildlife Refuges Comprehensive Conservation Plan September 1997 (Reprint March 1999) U.S. Fish and Wildlife Service U.S. Department of the Interior Cover Artwork by Brian Cobble Table of Contents VISION........................................................................................................................................... 5 Executive Summary................................................................................................................... 6 1.0 Introduction and Regional Setting................................................................................. 8 1.1 LRGV Challenges............................................................................................... 8 2.0 Planning Perspectives and Considerations................................................................ 9 2.1 National Wildlife Refuge System ................................................................... 9 2.2 The Service & Ecosystem Management ...................................................... 9 2.3 Refuge Complex and Management Districts........................................... 10 2.4 Laguna Atascosa NWR -- A Partner with LRGV NWR............................ 10 2.5 Planning Perspectives.................................................................................... 10 2.6 The Issues.......................................................................................................... 11 2.7 The Need for Action........................................................................................
  • Ecology, Population Biology and Mortality of Euptoieta Hegesia Cramer (Nymphalidae) on Jamaica

    Ecology, Population Biology and Mortality of Euptoieta Hegesia Cramer (Nymphalidae) on Jamaica

    }<mrnal <1 the Lepidopterists' Society 52(1), 1998, 9-39 ECOLOGY, POPULATION BIOLOGY AND MORTALITY OF EUPTOIETA HEGESIA CRAMER (NYMPHALIDAE) ON JAMAICA PHILLIP J. SCHAPPERT] AND JOEL S. SHORE Department of Biology, York University, 4700 Keele Street, North York, Ontario M3J IP3, Canada ABSTRACT. We examine the ecology, population biology and potential sources of mortality of Euptoieta hegesia, a tropical lowland butterfly from Jamaica, using a combina­ tion of captive rearing, studies of natural populations, and experimental approaches. We provide detailed observations of the life cycle and methods for captive rearing of this spe­ cies. We assess the relative performance of larvae on primary and secondary hostplants, distribution of larvae on the primary hostplant, hostplant population utilization, and the distribution of E. hegesia on the island. A mark-release-recapture study was conducted to estimate population parameters and we recorded sex, size, age (as estimated by wing wear), and wing damage sustained by the butterflies prior to their initial capture. We pro­ vide evidence that Tumera ulmifdia is the plimary hostplant of K hegesia on Jamaica and that butterfly population size is not limited by the availability of hostplants. These short­ lived butterflies appear to be residents of discrete hostplant populations and experience high mortality levels. Females are damaged more frequently, show more total damage and more frequent symmetrical hindwing damage (attributablc to ground-based predators) than do males. Wc compare the results of the population study with available studies of other tropical butterflies and suggest that lowland butterfly population structure and dy­ namics are Significantly different from that of rainforest species.
  • Architecture and Robustness of Mutualistic Networks with Multiple Interaction Types

    Architecture and Robustness of Mutualistic Networks with Multiple Interaction Types

    Downloaded from http://rspb.royalsocietypublishing.org/ on November 23, 2016 Unravelling Darwin’s entangled bank: rspb.royalsocietypublishing.org architecture and robustness of mutualistic networks with multiple interaction types Wesley Da´ttilo1, Nubia Lara-Rodrı´guez2, Pedro Jordano3, Research Paulo R. Guimara˜es Jr4, John N. Thompson5, Robert J. Marquis6, Cite this article: Da´ttilo W et al. 2016 Lucas P. Medeiros4, Raul Ortiz-Pulido7, Maria A. Marcos-Garcı´a2 Unravelling Darwin’s entangled bank: and Victor Rico-Gray8 architecture and robustness of mutualistic 1 networks with multiple interaction types. Red de Ecoetologı´a, Instituto de Ecologı´a A.C., Carretera Antigua a Coatepec 351, El Haya, 91070 Xalapa, Veracruz, Mexico Proc. R. Soc. B 283: 20161564. 2Centro Iberoamericano de la Biodiversidad (CIBIO), Universidad de Alicante, 03690 Alicante, Spain http://dx.doi.org/10.1098/rspb.2016.1564 3Integrative Ecology Group, Estacio´n Biolo´gica de Don˜ana, 41092 Sevilla, Spain 4Departamento de Ecologia, Instituto de Biocieˆncias, Universidade de Sa˜o Paulo, 05508-900 Sa˜o Paulo, Brazil 5Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA 6 Received: 12 July 2016 Department of Biology and the Whitney R. Harris World Ecology Center, University of Missouri—St Louis, St Louis, MO 63121-4499, USA Accepted: 28 October 2016 7Centro de Investigaciones Biolo´gicas, Universidad Auto´noma del Estado de Hidalgo, Pachuca, Hidalgo 42001, Mexico 8Instituto de Neuroetologı´a, Universidad Veracruzana, 91190 Xalapa, Veracruz, Mexico WD, 0000-0002-4758-4379 Subject Areas: behaviour, ecology, evolution Trying to unravel Darwin’s entangled bank further, we describe the architec- ture of a network involving multiple forms of mutualism (pollination Keywords: by animals, seed dispersal by birds and plant protection by ants) and evaluate whether this multi-network shows evidence of a structure that coupled networks, keystone mutualists, promotes robustness.
  • Lepidoptera: Nymphalidae) THOMAS J

    Lepidoptera: Nymphalidae) THOMAS J

    Morphology, molecules and fritillaries: approaching a stable phylogeny for Argynnini (Lepidoptera: Nymphalidae) THOMAS J. SIMONSEN, NIKLAS WAHLBERG, ANDREW V. Z. BROWER and RIENK de JONG Insect Syst.Evol. Simonsen, T. J., Wahlberg, N. , Brower, A. V. Z. & de Jong, R.: Morphology, molecules and fritillaries: approaching a stable phylogeny for Argynnini (Lepidoptera: Nymphalidae). Insect Syst. Evol. 37: 405-418. Copenhagen, December, 2006. ISSN 1399-560X. We examine the phylogenetic relationships among 29 species of Argynnini based on 141 pre- viously published morphological characters and new data from the mitochondrial gene COI and the two nuclear genes EF-1a and wingless. We investigate the stability and robustness of the resulting phylogenetic hypotheses through various combinations of the 4 functionally sep- arate datasets. Increasing the number of datasets in combined analyses led to increased sup- port for clades, sometimes substantially. We find that the tribe Argynnini is a well-supported, robust, monophyletic clade with the following internal subtribal structure: (Euptoietina (Yrameina (Boloriina Argynnina))). Our analyses support the classification of argynnine species into six robust and stable genera: Euptoieta, Yramea, Boloria, Issoria, Brenthis and Argynnis. We suggest that for moderate amounts of data, a total evidence approach is always best. Thomas J. Simonsen, Department of Entomology, Zoological Museum, University of Copen- hagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark* Niklas Wahlberg, Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden Andrew V. Z. Brower, Department of Biology, Middle Tennessee State University, Murfrees- boro, TN 37132, USA Rienk de Jong, National Museum of Natural History, Department of Entomology, PO Box 9517, 2300 RA Leiden, The Netherlands *Corresponding author.
  • Lepidoptera Are Relevant Bioindicators of Passive Regeneration in Tropical Dry Forests

    Lepidoptera Are Relevant Bioindicators of Passive Regeneration in Tropical Dry Forests

    diversity Article Lepidoptera are Relevant Bioindicators of Passive Regeneration in Tropical Dry Forests Luc Legal 1,* , Marine Valet 1, Oscar Dorado 2, Jose Maria de Jesus-Almonte 2, Karime López 2 and Régis Céréghino 1 1 Laboratoire écologie fonctionnelle et environnement, Université Paul Sabatier, CNRS, 31062 Toulouse, France; [email protected] (M.V.); [email protected] (R.C.) 2 Centro de Educación Ambiental e Investigación Sierra de Huautla, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; [email protected] (O.D.); [email protected] (J.M.d.J.-A.); [email protected] (K.L.) * Correspondence: [email protected] Received: 12 April 2020; Accepted: 4 June 2020; Published: 9 June 2020 Abstract: Most evaluations of passive regeneration/natural succession or restoration have dealt with tropical rain forest or temperate ecosystems. Very few studies have examined the regeneration of tropical dry forests (TDF), one of the most damaged ecosystem types in the world. Owing to their species diversity and abundance, insects have been widely used as bioindicators of restoration. Butterflies were among the most abundant and useful groups. We sampled four sites with different levels of anthropogenic disturbance in a Mexican TDF (Morelos State) and compared butterfly communities. A first goal was to examine whether adult butterflies were significant bioindicators owing to their specificity to restricted habitats. A second aim was to determine if differences exist in butterfly communities between some fields abandoned from 4–8, 8–15 and 15–30 years and a reference zone considered as primary forest. We found 40% to 50% of the species of butterflies were specifically related to a habitat and/or a level of anthropogenic disturbance.
  • Book Review, of Systematics of Western North American Butterflies

    Book Review, of Systematics of Western North American Butterflies

    (NEW Dec. 3, PAPILIO SERIES) ~19 2008 CORRECTIONS/REVIEWS OF 58 NORTH AMERICAN BUTTERFLY BOOKS Dr. James A. Scott, 60 Estes Street, Lakewood, Colorado 80226-1254 Abstract. Corrections are given for 58 North American butterfly books. Most of these books are recent. Misidentified figures mostly of adults, erroneous hostplants, and other mistakes are corrected in each book. Suggestions are made to improve future butterfly books. Identifications of figured specimens in Holland's 1931 & 1898 Butterfly Book & 1915 Butterfly Guide are corrected, and their type status clarified, and corrections are made to F. M. Brown's series of papers on Edwards; types (many figured by Holland), because some of Holland's 75 lectotype designations override lectotype specimens that were designated later, and several dozen Holland lectotype designations are added to the J. Pelham Catalogue. Type locality designations are corrected/defined here (some made by Brown, most by others), for numerous names: aenus, artonis, balder, bremnerii, brettoides, brucei (Oeneis), caespitatis, cahmus, callina, carus, colon, colorado, coolinensis, comus, conquista, dacotah, damei, dumeti, edwardsii (Oarisma), elada, epixanthe, eunus, fulvia, furcae, garita, hermodur, kootenai, lagus, mejicanus, mormo, mormonia, nilus, nympha, oreas, oslari, philetas, phylace, pratincola, rhena, saga, scudderi, simius, taxiles, uhleri. Five first reviser actions are made (albihalos=austinorum, davenporti=pratti, latalinea=subaridum, maritima=texana [Cercyonis], ricei=calneva). The name c-argenteum is designated nomen oblitum, faunus a nomen protectum. Three taxa are demonstrated to be invalid nomina nuda (blackmorei, sulfuris, svilhae), and another nomen nudum ( damei) is added to catalogues as a "schizophrenic taxon" in order to preserve stability. Problems caused by old scientific names and the time wasted on them are discussed.
  • The Journal of Research on the Lepidoptera Volume 41 2002 (2009) the Journal of Research on the Lepidoptera

    The Journal of Research on the Lepidoptera Volume 41 2002 (2009) the Journal of Research on the Lepidoptera

    The Journal of Research on the Lepidoptera Volume 41 2002 (2009) Volume Lepidoptera the on Research of Journal The The Journal of Research on the Lepidoptera Volume 41 2002 (2009) IN THIS ISSUE Date of publication: January 31, 2009 PAPERS The life history of Hypanartia dione dione (Lepidoptera: Nymphalidae) in northeastern Ecuador Harold F. Greeney and Carina Chicaiza Aguirre 1 Updated phylogeny, taxonomy, and diversification ofJanthecla Robbins & Venables (Lycaenidae: Theclinae: Eumaeini) Robert K. Robbins and Robert C. Busby 5 δ 15N analyses of butterfly wings and bodies suggest minimal nitrogen absorption in carrion and dung puddling butterflies (Lepidoptera: Nymphalidae) Freerk Molleman and Jeremy Midgley 14 Cost-effectiveness of Philippine butterfly species used in live exhibits: an assessment of longevity, encounter rate and behaviour. Laura J. Robson, Adrienne Brewster and Gard Otis 17 The Neo-Riparian butterfly fauna of western Argentina Arthur M. Shapiro 24 Revisiting the pre-European butterfly fauna of the Sacramento Valley, California Arthur M. Shapiro 31 Population biology of Euptoieta hegesia (Nymphalidae: Heliconiinae: Argynnini) in an urban area in Southeastern Brazil Julia Losada Tourinho and André Victor Lucci Freitas 40 Observations of overwintering nymphalid butterflies in underground shelters in SW and W Bohemia (Czech Republic) (Lepidoptera: Nymphalidae: Nymphalini) Libor Dvoŕák, Joseph Belicek and Zdenĕk Fric 45 A revised classification scheme for larval hesperiid shelters, with comments on shelter diversity in the Pyrginae Harold F. Greeney 53 Preliminary field survey of butterflies on Xishan Hill (Kunming, Yunnan Province, China) Hu Shaoji 60 A newly observed form of symbiotic relationship between Reverdin’s blue Lycaeides argyrognomon praeterinsularis (Verity), (Lycaenidae) and Camponotus japonicus Mayr (Formicidae) Michihito Watanabe and Yasuo Hagiwara 70 NOTES Fabaceae, a new host plant family for Hypanartia and for the Neotropical Nymphalinae (Lepidoptera: Nymphalidae) Lucas A.
  • Sentinels on the Wing: the Status and Conservation of Butterflies in Canada

    Sentinels on the Wing: the Status and Conservation of Butterflies in Canada

    Sentinels on the Wing The Status and Conservation of Butterflies in Canada Peter W. Hall Foreword In Canada, our ties to the land are strong and deep. Whether we have viewed the coasts of British Columbia or Cape Breton, experienced the beauty of the Arctic tundra, paddled on rivers through our sweeping boreal forests, heard the wind in the prairies, watched caribou swim the rivers of northern Labrador, or searched for song birds in the hardwood forests of south eastern Canada, we all call Canada our home and native land. Perhaps because Canada’s landscapes are extensive and cover a broad range of diverse natural systems, it is easy for us to assume the health of our important natural spaces and the species they contain. Our country seems so vast compared to the number of Canadians that it is difficult for us to imagine humans could have any lasting effect on nature. Yet emerging science demonstrates that our natural systems and the species they contain are increas- ingly at risk. While the story is by no means complete, key indicator species demonstrate that Canada’s natural legacy is under pressure from a number of sources, such as the conversion of lands for human uses, the release of toxic chemicals, the introduction of new, invasive species or the further spread of natural pests, and a rapidly changing climate. These changes are hitting home and, with the globalization and expansion of human activities, it is clear the pace of change is accelerating. While their flights of fancy may seem insignificant, butterflies are sentinels or early indicators of this change, and can act as important messengers to raise awareness.