RVX-208, an Inhibitor of BET Transcriptional Regulators with Selectivity for the Second Bromodomain

Total Page:16

File Type:pdf, Size:1020Kb

RVX-208, an Inhibitor of BET Transcriptional Regulators with Selectivity for the Second Bromodomain RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain Sarah Picauda, Christopher Wellsa, Ildiko Felletara, Deborah Brothertona, Sarah Martina, Pavel Savitskya, Beatriz Diez-Dacalb, Martin Philpotta, Chas Bountraa, Hannah Lingarda, Oleg Fedorova, Susanne Müllera, Paul E. Brennana, Stefan Knappa,c,1, and Panagis Filippakopoulosa,b,1 aStructural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom; bLudwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom; and cTarget Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7BN United Kingdom Edited by Angela M. Gronenborn, University of Pittsburgh School of Medicine, Pittsburgh, PA, and approved October 23, 2013 (received for review June 5, 2013) Bromodomains have emerged as attractive candidates for the (7), multiple myeloma (16), acute myeloid and mixed lineage development of inhibitors targeting gene transcription. Inhibitors leukemia (17), lung cancer (18), and glioblastoma (19). of the bromo and extraterminal (BET) family recently showed BET family members play an essential role in diverse cellular promising activity in diverse disease models. However, the pleio- processes, including general transcriptional elongation (20, 21), tropic nature of BET proteins regulating tissue-specific transcription replication (22), hematopoiesis (23), adipogenesis (24, 25), and has raised safety concerns and suggested that attempts should be spermatogenesis (26), suggesting that drug discovery efforts made for domain-specific targeting. Here, we report that RVX-208, should explore isoform, or even domain-specifictargeting,to a compound currently in phase II clinical trials, is a BET bromodo- avoid adverse effects of prolonged pan-BET inhibition during main inhibitor specific for second bromodomains (BD2s). Cocrystal treatment in different tissues. structures revealed binding modes of RVX-208 and its synthetic pre- The quinazolone RVX-208 (Fig. 1A) has been developed by cursor, and fluorescent recovery after photobleaching demon- Resverlogix Corporation for the treatment of cardiovascular strated that RVX-208 displaces BET proteins from chromatin. diseases associated with atherosclerosis (27, 28) and has more However, gene-expression data showed that BD2 inhibition only recently entered clinical studies on Alzheimer’s disease (29). BIOCHEMISTRY modestly affects BET-dependent gene transcription. Our data RVX-208 is a derivative of the plant polyphenol resveratrol fi demonstrate the feasibility of speci c targeting within the BET (3,4’,5-trihydroxy-transstilbene) that leads to an increase of family resulting in different transcriptional outcomes and high- plasma levels of the high-density lipid protein ApoA1. Increasing light the importance of BD1 in transcriptional regulation. ApoA1 levels has emerged as a promising approach for the treatment of atherosclerosis (30), and recent phase IIb clinical small molecule inhibitor | epigenetics | microarray | ApoA1 trial data using RVX-208 as an ApoA1 modulator have been encouraging (28). ApoA1 expression is regulated by BET pro- CHEMISTRY romodomains (BRDs) are protein-interaction modules that teins, and chemical inhibition of BET bromodomains has been Bare selectively recruited to e-N-acetylated lysine-containing associated with ApoA1 up-regulation on transcriptional and sequences. BRDs are present in 46 diverse, mostly nuclear pro- protein levels (9, 31, 32). As a consequence, a similar mode of teins functioning as effector domains of transcriptional regu- action has also been suggested for RVX-208, but no data char- lators, chromatin modulators, and chromatin-modifying enzymes acterizing the RVX-208/BET interaction have been published so (1). BRD-containing proteins have been implicated in the de- far. The promising clinical outcome of RVX-208 trials and the velopment of many diverse diseases, and the architecture of their presumed function of RVX-208 as a BRD inhibitor prompted us acetyl-lysine binding pocket makes them attractive targets for the fi development of potent and speci c inhibitors (2, 3). All BRD Significance modules share a conserved fold comprising a left-handed helical bundle creating a deep, largely hydrophobic and aromatic bind- fi Bromo and extraterminal (BET) proteins have diverse roles in ing pocket for the speci c recognition of peptide sequences fi e – regulating tissue-speci c transcriptional programs, raising safety containing one or more -N-acetylated lysine residues (1, 4 6). concerns for their inhibition and suggesting that targeting of In particular the bromo and extraterminal (BET) proteins, specific isoforms or even specific domains within this subfamily which comprise four members in human (BRD2, BRD3, BRD4, fi is important. We report the discovery and characterization of and the testis-speci c BRDT), recently received a lot of atten- RVX-208 as a domain-selective inhibitor of BETs and provide tion after highly potent and cell-active pan-BET inhibitors were a potential mechanism of action of a clinical compound that was – developed (7 10). BETs are transcriptional regulators that identified based on phenotypic screens. control expression of genes that play key regulatory roles in cellular proliferation, cell cycle progression, and apoptosis (11, Author contributions: C.B., H.L., O.F., S. Müller, P.E.B., S.K., and P.F. designed research; S.P., 12). Dysfunction of BET proteins has been associated with the C.W., I.F., D.B., S. Martin, P.S., B.D.-D., M.P., and P.F. performed research; S.P., C.W., B.D.-D., development of aggressive tumors, such as NUT midline carci- O.F., S.K., and P.F. analyzed data; and S.K. and P.F. wrote the paper. noma (NMC). In NMC, the N-terminal bromodomains of BRD3 The authors declare no conflict of interest. or BRD4 are fused in frame with the testis-specific protein NUT This article is a PNAS Direct Submission. (nuclear protein in testis), giving rise to an incurable fatal sub- Freely available online through the PNAS open access option. type of squamous carcinoma and in some cases tumors of other Data deposition: The crystal structures reported in this paper have been deposited in the tissue origin (13). Importantly, BETs play a critical role in tu- Protein Data Bank, www.pdb.org (4MR3–4MR6). Microarray data have been deposited in the Gene Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession no. morigenesis also outside NMCs by driving the expression of GSE51143). genes that are essential for tumor growth and survival, such as 1 To whom correspondence may be addressed. E-mail: panagis.fi[email protected]. c-Myc (14) and Aurora B (15). The potent pan-BET inhibitors uk or [email protected]. + fi ( )-JQ1 and GSK1210151A (I-BET151) have exhibited signi cant This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. antitumor activity in murine models of NUT midline carcinoma 1073/pnas.1310658110/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1310658110 PNAS Early Edition | 1of6 Downloaded by guest on September 24, 2021 o ΔTm ( C) A RVX-208: R = -O(CH22 ) OH B BRD2/BD2 BRD3/BD2 R RVX-OH: R = -OH BRD3/BD1 > 4 BRD4/BD1 RVX-H: R = -H BRD4/BD2 BRD2/BD1 BRDT 3 - 4 /BD1 O N BRDT/BD2 2 - 3 1 - 2 FALZ GCN5L2 0 - 1 BAZ1A CECR2 PCAF NH EP300 < 0 CREBBP fi BRD8B Fig. 1. In vitro selectivity pro le of RVX-208. (A) WDR9/BD2 BRD8B PB1/BD1 PB1/BD3 /BD1 PB1/BD2 PHIP/BD2 /BD2 Structure of the inhibitor RVX-208 and its precursor OO PB1/BD4 BRWD3/BD2 ASH1L PB1/BD5 RVX-OH. (B) Selectivity of RVX-208 within the human C BAZ1B SMARCA2A BRD9 bromodomain family determined using a thermal 100 RVX-208 SMARCA2B BRD7 Δ obs μ BD1 PB1/BD6 SMARCA4 shift assay. Temperature shifts ( Tm in °C, at 10 M 75 BRPF3 BRPF1B BRWD3/BD1 compound concentration) are shown as spheres as BD2 BRD1 BRPF1A ATAD2 PHIP/BD1 50 RVX-OH KIAA1240 WDR9/BD1 indicated in the Inset. Screened proteins are shown MLL BD1 TRIM66 TRIM28 PRKCBP1 in bold. (C) Competitive displacement of a tetra- 25 BD2 BAZ2A TRIM33B BAZ2B ZMYND11 TAF1/BD1 acetylated histone H4 peptide (H4 – K5 /K8 / Inhibition (%) 1 20 ac ac 0 TRIM33A TIF1α SP110C TAF1L/BD1 K12ac/K16ac) from BD1 and BD2 of BRD3 using RVX- SP110A TAF1/BD2 -7 -6 -5 -4 SP100 TAF1L/BD2 208 or RVX-OH (as indicated in the Inset) in a bead- [compound] (log(M)) SP140 LOC93349 based proximity assay (ALPHA assay). (D) Isothermal D E titration calorimetry (ITC) binding study. Data col- 0.0 0.00 lected against the bromodomains of BRD3, showing raw injection heats for titrations of protein (BD1 or 0 0 BD2) into compound. The Inset shows the normal- -0.05 -1 -0.1 -2 ized binding enthalpies corrected for the heat of -2 BD1 -4 protein dilution as a function of binding site satu- cal/sec) -3 fi cal/sec) RVX-208 ration (symbols as indicated in the gure). Solid lines μ -6 -0.10 -4 μ RVX-OH represent a nonlinear least squares fit using a single- P ( -8 P ( BD2 Δ BD1 -5 -0.2 Δ -10 site binding model. (E) Isothermal titration calorimetry kcal/mole of injectant RVX-208 BD2 -6 (ITC) evaluation of RVX-208 and RVX-OH against the RVX-OH kcal/mole of injectant -0.15 -12 01234 bromodomains of BRD4. Data have been corrected BRD3 Molar Ratio BRD4 01234 Molar Ratio and displayed as described in D. All ITC titrations were 0 1020304050607080 -0.3 0 10203040506070 carried out in 50 mM Hepes, pH 7.5 (at 25 °C), 150 mM Time (min) Time (min) NaCl and 15 °C while stirring at 1,000 rpm. to study its role regulating BET-dependent transcription. In- minor changes (Fig. S1C) and to study its interaction with human terestingly, we found that RVX-208 is specific for BET bromodo- BRD proteins.
Recommended publications
  • Functional Roles of Bromodomain Proteins in Cancer
    cancers Review Functional Roles of Bromodomain Proteins in Cancer Samuel P. Boyson 1,2, Cong Gao 3, Kathleen Quinn 2,3, Joseph Boyd 3, Hana Paculova 3 , Seth Frietze 3,4,* and Karen C. Glass 1,2,4,* 1 Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; [email protected] 2 Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; [email protected] 3 Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; [email protected] (C.G.); [email protected] (J.B.); [email protected] (H.P.) 4 University of Vermont Cancer Center, Burlington, VT 05405, USA * Correspondence: [email protected] (S.F.); [email protected] (K.C.G.) Simple Summary: This review provides an in depth analysis of the role of bromodomain-containing proteins in cancer development. As readers of acetylated lysine on nucleosomal histones, bromod- omain proteins are poised to activate gene expression, and often promote cancer progression. We examined changes in gene expression patterns that are observed in bromodomain-containing proteins and associated with specific cancer types. We also mapped the protein–protein interaction network for the human bromodomain-containing proteins, discuss the cellular roles of these epigenetic regu- lators as part of nine different functional groups, and identify bromodomain-specific mechanisms in cancer development. Lastly, we summarize emerging strategies to target bromodomain proteins in cancer therapy, including those that may be essential for overcoming resistance. Overall, this review provides a timely discussion of the different mechanisms of bromodomain-containing pro- Citation: Boyson, S.P.; Gao, C.; teins in cancer, and an updated assessment of their utility as a therapeutic target for a variety of Quinn, K.; Boyd, J.; Paculova, H.; cancer subtypes.
    [Show full text]
  • Environmental Influences on Endothelial Gene Expression
    ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community.
    [Show full text]
  • Differences for Ectopic Versus Eutopic Cells
    556 RBMO VOLUME 39 ISSUE 4 2019 ARTICLE Chemosensitivity and chemoresistance in endometriosis – differences for ectopic versus eutopic cells BIOGRAPHY Andres Salumets is Professor of Reproductive Medicine at the University of Tartu, and Scientific Head at the Competence Centre on Health Technologies, Tartu, Estonia. He has been involved in assisted reproduction for 20 years, first as an embryologist and later as a researcher. His major interests are endometriosis, endometrial biology and implantation. Darja Lavogina1,2,*, Külli Samuel1, Arina Lavrits1,3, Alvin Meltsov1, Deniss Sõritsa1,4,5, Ülle Kadastik6, Maire Peters1,4, Ago Rinken2, Andres Salumets1,4,7, 8 KEY MESSAGE Akt/PKB inhibitor GSK690693, CK2 inhibitor ARC-775, MAPK pathway inhibitor sorafenib, proteasome inhibitor bortezomib, and microtubule-depolymerizing toxin MMAE showed higher cytotoxicity in eutopic cells. In contrast, 10 µmol/l of the anthracycline toxin doxorubicin caused cellular death in ectopic cells more effectively than in eutopic cells, underlining the potential of doxorubicin in endometriosis research. ABSTRACT Research question: Endometriosis is a common gynaecological disease defined by the presence of endometrium-like tissue outside the uterus. This complex disease, often accompanied by severe pain and infertility, causes a significant medical and socioeconomic burden; hence, novel strategies are being sought for the treatment of endometriosis. Here, we set out to explore the cytotoxic effects of a panel of compounds to find toxins with different efficiency in eutopic versus ectopic cells, thus highlighting alterations in the corresponding molecular pathways. Design: The effect on cellular viability of 14 compounds was established in a cohort of paired eutopic and ectopic endometrial stromal cell samples from 11 patients.
    [Show full text]
  • Function of Bromodomain and Extra-Terminal Motif Proteins (Bets) in Gata1-Mediated Transcription
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2015 Function of Bromodomain and Extra-Terminal Motif Proteins (bets) in Gata1-Mediated Transcription Aaron James Stonestrom University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Molecular Biology Commons, and the Pharmacology Commons Recommended Citation Stonestrom, Aaron James, "Function of Bromodomain and Extra-Terminal Motif Proteins (bets) in Gata1-Mediated Transcription" (2015). Publicly Accessible Penn Dissertations. 1148. https://repository.upenn.edu/edissertations/1148 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1148 For more information, please contact [email protected]. Function of Bromodomain and Extra-Terminal Motif Proteins (bets) in Gata1-Mediated Transcription Abstract Bromodomain and Extra-Terminal motif proteins (BETs) associate with acetylated histones and transcription factors. While pharmacologic inhibition of this ubiquitous protein family is an emerging therapeutic approach for neoplastic and inflammatory disease, the mechanisms through which BETs act remain largely uncharacterized. Here we explore the role of BETs in the physiologically relevant context of erythropoiesis driven by the transcription factor GATA1. First, we characterize functions of the BET family as a whole using a pharmacologic approach. We find that BETs are broadly required for GATA1-mediated transcriptional activation, but that repression is largely BET-independent. BETs support activation by facilitating both GATA1 occupancy and transcription downstream of its binding. Second, we test the specific olesr of BETs BRD2, BRD3, and BRD4 in GATA1-activated transcription. BRD2 and BRD4 are required for efficient anscriptionaltr activation by GATA1. Despite co-localizing with the great majority of GATA1 binding sites, we find that BRD3 is not equirr ed for GATA1-mediated transcriptional activation.
    [Show full text]
  • Bromodomain Protein BRDT Directs ΔNp63 Function and Super
    Cell Death & Differentiation (2021) 28:2207–2220 https://doi.org/10.1038/s41418-021-00751-w ARTICLE Bromodomain protein BRDT directs ΔNp63 function and super-enhancer activity in a subset of esophageal squamous cell carcinomas 1 1 2 1 1 2 Xin Wang ● Ana P. Kutschat ● Moyuru Yamada ● Evangelos Prokakis ● Patricia Böttcher ● Koji Tanaka ● 2 3 1,3 Yuichiro Doki ● Feda H. Hamdan ● Steven A. Johnsen Received: 25 August 2020 / Revised: 3 February 2021 / Accepted: 4 February 2021 / Published online: 3 March 2021 © The Author(s) 2021. This article is published with open access Abstract Esophageal squamous cell carcinoma (ESCC) is the predominant subtype of esophageal cancer with a particularly high prevalence in certain geographical regions and a poor prognosis with a 5-year survival rate of 15–25%. Despite numerous studies characterizing the genetic and transcriptomic landscape of ESCC, there are currently no effective targeted therapies. In this study, we used an unbiased screening approach to uncover novel molecular precision oncology targets for ESCC and identified the bromodomain and extraterminal (BET) family member bromodomain testis-specific protein (BRDT) to be 1234567890();,: 1234567890();,: uniquely expressed in a subgroup of ESCC. Experimental studies revealed that BRDT expression promotes migration but is dispensable for cell proliferation. Further mechanistic insight was gained through transcriptome analyses, which revealed that BRDT controls the expression of a subset of ΔNp63 target genes. Epigenome and genome-wide occupancy studies, combined with genome-wide chromatin interaction studies, revealed that BRDT colocalizes and interacts with ΔNp63 to drive a unique transcriptional program and modulate cell phenotype. Our data demonstrate that these genomic regions are enriched for super-enhancers that loop to critical ΔNp63 target genes related to the squamous phenotype such as KRT14, FAT2, and PTHLH.
    [Show full text]
  • DNA Methylation Changes in Down Syndrome Derived Neural Ipscs Uncover Co-Dysregulation of ZNF and HOX3 Families of Transcription
    Laan et al. Clinical Epigenetics (2020) 12:9 https://doi.org/10.1186/s13148-019-0803-1 RESEARCH Open Access DNA methylation changes in Down syndrome derived neural iPSCs uncover co- dysregulation of ZNF and HOX3 families of transcription factors Loora Laan1†, Joakim Klar1†, Maria Sobol1, Jan Hoeber1, Mansoureh Shahsavani2, Malin Kele2, Ambrin Fatima1, Muhammad Zakaria1, Göran Annerén1, Anna Falk2, Jens Schuster1 and Niklas Dahl1* Abstract Background: Down syndrome (DS) is characterized by neurodevelopmental abnormalities caused by partial or complete trisomy of human chromosome 21 (T21). Analysis of Down syndrome brain specimens has shown global epigenetic and transcriptional changes but their interplay during early neurogenesis remains largely unknown. We differentiated induced pluripotent stem cells (iPSCs) established from two DS patients with complete T21 and matched euploid donors into two distinct neural stages corresponding to early- and mid-gestational ages. Results: Using the Illumina Infinium 450K array, we assessed the DNA methylation pattern of known CpG regions and promoters across the genome in trisomic neural iPSC derivatives, and we identified a total of 500 stably and differentially methylated CpGs that were annotated to CpG islands of 151 genes. The genes were enriched within the DNA binding category, uncovering 37 factors of importance for transcriptional regulation and chromatin structure. In particular, we observed regional epigenetic changes of the transcription factor genes ZNF69, ZNF700 and ZNF763 as well as the HOXA3, HOXB3 and HOXD3 genes. A similar clustering of differential methylation was found in the CpG islands of the HIST1 genes suggesting effects on chromatin remodeling. Conclusions: The study shows that early established differential methylation in neural iPSC derivatives with T21 are associated with a set of genes relevant for DS brain development, providing a novel framework for further studies on epigenetic changes and transcriptional dysregulation during T21 neurogenesis.
    [Show full text]
  • Reconstructing Cell Cycle Pseudo Time-Series Via Single-Cell Transcriptome Data—Supplement
    School of Natural Sciences and Mathematics Reconstructing Cell Cycle Pseudo Time-Series Via Single-Cell Transcriptome Data—Supplement UT Dallas Author(s): Michael Q. Zhang Rights: CC BY 4.0 (Attribution) ©2017 The Authors Citation: Liu, Zehua, Huazhe Lou, Kaikun Xie, Hao Wang, et al. 2017. "Reconstructing cell cycle pseudo time-series via single-cell transcriptome data." Nature Communications 8, doi:10.1038/s41467-017-00039-z This document is being made freely available by the Eugene McDermott Library of the University of Texas at Dallas with permission of the copyright owner. All rights are reserved under United States copyright law unless specified otherwise. File name: Supplementary Information Description: Supplementary figures, supplementary tables, supplementary notes, supplementary methods and supplementary references. CCNE1 CCNE1 CCNE1 CCNE1 36 40 32 34 32 35 30 32 28 30 30 28 28 26 24 25 Normalized Expression Normalized Expression Normalized Expression Normalized Expression 26 G1 S G2/M G1 S G2/M G1 S G2/M G1 S G2/M Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage CCNE1 CCNE1 CCNE1 CCNE1 40 32 40 40 35 30 38 30 30 28 36 25 26 20 20 34 Normalized Expression Normalized Expression Normalized Expression 24 Normalized Expression G1 S G2/M G1 S G2/M G1 S G2/M G1 S G2/M Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Supplementary Figure 1 | High stochasticity of single-cell gene expression means, as demonstrated by relative expression levels of gene Ccne1 using the mESC-SMARTer data. For every panel, 20 sample cells were randomly selected for each of the three stages, followed by plotting the mean expression levels at each stage.
    [Show full text]
  • Anti-Histone H4 Acetyl (Lys8) Antibody (ARG54759)
    Product datasheet [email protected] ARG54759 Package: 100 μl anti-Histone H4 acetyl (Lys8) antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes Histone H4 acetyl (Lys8) Tested Reactivity Hu Tested Application WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name Histone H4 Antigen Species Human Immunogen Synthetic acetylated peptide around Lys8 of Human histone H4 (NP_003539.1) Conjugation Un-conjugated Alternate Names H4/p; Histone H4 Application Instructions Application table Application Dilution WB 1:1000 - 1:3000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control 293T Calculated Mw 11 kDa Properties Form Liquid Purification Affinity purification with immunogen. Buffer PBS (pH 7.3), 0.02% Sodium azide and 50% Glycerol Preservative 0.02% Sodium azide Stabilizer 50% Glycerol Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. www.arigobio.com 1/2 Bioinformation Database links GeneID: 8370 Human Swiss-port # P62805 Human Gene Symbol HIST2H4A Gene Full Name histone cluster 2, H4a Background Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. This structure consists of approximately 146 bp of DNA wrapped around a nucleosome, an octamer composed of pairs of each of the four core histones (H2A, H2B, H3, and H4).
    [Show full text]
  • Structure of the Human Clamp Loader Reveals an Autoinhibited Conformation of a Substrate-Bound AAA+ Switch
    Structure of the human clamp loader reveals an autoinhibited conformation of a substrate-bound AAA+ switch Christl Gaubitza,1, Xingchen Liua,b,1, Joseph Magrinoa,b, Nicholas P. Stonea, Jacob Landecka,b, Mark Hedglinc, and Brian A. Kelcha,2 aDepartment of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester MA 01605; bGraduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester MA 01605; and cDepartment of Chemistry, The Pennsylvania State University, University Park, PA 16802 Edited by Michael E. O’Donnell, HHMI and Rockefeller University, New York, NY, and approved July 27, 2020 (received for review April 20, 2020) DNA replication requires the sliding clamp, a ring-shaped protein areflexia syndrome (15), Hutchinson–Gilford progeria syn- complex that encircles DNA, where it acts as an essential cofactor drome (16), and in the replication of some viruses (17–19). It for DNA polymerases and other proteins. The sliding clamp needs is unknown whether loading by RFC contributes to PARD to be opened and installed onto DNA by a clamp loader ATPase of disease. the AAA+ family. The human clamp loader replication factor C Clamp loaders are members of the AAA+ family of ATPases (RFC) and sliding clamp proliferating cell nuclear antigen (PCNA) (ATPases associated with various cellular activities), a large are both essential and play critical roles in several diseases. De- protein family that uses the chemical energy of adenosine 5′- spite decades of study, no structure of human RFC has been re- triphosphate (ATP) to generate mechanical force (20). Most solved. Here, we report the structure of human RFC bound to AAA+ proteins form hexameric motors that use an undulating PCNA by cryogenic electron microscopy to an overall resolution ∼ spiral staircase mechanism to processively translocate a substrate of 3.4 Å.
    [Show full text]
  • Loss of ISWI Atpase SMARCA5 (SNF2H) in Acute Myeloid Leukemia Cells Inhibits Proliferation and Chromatid Cohesion
    International Journal of Molecular Sciences Article Loss of ISWI ATPase SMARCA5 (SNF2H) in Acute Myeloid Leukemia Cells Inhibits Proliferation and Chromatid Cohesion 1, 1, 1 2,3,4 1 Tomas Zikmund y , Helena Paszekova y , Juraj Kokavec , Paul Kerbs , Shefali Thakur , Tereza Turkova 1, Petra Tauchmanova 1, Philipp A. Greif 2,3,4 and Tomas Stopka 1,* 1 Biocev, 1st Medical Faculty, Charles University, 25250 Vestec, Czech Republic; [email protected] (T.Z.); [email protected] (H.P.); [email protected] (J.K.); [email protected] (S.T.); [email protected] (T.T.); [email protected] (P.T.) 2 Department of Medicine III, University Hospital, LMU Munich, D-80539 Munich, Germany; [email protected] (P.K.); [email protected] (P.A.G.) 3 German Cancer Consortium (DKTK), partner site Munich, D-80336 Munich, Germany 4 German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany * Correspondence: [email protected]; Tel.: +420-32587-3001 These authors contributed equally. y Received: 26 February 2020; Accepted: 16 March 2020; Published: 18 March 2020 Abstract: ISWI chromatin remodeling ATPase SMARCA5 (SNF2H) is a well-known factor for its role in regulation of DNA access via nucleosome sliding and assembly. SMARCA5 transcriptionally inhibits the myeloid master regulator PU.1. Upregulation of SMARCA5 was previously observed in CD34+ hematopoietic progenitors of acute myeloid leukemia (AML) patients. Since high levels of SMARCA5 are necessary for intensive cell proliferation and cell cycle progression of developing hematopoietic stem and progenitor cells in mice, we reasoned that removal of SMARCA5 enzymatic activity could affect the cycling or undifferentiated state of leukemic progenitor-like clones.
    [Show full text]
  • The UVB-Induced Gene Expression Profile of Human Epidermis in Vivo Is Different from That of Cultured Keratinocytes
    Oncogene (2006) 25, 2601–2614 & 2006 Nature Publishing Group All rights reserved 0950-9232/06 $30.00 www.nature.com/onc ORIGINAL ARTICLE The UVB-induced gene expression profile of human epidermis in vivo is different from that of cultured keratinocytes CD Enk1, J Jacob-Hirsch2, H Gal3, I Verbovetski4, N Amariglio2, D Mevorach4, A Ingber1, D Givol3, G Rechavi2 and M Hochberg1 1Department of Dermatology, The Hadassah-Hebrew University Medical Center, Jerusalem, Israel; 2Department of Pediatric Hemato-Oncology and Functional Genomics, Safra Children’s Hospital, Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University,Tel Aviv, Israel; 3Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel and 4The Laboratory for Cellular and Molecular Immunology, Department of Medicine, The Hadassah-Hebrew University Medical Center, Jerusalem, Israel In order to obtain a comprehensive picture of the radiation. UVB, with a wavelength range between 290 molecular events regulating cutaneous photodamage of and 320 nm, represents one of the most important intact human epidermis, suction blister roofs obtained environmental hazards affectinghuman skin (Hahn after a single dose of in vivo ultraviolet (UV)B exposure and Weinberg, 2002). To protect itself against the were used for microarray profiling. We found a changed DNA-damaging effects of sunlight, the skin disposes expression of 619 genes. Half of the UVB-regulated genes over highly complicated cellular programs, including had returned to pre-exposure baseline levels at 72 h, cell-cycle arrest, DNA repair and apoptosis (Brash et al., underscoring the transient character of the molecular 1996). Failure in selected elements of these defensive cutaneous UVB response.
    [Show full text]
  • Genome-Wide Screen of Cell-Cycle Regulators in Normal and Tumor Cells
    bioRxiv preprint doi: https://doi.org/10.1101/060350; this version posted June 23, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Genome-wide screen of cell-cycle regulators in normal and tumor cells identifies a differential response to nucleosome depletion Maria Sokolova1, Mikko Turunen1, Oliver Mortusewicz3, Teemu Kivioja1, Patrick Herr3, Anna Vähärautio1, Mikael Björklund1, Minna Taipale2, Thomas Helleday3 and Jussi Taipale1,2,* 1Genome-Scale Biology Program, P.O. Box 63, FI-00014 University of Helsinki, Finland. 2Science for Life laboratory, Department of Biosciences and Nutrition, Karolinska Institutet, SE- 141 83 Stockholm, Sweden. 3Science for Life laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden To identify cell cycle regulators that enable cancer cells to replicate DNA and divide in an unrestricted manner, we performed a parallel genome-wide RNAi screen in normal and cancer cell lines. In addition to many shared regulators, we found that tumor and normal cells are differentially sensitive to loss of the histone genes transcriptional regulator CASP8AP2. In cancer cells, loss of CASP8AP2 leads to a failure to synthesize sufficient amount of histones in the S-phase of the cell cycle, resulting in slowing of individual replication forks. Despite this, DNA replication fails to arrest, and tumor cells progress in an elongated S-phase that lasts several days, finally resulting in death of most of the affected cells.
    [Show full text]