Structure of the Human Clamp Loader Reveals an Autoinhibited Conformation of a Substrate-Bound AAA+ Switch

Total Page:16

File Type:pdf, Size:1020Kb

Structure of the Human Clamp Loader Reveals an Autoinhibited Conformation of a Substrate-Bound AAA+ Switch Structure of the human clamp loader reveals an autoinhibited conformation of a substrate-bound AAA+ switch Christl Gaubitza,1, Xingchen Liua,b,1, Joseph Magrinoa,b, Nicholas P. Stonea, Jacob Landecka,b, Mark Hedglinc, and Brian A. Kelcha,2 aDepartment of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester MA 01605; bGraduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester MA 01605; and cDepartment of Chemistry, The Pennsylvania State University, University Park, PA 16802 Edited by Michael E. O’Donnell, HHMI and Rockefeller University, New York, NY, and approved July 27, 2020 (received for review April 20, 2020) DNA replication requires the sliding clamp, a ring-shaped protein areflexia syndrome (15), Hutchinson–Gilford progeria syn- complex that encircles DNA, where it acts as an essential cofactor drome (16), and in the replication of some viruses (17–19). It for DNA polymerases and other proteins. The sliding clamp needs is unknown whether loading by RFC contributes to PARD to be opened and installed onto DNA by a clamp loader ATPase of disease. the AAA+ family. The human clamp loader replication factor C Clamp loaders are members of the AAA+ family of ATPases (RFC) and sliding clamp proliferating cell nuclear antigen (PCNA) (ATPases associated with various cellular activities), a large are both essential and play critical roles in several diseases. De- protein family that uses the chemical energy of adenosine 5′- spite decades of study, no structure of human RFC has been re- triphosphate (ATP) to generate mechanical force (20). Most solved. Here, we report the structure of human RFC bound to AAA+ proteins form hexameric motors that use an undulating PCNA by cryogenic electron microscopy to an overall resolution ∼ spiral staircase mechanism to processively translocate a substrate of 3.4 Å. The active sites of RFC are fully bound to adenosine – 5′-triphosphate (ATP) analogs, which is expected to induce open- through the motor pore (21 23). Unlike most other AAA+ ing of the sliding clamp. However, we observe the complex in a proteins, clamp loaders do not use ATP hydrolysis as a force- BIOCHEMISTRY conformation before PCNA opening, with the clamp loader ATPase generation step. Instead, the ATP-bound clamp loader forces the modules forming an overtwisted spiral that is incapable of binding sliding clamp ring to open through binding energy alone (24–26). DNA or hydrolyzing ATP. The autoinhibited conformation ob- Subsequent binding of primer–template DNA into the central served here has many similarities to a previous yeast RFC:PCNA chamber of the clamp loader activates ATP hydrolysis, which crystal structure, suggesting that eukaryotic clamp loaders adopt a results in clamp closure and ejection of the clamp loader similar autoinhibited state early on in clamp loading. Our results (27–33). The sliding clamp is now loaded at a primer–template point to a “limited change/induced fit” mechanism in which the junction for use by DNA metabolic enzymes, such as DNA clamp first opens, followed by DNA binding, inducing opening of polymerases. Thus, the clamp loader is an ATP-dependent the loader to release autoinhibition. The proposed change from an protein-remodeling switch (31). overtwisted to an active conformation reveals an additional reg- ulatory mechanism for AAA+ ATPases. Finally, our structural anal- Significance ysis of disease mutations leads to a mechanistic explanation for the role of RFC in human health. DNA replication and repair depend on AAA+ ATPase protein sliding clamp | DNA replication | AAA+ | ATPase | clamp loader complexes called clamp loaders that open and load ring-shaped sliding clamps onto DNA. Using cryogenic electron microscopy, we determined the first structure of the human clamp loader NA replication in all cellular life requires sliding clamps, (RFC), which is in an autoinhibited conformation while bound Dring-shaped protein complexes that encircle DNA to topo- to the sliding clamp (PCNA). We assign this to be a reaction logically link numerous factors to DNA. Sliding clamps are intermediate prior to clamp opening and propose a confor- necessary for DNA synthesis, because they increase polymerase – mational change necessary for activation, leading to a unique processivity and speed by orders of magnitude (1 5). Sliding paradigm for the AAA+ ATPase mechanism. We examined clamps additionally bind and facilitate the function of many RFC’s interaction with a PCNA disease variant, which illumi- other proteins involved in diverse DNA transactions, such as nates how this variant maintains tight interactions with some DNA repair, recombination, and chromatin structure (6). The partners. Finally, mapping of cancer mutations onto RFC’s sliding clamp of eukaryotes, proliferating cell nuclear antigen ’ structure suggests stability as a key factor in proper function (PCNA), is critical for human health. PCNA s central role in and human health. controlling many cancer pathways makes it a common cancer marker (7). Recently, the genetic disease PCNA-associated DNA Author contributions: C.G., X.L., and B.A.K. designed research; C.G., X.L., J.M., N.P.S., J.L., repair disorder (PARD) was shown to be caused by a hypomor- M.H., and B.A.K. performed research; M.H. contributed new reagents/analytic tools; C.G., phic mutation in PCNA that disrupts partner binding (8, 9). X.L., J.M., N.P.S., J.L., M.H., and B.A.K. analyzed data; and C.G., X.L., and B.A.K. wrote PCNA’s ring shape necessitates active loading onto DNA by the paper. the replication factor C (RFC) sliding clamp loader. Clamp The authors declare no competing interest. loaders are pentameric ATPase machines that can open the This article is a PNAS Direct Submission. sliding clamp and close it around DNA. Clamp loaders are found Published under the PNAS license. in all life, although their composition varies across different 1C.G. and X.L. contributed equally to this work. kingdoms (10). The primary clamp loader in eukaryotes con- 2To whom correspondence may be addressed. Email: [email protected]. sists of five distinct proteins, RFC1–5. In humans, RFC plays a This article contains supporting information online at https://www.pnas.org/lookup/suppl/ role in several diseases, such as cancer (11–13), Warsaw break- doi:10.1073/pnas.2007437117/-/DCSupplemental. age syndrome (14), cerebellar ataxia, neuropathy, and vestibular www.pnas.org/cgi/doi/10.1073/pnas.2007437117 PNAS Latest Articles | 1of10 Downloaded by guest on October 6, 2021 The pentameric clamp loader structure is broadly conserved. mutations perturb clamp loader function, as there is currently no The five subunits are named A through E going counterclockwise structure of the human RFC complex. around the assembly. Each of the five subunits consists of an Here we describe a cryogenic electron microscopy (cryo-EM) N-terminal AAA+ ATPase module, followed by an α-helical reconstruction of human RFC (hRFC) bound to PCNA. The “collar” domain that serves to oligomerize the complex (Fig. 1A). structure reveals that PCNA is closed, despite all active sites of The Rossman fold and Lid domains that comprise the AAA+ hRFC being bound to ATP analogs. The spiral of AAA+ module contain the catalytic residues for ATPase activity. Al- modules is constricted, which prevents opening of the clamp and though most of the catalytic machinery is used in cis, the B, C, blocks the DNA-binding region in the central chamber of the D, and E subunits all contain arginine finger residues that are clamp loader. We propose that this represents an autoinhibited provided in trans to complete the active site of a neighboring form of the clamp loader that occurs prior to clamp opening. subunit. Our work provides a framework for understanding the clamp ’ Structural studies have revealed critical intermediates for the loader s mechanism and function in human health. Escherichia clamp loading mechanism. Early structures of the Results coli clamp loader revealed the general organization of the complex (34, 35). A subsequent structure of a mutated form of Structure Determination of the hRFC:PCNA Complex. We sought to the Saccharomyces cerevisiae clamp loader RFC bound to PCNA obtain a structure of human RFC bound to PCNA by single- particle cryo-EM. We purified an hRFC construct with a trun- showed RFC in a collapsed and overtwisted spiral conformation cation of the A subunit’s N-terminal region (RFC1ΔN555, that is bound to a closed PCNA ring (36). This conformation was missing residues 1 to 555). The truncated version expresses in initially hypothesized to represent an intermediate toward the E. coli and results in higher yields of active protein than the full- end of the clamp loading reaction, with PCNA closed around length construct without sacrificing clamp loading activity (SI DNA and still bound to RFC prior to ATP hydrolysis. It has also Appendix, Fig. S1 A–C and ref. 40). This hRFC construct is been hypothesized that this conformation is an artifact of the similar to the Hutchinson–Gilford progeria syndrome variant, mutation of the arginine fingers that prevents proper assembly where the A subunit in hRFC is proteolytically truncated to a (31, 37). The structure of an off-pathway intermediate of the ∼75-kDa C-terminal fragment, removing the first ∼500 residues. E. coli – clamp loader bound to a primer template junction con- As expected (41, 42), our purified hRFC has highest ATPase “ ” firmed the notched-screwcap mode of DNA binding (38). Fi- activity in the presence of both the sliding clamp and primer– nally, the T4 phage clamp loader was crystallized with sliding template DNA (SI Appendix, Fig. S1D). For the rest of the pa- clamp and DNA, revealing how ATP hydrolysis is linked to per, we refer to this complex as hRFC. clamp closure (39). In order to visualize how the clamp loader interacts with the Despite many years of study, several central questions about sliding clamp, we formed a complex of hRFC with PCNA and the clamp loader mechanism remain unanswered.
Recommended publications
  • Functional Roles of Bromodomain Proteins in Cancer
    cancers Review Functional Roles of Bromodomain Proteins in Cancer Samuel P. Boyson 1,2, Cong Gao 3, Kathleen Quinn 2,3, Joseph Boyd 3, Hana Paculova 3 , Seth Frietze 3,4,* and Karen C. Glass 1,2,4,* 1 Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; [email protected] 2 Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; [email protected] 3 Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; [email protected] (C.G.); [email protected] (J.B.); [email protected] (H.P.) 4 University of Vermont Cancer Center, Burlington, VT 05405, USA * Correspondence: [email protected] (S.F.); [email protected] (K.C.G.) Simple Summary: This review provides an in depth analysis of the role of bromodomain-containing proteins in cancer development. As readers of acetylated lysine on nucleosomal histones, bromod- omain proteins are poised to activate gene expression, and often promote cancer progression. We examined changes in gene expression patterns that are observed in bromodomain-containing proteins and associated with specific cancer types. We also mapped the protein–protein interaction network for the human bromodomain-containing proteins, discuss the cellular roles of these epigenetic regu- lators as part of nine different functional groups, and identify bromodomain-specific mechanisms in cancer development. Lastly, we summarize emerging strategies to target bromodomain proteins in cancer therapy, including those that may be essential for overcoming resistance. Overall, this review provides a timely discussion of the different mechanisms of bromodomain-containing pro- Citation: Boyson, S.P.; Gao, C.; teins in cancer, and an updated assessment of their utility as a therapeutic target for a variety of Quinn, K.; Boyd, J.; Paculova, H.; cancer subtypes.
    [Show full text]
  • RFC2 Antibody
    Product Datasheet RFC2 Antibody Catalog No: #43122 Orders: [email protected] Description Support: [email protected] Product Name RFC2 Antibody Host Species Rabbit Clonality Polyclonal Purification Antigen affinity purification. Applications WB Species Reactivity Hu Specificity The antibody detects endogenous levels of total RFC2 protein. Immunogen Type peptide Immunogen Description Synthetic peptide of human RFC2 Target Name RFC2 Other Names RFC40 Accession No. Swiss-Prot#: P35250Gene ID: 5982 Calculated MW 39kd Concentration 3.5mg/ml Formulation Rabbit IgG in pH7.4 PBS, 0.05% NaN3, 40% Glycerol. Storage Store at -20°C Application Details Western blotting: 1:200-1:1000 Immunohistochemistry: 1:30-1:150 Images Gel: 10%SDS-PAGE Lysate: 40 µg Lane: Human liver cancer tissue Primary antibody: 1/500 dilution Secondary antibody: Goat anti rabbit IgG at 1/8000 dilution Exposure time: 20 seconds Background This gene encodes a member of the activator 1 small subunits family. The elongation of primed DNA templates by DNA polymerase delta and epsilon requires the action of the accessory proteins, proliferating cell nuclear antigen (PCNA) and replication factor C (RFC). Replication factor C, also called activator 1, is a protein complex consisting of five distinct subunits. This gene encodes the 40 kD subunit, which has been shown to be responsible for binding ATP and may help promote cell survival. Disruption of this gene is associated with Williams syndrome. Alternatively spliced transcript variants Address: 8400 Baltimore Ave., Suite 302, College Park, MD 20740, USA http://www.sabbiotech.com 1 encoding distinct isoforms have been described. A pseudogene of this gene has been defined on chromosome 2.
    [Show full text]
  • Function of Bromodomain and Extra-Terminal Motif Proteins (Bets) in Gata1-Mediated Transcription
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2015 Function of Bromodomain and Extra-Terminal Motif Proteins (bets) in Gata1-Mediated Transcription Aaron James Stonestrom University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Molecular Biology Commons, and the Pharmacology Commons Recommended Citation Stonestrom, Aaron James, "Function of Bromodomain and Extra-Terminal Motif Proteins (bets) in Gata1-Mediated Transcription" (2015). Publicly Accessible Penn Dissertations. 1148. https://repository.upenn.edu/edissertations/1148 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1148 For more information, please contact [email protected]. Function of Bromodomain and Extra-Terminal Motif Proteins (bets) in Gata1-Mediated Transcription Abstract Bromodomain and Extra-Terminal motif proteins (BETs) associate with acetylated histones and transcription factors. While pharmacologic inhibition of this ubiquitous protein family is an emerging therapeutic approach for neoplastic and inflammatory disease, the mechanisms through which BETs act remain largely uncharacterized. Here we explore the role of BETs in the physiologically relevant context of erythropoiesis driven by the transcription factor GATA1. First, we characterize functions of the BET family as a whole using a pharmacologic approach. We find that BETs are broadly required for GATA1-mediated transcriptional activation, but that repression is largely BET-independent. BETs support activation by facilitating both GATA1 occupancy and transcription downstream of its binding. Second, we test the specific olesr of BETs BRD2, BRD3, and BRD4 in GATA1-activated transcription. BRD2 and BRD4 are required for efficient anscriptionaltr activation by GATA1. Despite co-localizing with the great majority of GATA1 binding sites, we find that BRD3 is not equirr ed for GATA1-mediated transcriptional activation.
    [Show full text]
  • Bromodomain Protein BRDT Directs ΔNp63 Function and Super
    Cell Death & Differentiation (2021) 28:2207–2220 https://doi.org/10.1038/s41418-021-00751-w ARTICLE Bromodomain protein BRDT directs ΔNp63 function and super-enhancer activity in a subset of esophageal squamous cell carcinomas 1 1 2 1 1 2 Xin Wang ● Ana P. Kutschat ● Moyuru Yamada ● Evangelos Prokakis ● Patricia Böttcher ● Koji Tanaka ● 2 3 1,3 Yuichiro Doki ● Feda H. Hamdan ● Steven A. Johnsen Received: 25 August 2020 / Revised: 3 February 2021 / Accepted: 4 February 2021 / Published online: 3 March 2021 © The Author(s) 2021. This article is published with open access Abstract Esophageal squamous cell carcinoma (ESCC) is the predominant subtype of esophageal cancer with a particularly high prevalence in certain geographical regions and a poor prognosis with a 5-year survival rate of 15–25%. Despite numerous studies characterizing the genetic and transcriptomic landscape of ESCC, there are currently no effective targeted therapies. In this study, we used an unbiased screening approach to uncover novel molecular precision oncology targets for ESCC and identified the bromodomain and extraterminal (BET) family member bromodomain testis-specific protein (BRDT) to be 1234567890();,: 1234567890();,: uniquely expressed in a subgroup of ESCC. Experimental studies revealed that BRDT expression promotes migration but is dispensable for cell proliferation. Further mechanistic insight was gained through transcriptome analyses, which revealed that BRDT controls the expression of a subset of ΔNp63 target genes. Epigenome and genome-wide occupancy studies, combined with genome-wide chromatin interaction studies, revealed that BRDT colocalizes and interacts with ΔNp63 to drive a unique transcriptional program and modulate cell phenotype. Our data demonstrate that these genomic regions are enriched for super-enhancers that loop to critical ΔNp63 target genes related to the squamous phenotype such as KRT14, FAT2, and PTHLH.
    [Show full text]
  • Anti-RFC3 (GW21946F)
    3050 Spruce Street, Saint Louis, MO 63103 USA Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757 email: [email protected] Product Information Anti-RFC3 antibody produced in chicken, affinity isolated antibody Catalog Number GW21946F Formerly listed as GenWay Catalog Number 15-288-21946F, Replication factor C subunit 3 Antibody. – Storage Temperature Store at 20 °C The product is a clear, colorless solution in phosphate buffered saline, pH 7.2, containing 0.02% sodium azide. Synonyms: Replication factor C 3 isoform 1, Replication factor C 38 kDa subunit; RFC38; Activator 1 38 kDa subunit; Species Reactivity: Human, rat A1 38 kDa subunit; RF-C 38 kDa subunit Tested Applications: ELISA, WB Product Description Recommended Dilutions: Recommended starting dilution The elongation of primed DNA templates by DNA for Western blot analysis is 1:500, for tissue or cell staining polymerase delta and epsilon requires the action of the 1:200. accessory proteins proliferating cell nuclear antigen (PCNA) and activator 1. Note: Optimal concentrations and conditions for each application should be determined by the user. NCBI Accession number: NP_002906.1 Swiss Prot Accession number: P40938 Precautions and Disclaimer This product is for R&D use only, not for drug, household, or Gene Information: Human .. RFC3 (5983) other uses. Due to the sodium azide content a material Immunogen: Recombinant protein Replication factor C 3 safety data sheet (MSDS) for this product has been sent to isoform 1 the attention of the safety officer of your institution. Please consult the Material Safety Data Sheet for information Immunogen Sequence: GI # 4506489, sequence 1 - 356 regarding hazards and safe handling practices.
    [Show full text]
  • Identification and Characterization of a Novel Non-Homologous End Joining Factor MRI
    Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-15-2020 Identification and Characterization of a Novel Non-homologous End Joining Factor MRI Putzer Joseph Hung Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Allergy and Immunology Commons, Immunology and Infectious Disease Commons, and the Medical Immunology Commons Recommended Citation Hung, Putzer Joseph, "Identification and Characterization of a Novel Non-homologous End Joining Factor MRI" (2020). Arts & Sciences Electronic Theses and Dissertations. 2201. https://openscholarship.wustl.edu/art_sci_etds/2201 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Immunology Dissertation Examination Committee: Barry Sleckman, Chair Gaya Amarasinghe Brian Edelson Takeshi Egawa Nima Mosammaparast Kenneth Murphy Sheila Stewart Identification and Characterization of a Novel Non-homologous End Joining Factor MRI by Putzer Joseph Hung A dissertation presented to The Graduate School of Washington University in partial fulfillment of the requirements
    [Show full text]
  • Anti-RFC3 (Internal Region) Polyclonal Antibody (DPABH-26536) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-RFC3 (internal region) polyclonal antibody (DPABH-26536) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Antigen Description The elongation of primed DNA templates by DNA polymerase delta and epsilon requires the action of the accessory proteins proliferating cell nuclear antigen (PCNA) and activator 1. Immunogen Synthetic peptide derived from an internal sequence of Human RFC3. Isotype IgG Source/Host Rabbit Species Reactivity Human Purification Immunogen affinity purified Conjugate Unconjugated Applications WB, IHC-P Format Liquid Size 100 μg Buffer pH: 7.40; Constituents: 49% PBS, 50% Glycerol, 0.88% Sodium chloride. Note: PBS is without Mg2+ and Ca2+ Preservative 0.02% Sodium Azide Storage Shipped at 4°C. Upon delivery aliquot and store at -20°C. Avoid freeze / thaw cycles. GENE INFORMATION Gene Name RFC3 replication factor C (activator 1) 3, 38kDa [ Homo sapiens ] Official Symbol RFC3 Synonyms RFC3; replication factor C (activator 1) 3, 38kDa; replication factor C (activator 1) 3 (38kD); replication factor C subunit 3; A1 38 kDa subunit; MGC5276; RFC; 38 kD subunit; RFC38; RFC, 38 kD subunit; RF-C 38 kDa subunit; activator 1 subunit 3; activator 1 38 kDa subunit; replication factor C 38 kDa subunit; 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Entrez Gene ID 5983 Protein Refseq NP_002906 UniProt ID A0A024RDQ8 Chromosome Location 13q13.2 Pathway Activation of ATR in response to replication stress; BRCA1-associated genome surveillance complex (BASC); Cell Cycle; Cell Cycle Checkpoints; Cell Cycle, Mitotic; Chromosome Maintenance; DNA Repair Function ATP binding; contributes_to ATPase activity; contributes_to DNA binding; DNA clamp loader activity; nucleotide binding; protein binding; 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 2 © Creative Diagnostics All Rights Reserved.
    [Show full text]
  • Supplementary Table S1. Correlation Between the Mutant P53-Interacting Partners and PTTG3P, PTTG1 and PTTG2, Based on Data from Starbase V3.0 Database
    Supplementary Table S1. Correlation between the mutant p53-interacting partners and PTTG3P, PTTG1 and PTTG2, based on data from StarBase v3.0 database. PTTG3P PTTG1 PTTG2 Gene ID Coefficient-R p-value Coefficient-R p-value Coefficient-R p-value NF-YA ENSG00000001167 −0.077 8.59e-2 −0.210 2.09e-6 −0.122 6.23e-3 NF-YB ENSG00000120837 0.176 7.12e-5 0.227 2.82e-7 0.094 3.59e-2 NF-YC ENSG00000066136 0.124 5.45e-3 0.124 5.40e-3 0.051 2.51e-1 Sp1 ENSG00000185591 −0.014 7.50e-1 −0.201 5.82e-6 −0.072 1.07e-1 Ets-1 ENSG00000134954 −0.096 3.14e-2 −0.257 4.83e-9 0.034 4.46e-1 VDR ENSG00000111424 −0.091 4.10e-2 −0.216 1.03e-6 0.014 7.48e-1 SREBP-2 ENSG00000198911 −0.064 1.53e-1 −0.147 9.27e-4 −0.073 1.01e-1 TopBP1 ENSG00000163781 0.067 1.36e-1 0.051 2.57e-1 −0.020 6.57e-1 Pin1 ENSG00000127445 0.250 1.40e-8 0.571 9.56e-45 0.187 2.52e-5 MRE11 ENSG00000020922 0.063 1.56e-1 −0.007 8.81e-1 −0.024 5.93e-1 PML ENSG00000140464 0.072 1.05e-1 0.217 9.36e-7 0.166 1.85e-4 p63 ENSG00000073282 −0.120 7.04e-3 −0.283 1.08e-10 −0.198 7.71e-6 p73 ENSG00000078900 0.104 2.03e-2 0.258 4.67e-9 0.097 3.02e-2 Supplementary Table S2.
    [Show full text]
  • DNA Replication
    Predicted by Watson & Crick model CONSERVATIVE (one totally new, one totally old) Other possibilities DISPERSIVE (each have mixed bits) Grow E-Coli in 15N for several generation [15NH4Cl as sole N-source) Transfer to medium containing only 14N Extract DNA after each replication Semi-conservative ISOPYCNIC density gradient centrifugation Components stop at the point in the Measure density using CsCl gradient gradient equal to their buoyant density Experiment In the second generation, ALL DNA has a density halfway in between 15N DNA and 14N DNA In subsequent generations, the proportion of fully 14N DNA increases, but some hybrids remain DNA polymerases synthesise DNA in the 5' > 3' direction [because the 3' OH attacks the incoming nucleotide] DNA is antiparallel Both new strands are synthesized simultaneously at the replication fork If DNA replication is semi-conservative, this poses a problem Bacterial chromosomes contain a SINGLE Therefore, one of the strands needs to grow ORIGIN, bound to the cell membrane, in the 3' > 5' direction within the oriC locus Enter Sub-topic Contains four 9 bp binding sites for the Synthesis of this protein is coupled to growth rate initiator protein DnaA Add a pulse of 3H-thymidine to cells Quench and harvest DNA Once it has attained a critical level, DnaA forms a complex of 30-40 molecules, each Requires DNA to be NEGATIVELY bound to ATP, around which oriC DNA Experiment 1 SUPERCOILED becomes wrapped Initiation Facilitates the MELTING of three 13 bp Separate by size AT-rich repeat sequences, which open toallow binding of DnaB (DNA helicase) Add a pulse of 3H-thymidine to cells DNA primase then binds and synthesizes a "Chase" with unlabelled thymidine short RNA primer on the LEADING DNA polymerases and STRAND.
    [Show full text]
  • Genetic Networks Required to Coordinate Chromosome Replication by DNA Polymerases A, D, and E in Saccharomyces Cerevisiae
    INVESTIGATION Genetic Networks Required to Coordinate Chromosome Replication by DNA Polymerases a, d, and e in Saccharomyces cerevisiae Marion Dubarry,* Conor Lawless,* A. Peter Banks,† Simon Cockell,‡ and David Lydall*,1 *Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, †High Throughput Screening Facility, Newcastle Biomedicine, and ‡Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom ORCID IDs: 0000-0002-4186-8506 (C.L.); 0000-0003-2478-085X (D.L.) ABSTRACT Three major DNA polymerases replicate the linear eukaryotic chromosomes. DNA polymerase KEYWORDS a-primase (Pol a) and DNA polymerase d (Pol d) replicate the lagging-strand and Pol a and DNA polymerase e DNA replication (Pol e) the leading-strand. To identify factors affecting coordination of DNA replication, we have performed DNA polymerase genome-wide quantitative fitness analyses of budding yeast cells containing defective polymerases. We Profilyzer combined temperature-sensitive mutations affecting the three replicative polymerases, Pol a,Pold,and DIXY Pol e with genome-wide collections of null and reduced function mutations. We identify large numbers of quantitative genetic interactions that inform about the roles that specific genes play to help Pol a,Pold, and Pol e function. fitness analyses Surprisingly, the overlap between the genetic networks affecting the three DNA polymerases does not (QFA) represent the majority of the genetic interactions identified. Instead our data support a model for division of Saccharomyces labor between the different DNA polymerases during DNA replication. For example, our genetic interaction cerevisiae data are consistent with biochemical data showing that Pol e is more important to the Pre-Loading complex than either Pol a or Pol d.
    [Show full text]
  • BET Family Members Bdf1/2 Modulate Global Transcription Initiation and Elongation in Saccharomyces Cerevisiae Rafal Donczew*, Steven Hahn*
    RESEARCH ARTICLE BET family members Bdf1/2 modulate global transcription initiation and elongation in Saccharomyces cerevisiae Rafal Donczew*, Steven Hahn* Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, United States Abstract Human bromodomain and extra-terminal domain (BET) family members are promising targets for therapy of cancer and immunoinflammatory diseases, but their mechanisms of action and functional redundancies are poorly understood. Bdf1/2, yeast homologues of the human BET factors, were previously proposed to target transcription factor TFIID to acetylated histone H4, analogous to bromodomains that are present within the largest subunit of metazoan TFIID. We investigated the genome-wide roles of Bdf1/2 and found that their important contributions to transcription extend beyond TFIID function as transcription of many genes is more sensitive to Bdf1/2 than to TFIID depletion. Bdf1/2 co-occupy the majority of yeast promoters and affect preinitiation complex formation through recruitment of TFIID, Mediator, and basal transcription factors to chromatin. Surprisingly, we discovered that hypersensitivity of genes to Bdf1/2 depletion results from combined defects in transcription initiation and early elongation, a striking functional similarity to human BET proteins, most notably Brd4. Our results establish Bdf1/2 as critical for yeast transcription and provide important mechanistic insights into the function of BET proteins in all eukaryotes. *For correspondence: [email protected] (RD); Introduction [email protected] (SH) Bromodomains (BDs) are reader modules that allow protein targeting to chromatin via interactions with acetylated histone tails. BD-containing factors are usually involved in gene transcription, and Competing interests: The their deregulation has been implicated in a spectrum of cancers and immunoinflammatory and neu- authors declare that no rological conditions (Fujisawa and Filippakopoulos, 2017; Wang et al., 2021).
    [Show full text]
  • Involvement of Brd4 in Different Steps of the Papillomavirus Life Cycle
    Virus Research 231 (2017) 76–82 Contents lists available at ScienceDirect Virus Research j ournal homepage: www.elsevier.com/locate/virusres Review Involvement of Brd4 in different steps of the papillomavirus life cycle a,∗ a b,c Thomas Iftner , Juliane Haedicke-Jarboui , Shwu-Yuan Wu , b,c,d,∗∗ Cheng-Ming Chiang a Division of Experimental Virology, Institute for Medical Virology, University Hospital Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany b Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA c Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA d Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA a r t i a b s c t l e i n f o r a c t Article history: Bromodomain-containing protein 4 (Brd4) is a cellular chromatin-binding factor and transcriptional reg- Received 13 September 2016 ulator that recruits sequence-specific transcription factors and chromatin modulators to control target Received in revised form 2 December 2016 gene transcription. Papillomaviruses (PVs) have evolved to hijack Brd4’s activity in order to create a facili- Accepted 2 December 2016 tating environment for the viral life cycle. Brd4, in association with the major viral regulatory protein E2, is Available online 10 December 2016 involved in multiple steps of the PV life cycle including replication initiation, viral gene transcription, and viral genome segregation and maintenance. Phosphorylation of Brd4, regulated by casein kinase II (CK2) Keywords: and protein phosphatase 2A (PP2A), is critical for viral gene transcription as well as E1- and E2-dependent Brd4 origin replication.
    [Show full text]