The Longitudinal Effects of Screen Time on Myopia Prevalence
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal. -
Radial and Tangential Dispersion Patterns in the Mouse Retina Are Cell
Proc. Natl. Acad. Sci. USA Vol. 92, pp. 2494-2498, March 1995 Neurobiology Radial and tangential dispersion patterns in the mouse retina are cell-class specific (cell migration/cell lineage/retinal development/transgenic mice/X chromosome inactivation) B. E. REESE*, A. R. HARvEyt, AND S.-S. TANt§ *Neuroscience Research Institute and Department of Psychology, University of California, Santa Barbara, CA 93106; tDepartment of Anatomy and Human Biology, University of Western Australia, Nedlands, WA 6009 Australia; and tDepartment of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria 3052, Australia Communicated by Pasko Rakic, Yale University School ofMedicine, New Haven, CT, December 16, 1994 ABSTRACT The retina is derived from a pseudostratified retinal cells remain clonally segregated, they should appear as germinal zone in which the relative position of a progenitor distinct groups of blue versus white cells. We have used this cell is believed to determine the position ofthe progeny aligned approach to address the issue of whether radially aligned cells in the radial axis. Such a developmental mechanism would in the mature retina reflect such a clonal derivation. ensure that radial arrays of cells which comprise functional units in the mature central nervous system are also clonally MATERIALS AND METHODS related. The present study has tested this hypothesis by using Retinas from adult transgenic mice, derived from founder line X chromosome-inactivation transgenic mosaic mice. We re- H253, which carries a lacZ transgene -
Anatomy and Physiology of the Afferent Visual System
Handbook of Clinical Neurology, Vol. 102 (3rd series) Neuro-ophthalmology C. Kennard and R.J. Leigh, Editors # 2011 Elsevier B.V. All rights reserved Chapter 1 Anatomy and physiology of the afferent visual system SASHANK PRASAD 1* AND STEVEN L. GALETTA 2 1Division of Neuro-ophthalmology, Department of Neurology, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA 2Neuro-ophthalmology Division, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA INTRODUCTION light without distortion (Maurice, 1970). The tear–air interface and cornea contribute more to the focusing Visual processing poses an enormous computational of light than the lens does; unlike the lens, however, the challenge for the brain, which has evolved highly focusing power of the cornea is fixed. The ciliary mus- organized and efficient neural systems to meet these cles dynamically adjust the shape of the lens in order demands. In primates, approximately 55% of the cortex to focus light optimally from varying distances upon is specialized for visual processing (compared to 3% for the retina (accommodation). The total amount of light auditory processing and 11% for somatosensory pro- reaching the retina is controlled by regulation of the cessing) (Felleman and Van Essen, 1991). Over the past pupil aperture. Ultimately, the visual image becomes several decades there has been an explosion in scientific projected upside-down and backwards on to the retina understanding of these complex pathways and net- (Fishman, 1973). works. Detailed knowledge of the anatomy of the visual The majority of the blood supply to structures of the system, in combination with skilled examination, allows eye arrives via the ophthalmic artery, which is the first precise localization of neuropathological processes. -
Microscopic Anatomy of Ocular Globe in Diurnal Desert Rodent Psammomys Obesus (Cretzschmar, 1828) Ouanassa Saadi-Brenkia1,2* , Nadia Hanniche2 and Saida Lounis1,2
Saadi-Brenkia et al. The Journal of Basic and Applied Zoology (2018) 79:43 The Journal of Basic https://doi.org/10.1186/s41936-018-0056-0 and Applied Zoology RESEARCH Open Access Microscopic anatomy of ocular globe in diurnal desert rodent Psammomys obesus (Cretzschmar, 1828) Ouanassa Saadi-Brenkia1,2* , Nadia Hanniche2 and Saida Lounis1,2 Abstract Background: The visual system of desert rodents demonstrates a rather high degree of development and specific features associated with adaptation to arid environment. The aim of this study is to carry out a descriptive investigation into the most relevant features of the sand rat eye. Results: Light microscopic observations revealed that the eye of Psammomys obesus diurnal species, appears similar to that of others rodent with characteristic mammalian organization. The eye was formed by the three distinct layers typical in vertebrates: fibrous tunic (sclera and cornea); vascular tunic (Iris, Ciliary body, Choroid); nervous tunic (retina). Three chambers of fluid fundamentals in maintaining the eyeball’s normal size and shape: Anterior chamber (between cornea and iris), Posterior chamber (between iris, zonule fibers and lens) and the Vitreous chamber (between the lens and the retina) The first two chambers are filled with aqueous humor whereas the vitreous chamber is filled with a more viscous fluid, the vitreous humor. These fluids are made up of 99.9% water. However, the main features, related to life style and arid environment, are the egg-shaped lens, the heavy pigmentation of the middle layer and an extensive folding of ciliary processes, thus developing a large surface area, for ultrafiltration and active fluid transport, this being the actual site of aqueous production. -
Accommodation
ACCOMMODATION (LECTURE SUPPLEMENT #1) Comparative methods of accommodation Because the eye has several optical elements there are a number of ways that the conjugate focus can be altered, and various creatures exploit most of these mechanisms Axial length: Changes in length of the eye have the effect of changing its optical power. Ex. Statically, The horse has a “ramp retina” which provides for a static difference in conjugate focus for different directions of gaze. On a longer time scale, Chickens show a change in axial length during development that depends on their refractive error. Monkeys have recently been shown (By Dr. Smith’s group) to have a similar mechanism. Dynamically, certain eels can shorten their axial length by constriction of a muscle. Corneal Shape: The cornea is the most powerful optical element in the eye, so small changes in its shape can produce significant changes in conjugate focus. Ex: Owls change the shape of their eye as a means of accommodating. Lens Position: The power of the eye’s optics is determined in part by the distance from lens to cornea, and many mammals, such as cats and raccoons, accommodate by simply moving the lens forward. Ex: The Lamprey lens is moved backwards by its cornealis muscle, resulting in active negative accommodation. The human lens moves forward somewhat during accommodation, contributing to the overall change in dioptric power. Lens Shape: Altering lens shape is the principal mechanism of primate accommodation. Among mammals this is rare, however. Dynamically, some birds and turtles constrict the lens using a combination of ciliary muscle and iris, causing the anterior surface to bulge forward. -
Physiology of the Retina
PHYSIOLOGY OF THE RETINA András M. Komáromy Michigan State University [email protected] 12th Biannual William Magrane Basic Science Course in Veterinary and Comparative Ophthalmology PHYSIOLOGY OF THE RETINA • INTRODUCTION • PHOTORECEPTORS • OTHER RETINAL NEURONS • NON-NEURONAL RETINAL CELLS • RETINAL BLOOD FLOW Retina ©Webvision Retina Retinal pigment epithelium (RPE) Photoreceptor segments Outer limiting membrane (OLM) Outer nuclear layer (ONL) Outer plexiform layer (OPL) Inner nuclear layer (INL) Inner plexiform layer (IPL) Ganglion cell layer Nerve fiber layer Inner limiting membrane (ILM) ©Webvision Inherited Retinal Degenerations • Retinitis pigmentosa (RP) – Approx. 1 in 3,500 people affected • Age-related macular degeneration (AMD) – 15 Mio people affected in U.S. www.nei.nih.gov Mutations Causing Retinal Disease http://www.sph.uth.tmc.edu/Retnet/ Retina Optical Coherence Tomography (OCT) Histology Monkey (Macaca fascicularis) fovea Ultrahigh-resolution OCT Drexler & Fujimoto 2008 9 Adaptive Optics Roorda & Williams 1999 6 Types of Retinal Neurons • Photoreceptor cells (rods, cones) • Horizontal cells • Bipolar cells • Amacrine cells • Interplexiform cells • Ganglion cells Signal Transmission 1st order SPECIES DIFFERENCES!! Photoreceptors Horizontal cells 2nd order Bipolar cells Amacrine cells 3rd order Retinal ganglion cells Visual Pathway lgn, lateral geniculate nucleus Changes in Membrane Potential Net positive charge out Net positive charge in PHYSIOLOGY OF THE RETINA • INTRODUCTION • PHOTORECEPTORS • OTHER RETINAL NEURONS -
Exfoliation of the Superficial Layer of the Lens Capsule and Its Relation to Glaucoma Simplex, and I Feel Deeply Thankful for the Honour Thus Shown Me
Br J Ophthalmol: first published as 10.1136/bjo.21.12.625 on 1 December 1937. Downloaded from THE BRITISH JOURNAL OF OPHTHALMOLOGY DECEMBER, 1937 COMMUNICATIONS EXFOLIATION OF THE SUPERFICIAL LAYER by copyright. OF THE LENS CAPSULE (VOGT) AND ITS RELATION TO GLAUCOMA SIMPLEX* BY EIVIND H6RVEN FROM THE OPHTHALMIC SECTION OF THE UNIVERSITY CLINIC IN OSLO. CHIEF: PROFESSOR HAGEN http://bjo.bmj.com/ MY former chief, Professor Hagen, has asked me to give an account of my investigations respecting exfoliation of the superficial layer of the lens capsule and its relation to glaucoma simplex, and I feel deeply thankful for the honour thus shown me. Meanwhile I fear that much of what I have to say is already well known to my hearers, and therefore perhaps of little interest. It was in 1925 that the Swiss author, Vogt, described the disease on September 27, 2021 by guest. Protected to which he later gave the name " Exfoliatio superficialis capsulae anterioris," in which we see a round, grayish-white disc on the surface of the lens in the pupillary area (" Pupillarscheibe "). Outside this there is a part where the capsule seems normal, and then comes in the periphery a ribbon-shaped, denticulated, whitish portion resembling a coronet. Besides these changes there are seen in nearly all cases scurf-like flakes on the pupillary border. * Paper read before members of the North of England Ophthalmological Society in Oslo, June 6, 1937. Published in Acta Ophthal., Vol. XIV, 1936. Br J Ophthalmol: first published as 10.1136/bjo.21.12.625 on 1 December 1937. -
Primary Retinal Pathology in Multiple Sclerosis As Detected by Optical Coherence Tomography Downloaded From
doi:10.1093/brain/awq346 Brain 2011: 134; 518–533 | 518 BRAIN A JOURNAL OF NEUROLOGY Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography Downloaded from Shiv Saidha,1 Stephanie B. Syc,1 Mohamed A. Ibrahim,2 Christopher Eckstein,1 Christina V. Warner,1 Sheena K. Farrell,1 Jonathan D. Oakley,3 Mary K. Durbin,3 Scott A. Meyer,3 Laura J. Balcer,4 Elliot M. Frohman,5 Jason M. Rosenzweig,1 Scott D. Newsome,1 John brain.oxfordjournals.org N. Ratchford,1 Quan D. Nguyen2 and Peter A. Calabresi1 1 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 2 Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 3 Carl Zeiss Meditec Inc, Dublin, CA, USA 4 Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA 5 Department of Neurology and Ophthalmology, University of Texas Southwestern, Dallas, TX, USA at University of Texas Southwestern Medical Center Dallas on February 23, 2011 Correspondence to: Dr Peter A. Calabresi, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Pathology 627, Baltimore, MD 21287, USA E-mail: [email protected] Optical coherence tomography studies in multiple sclerosis have primarily focused on evaluation of the retinal nerve fibre layer. The aetiology of retinal changes in multiple sclerosis is thought to be secondary to optic nerve demyelination. The objective of this study was to use optical coherence tomography to determine if a subset of patients with multiple sclerosis exhibit primary retinal neuronopathy, in the absence of retrograde degeneration of the retinal nerve fibre layer and to ascertain if such patients may have any distinguishing clinical characteristics. -
Penetration Enhancers in Ocular Drug Delivery
pharmaceutics Review Penetration Enhancers in Ocular Drug Delivery Roman V. Moiseev 1 , Peter W. J. Morrison 1 , Fraser Steele 2 and Vitaliy V. Khutoryanskiy 1,* 1 Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK 2 MC2 Therapeutics, James House, Emlyn Lane, Leatherhead KT22 7EP, UK * Correspondence: [email protected]; Tel.: +44-(0)-118-378-6119 Received: 30 May 2019; Accepted: 3 July 2019; Published: 9 July 2019 Abstract: There are more than 100 recognized disorders of the eye. This makes the development of advanced ocular formulations an important topic in pharmaceutical science. One of the ways to improve drug delivery to the eye is the use of penetration enhancers. These are defined as compounds capable of enhancing drug permeability across ocular membranes. This review paper provides an overview of anatomical and physiological features of the eye and discusses some common ophthalmological conditions and permeability of ocular membranes. The review also presents the analysis of literature on the use of penetration-enhancing compounds (cyclodextrins, chelating agents, crown ethers, bile acids and bile salts, cell-penetrating peptides, and other amphiphilic compounds) in ocular drug delivery, describing their properties and modes of action. Keywords: ocular drug delivery; cornea; penetration enhancers; ocular conditions; ophthalmology 1. Introduction According to the World Health Organization, the number of people who live with some form of distance or near vision impairment is about 1.3 billion worldwide [1]. This problem is very important because approximately 80% of external input of information delivered to the brain is processed by the visual pathway [2]. -
Myo/Nog Cells Are Present in the Ciliary Processes, on the Zonule Of
CORE Metadata, citation and similar papers at core.ac.uk Provided by Philadelphia College of Osteopathic Medicine: DigitalCommons@PCOM Philadelphia College of Osteopathic Medicine DigitalCommons@PCOM PCOM Scholarly Papers 3-17-2018 Myo/Nog Cells Are Present in the Ciliary Processes, on the Zonule of Zinn and Posterior Capsule of the Lens Following Cataract Surgery Jacquelyn Gerhart Philadelphia College of Osteopathic Medicine, [email protected] Colleen Withers Philadelphia College of Osteopathic Medicine, [email protected] Colby Gerhart Liliana Werner Nick Mamalis See next page for additional authors Follow this and additional works at: https://digitalcommons.pcom.edu/scholarly_papers Part of the Medicine and Health Sciences Commons Recommended Citation Gerhart, Jacquelyn; Withers, Colleen; Gerhart, Colby; Werner, Liliana; Mamalis, Nick; Bravo Nuevo, Arturo; Scheinfeld, Victoria; FitzGerald, Paul; Getts, Robert; and George-Weinstein, Mindy, "Myo/Nog Cells Are Present in the Ciliary Processes, on the Zonule of Zinn and Posterior Capsule of the Lens Following Cataract Surgery" (2018). PCOM Scholarly Papers. 1908. https://digitalcommons.pcom.edu/scholarly_papers/1908 This Article is brought to you for free and open access by DigitalCommons@PCOM. It has been accepted for inclusion in PCOM Scholarly Papers by an authorized administrator of DigitalCommons@PCOM. For more information, please contact [email protected]. Authors Jacquelyn Gerhart, Colleen Withers, Colby Gerhart, Liliana Werner, Nick Mamalis, Arturo Bravo Nuevo, Victoria Scheinfeld, -
Índice De Denominacións Españolas
VOCABULARIO Índice de denominacións españolas 255 VOCABULARIO 256 VOCABULARIO agente tensioactivo pulmonar, 2441 A agranulocito, 32 abaxial, 3 agujero aórtico, 1317 abertura pupilar, 6 agujero de la vena cava, 1178 abierto de atrás, 4 agujero dental inferior, 1179 abierto de delante, 5 agujero magno, 1182 ablación, 1717 agujero mandibular, 1179 abomaso, 7 agujero mentoniano, 1180 acetábulo, 10 agujero obturado, 1181 ácido biliar, 11 agujero occipital, 1182 ácido desoxirribonucleico, 12 agujero oval, 1183 ácido desoxirribonucleico agujero sacro, 1184 nucleosómico, 28 agujero vertebral, 1185 ácido nucleico, 13 aire, 1560 ácido ribonucleico, 14 ala, 1 ácido ribonucleico mensajero, 167 ala de la nariz, 2 ácido ribonucleico ribosómico, 168 alantoamnios, 33 acino hepático, 15 alantoides, 34 acorne, 16 albardado, 35 acostarse, 850 albugínea, 2574 acromático, 17 aldosterona, 36 acromatina, 18 almohadilla, 38 acromion, 19 almohadilla carpiana, 39 acrosoma, 20 almohadilla córnea, 40 ACTH, 1335 almohadilla dental, 41 actina, 21 almohadilla dentaria, 41 actina F, 22 almohadilla digital, 42 actina G, 23 almohadilla metacarpiana, 43 actitud, 24 almohadilla metatarsiana, 44 acueducto cerebral, 25 almohadilla tarsiana, 45 acueducto de Silvio, 25 alocórtex, 46 acueducto mesencefálico, 25 alto de cola, 2260 adamantoblasto, 59 altura a la punta de la espalda, 56 adenohipófisis, 26 altura anterior de la espalda, 56 ADH, 1336 altura del esternón, 47 adipocito, 27 altura del pecho, 48 ADN, 12 altura del tórax, 48 ADN nucleosómico, 28 alunarado, 49 ADNn, 28 -
Morphological and Functional Features of the Structure of the Zonula Lens Fibers As a Key Executive Link in the Mechanism of the Human Eye Accommodation
ISSN: 2455-1414 DOI: https://dx.doi.org/10.17352/jcro CLINICAL GROUP Received: 07 July, 2020 Review Article Accepted: 21 July, 2020 Published: 22 July, 2020 *Corresponding author: Olga V Svetlova, Professor, Theory: Morphological and Department of the Ophthalmology, North-Western State Medical University named after I.I. Mechnikov, Kiroch- naya ul. 41, Saint-Petersburg, 191015, Russia, Tel: +7 functional features of the 921 9724900; E-mail: Keywords: Lens; Pressure inside the lens; Mechanisms of lens accommodation; Zonula lens structure of the Zonula Lens fi bers; Morphophysiology; Biomechanics of the eye Fibers as a key executive https://www.peertechz.com link in the mechanism of the human eye accommodation Ivan N Koshits1, Olga V Svetlova2*, Maksat B Egemberdiev3, Marina G Guseva4, Felix N Makarov5 and Nikolas M Roselo Kesada6 1Biomechanics, General Director, Petercom-Networks / Management Systems Consulting Group, Cl. Corp., Saint-Petersburg, Russia 2Professor, Department of the Ophthalmology North-Western State Medical University named after I.I. Mechnikov, Saint-Petersburg, Russia 3Chief of the Department of Ophthalmology, Chuy Region United Hospital, Bishkek, Kyrgyzstan 4Ophthalmologist, Optometrist Medical Diagnostic Center of the Public company, Vodokanal of Saint- Petersburg, Saint-Petersburg, Russia 5Professor, Chief of the laboratory of Neuro Morphology of the Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint-Petersburg, Russia 6Postgraduate student of the Department of ophthalmology, Pirogov Russian National Research Medical University, Moscow, Russia Abstract Purpose: Assess morphophysiological and functional features of the structure of the zonula lens fi bers on the basis of an in-depth analysis consistent with the laws of mechanics. Defi ne the purpose and scope of each portion of the zonula lens fi bers.