Investigation of Crucial Genes and Micrornas in Conventional Osteosarcoma Using Gene Expression Profiling Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Deregulated Gene Expression Pathways in Myelodysplastic Syndrome Hematopoietic Stem Cells
Leukemia (2010) 24, 756–764 & 2010 Macmillan Publishers Limited All rights reserved 0887-6924/10 $32.00 www.nature.com/leu ORIGINAL ARTICLE Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells A Pellagatti1, M Cazzola2, A Giagounidis3, J Perry1, L Malcovati2, MG Della Porta2,MJa¨dersten4, S Killick5, A Verma6, CJ Norbury7, E Hellstro¨m-Lindberg4, JS Wainscoat1 and J Boultwood1 1LRF Molecular Haematology Unit, NDCLS, John Radcliffe Hospital, Oxford, UK; 2Department of Hematology Oncology, University of Pavia Medical School, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; 3Medizinische Klinik II, St Johannes Hospital, Duisburg, Germany; 4Division of Hematology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; 5Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK; 6Albert Einstein College of Medicine, Bronx, NY, USA and 7Sir William Dunn School of Pathology, University of Oxford, Oxford, UK To gain insight into the molecular pathogenesis of the the World Health Organization.6,7 Patients with refractory myelodysplastic syndromes (MDS), we performed global gene anemia (RA) with or without ringed sideroblasts, according to expression profiling and pathway analysis on the hemato- poietic stem cells (HSC) of 183 MDS patients as compared with the the French–American–British classification, were subdivided HSC of 17 healthy controls. The most significantly deregulated based on the presence or absence of multilineage dysplasia. In pathways in MDS include interferon signaling, thrombopoietin addition, patients with RA with excess blasts (RAEB) were signaling and the Wnt pathways. Among the most signifi- subdivided into two categories, RAEB1 and RAEB2, based on the cantly deregulated gene pathways in early MDS are immuno- percentage of bone marrow blasts. -
Anti-RFC3 (GW21946F)
3050 Spruce Street, Saint Louis, MO 63103 USA Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757 email: [email protected] Product Information Anti-RFC3 antibody produced in chicken, affinity isolated antibody Catalog Number GW21946F Formerly listed as GenWay Catalog Number 15-288-21946F, Replication factor C subunit 3 Antibody. – Storage Temperature Store at 20 °C The product is a clear, colorless solution in phosphate buffered saline, pH 7.2, containing 0.02% sodium azide. Synonyms: Replication factor C 3 isoform 1, Replication factor C 38 kDa subunit; RFC38; Activator 1 38 kDa subunit; Species Reactivity: Human, rat A1 38 kDa subunit; RF-C 38 kDa subunit Tested Applications: ELISA, WB Product Description Recommended Dilutions: Recommended starting dilution The elongation of primed DNA templates by DNA for Western blot analysis is 1:500, for tissue or cell staining polymerase delta and epsilon requires the action of the 1:200. accessory proteins proliferating cell nuclear antigen (PCNA) and activator 1. Note: Optimal concentrations and conditions for each application should be determined by the user. NCBI Accession number: NP_002906.1 Swiss Prot Accession number: P40938 Precautions and Disclaimer This product is for R&D use only, not for drug, household, or Gene Information: Human .. RFC3 (5983) other uses. Due to the sodium azide content a material Immunogen: Recombinant protein Replication factor C 3 safety data sheet (MSDS) for this product has been sent to isoform 1 the attention of the safety officer of your institution. Please consult the Material Safety Data Sheet for information Immunogen Sequence: GI # 4506489, sequence 1 - 356 regarding hazards and safe handling practices. -
Structure of the Human Clamp Loader Reveals an Autoinhibited Conformation of a Substrate-Bound AAA+ Switch
Structure of the human clamp loader reveals an autoinhibited conformation of a substrate-bound AAA+ switch Christl Gaubitza,1, Xingchen Liua,b,1, Joseph Magrinoa,b, Nicholas P. Stonea, Jacob Landecka,b, Mark Hedglinc, and Brian A. Kelcha,2 aDepartment of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester MA 01605; bGraduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester MA 01605; and cDepartment of Chemistry, The Pennsylvania State University, University Park, PA 16802 Edited by Michael E. O’Donnell, HHMI and Rockefeller University, New York, NY, and approved July 27, 2020 (received for review April 20, 2020) DNA replication requires the sliding clamp, a ring-shaped protein areflexia syndrome (15), Hutchinson–Gilford progeria syn- complex that encircles DNA, where it acts as an essential cofactor drome (16), and in the replication of some viruses (17–19). It for DNA polymerases and other proteins. The sliding clamp needs is unknown whether loading by RFC contributes to PARD to be opened and installed onto DNA by a clamp loader ATPase of disease. the AAA+ family. The human clamp loader replication factor C Clamp loaders are members of the AAA+ family of ATPases (RFC) and sliding clamp proliferating cell nuclear antigen (PCNA) (ATPases associated with various cellular activities), a large are both essential and play critical roles in several diseases. De- protein family that uses the chemical energy of adenosine 5′- spite decades of study, no structure of human RFC has been re- triphosphate (ATP) to generate mechanical force (20). Most solved. Here, we report the structure of human RFC bound to AAA+ proteins form hexameric motors that use an undulating PCNA by cryogenic electron microscopy to an overall resolution ∼ spiral staircase mechanism to processively translocate a substrate of 3.4 Å. -
Anti-RFC3 (Internal Region) Polyclonal Antibody (DPABH-26536) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
Anti-RFC3 (internal region) polyclonal antibody (DPABH-26536) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Antigen Description The elongation of primed DNA templates by DNA polymerase delta and epsilon requires the action of the accessory proteins proliferating cell nuclear antigen (PCNA) and activator 1. Immunogen Synthetic peptide derived from an internal sequence of Human RFC3. Isotype IgG Source/Host Rabbit Species Reactivity Human Purification Immunogen affinity purified Conjugate Unconjugated Applications WB, IHC-P Format Liquid Size 100 μg Buffer pH: 7.40; Constituents: 49% PBS, 50% Glycerol, 0.88% Sodium chloride. Note: PBS is without Mg2+ and Ca2+ Preservative 0.02% Sodium Azide Storage Shipped at 4°C. Upon delivery aliquot and store at -20°C. Avoid freeze / thaw cycles. GENE INFORMATION Gene Name RFC3 replication factor C (activator 1) 3, 38kDa [ Homo sapiens ] Official Symbol RFC3 Synonyms RFC3; replication factor C (activator 1) 3, 38kDa; replication factor C (activator 1) 3 (38kD); replication factor C subunit 3; A1 38 kDa subunit; MGC5276; RFC; 38 kD subunit; RFC38; RFC, 38 kD subunit; RF-C 38 kDa subunit; activator 1 subunit 3; activator 1 38 kDa subunit; replication factor C 38 kDa subunit; 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Entrez Gene ID 5983 Protein Refseq NP_002906 UniProt ID A0A024RDQ8 Chromosome Location 13q13.2 Pathway Activation of ATR in response to replication stress; BRCA1-associated genome surveillance complex (BASC); Cell Cycle; Cell Cycle Checkpoints; Cell Cycle, Mitotic; Chromosome Maintenance; DNA Repair Function ATP binding; contributes_to ATPase activity; contributes_to DNA binding; DNA clamp loader activity; nucleotide binding; protein binding; 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 2 © Creative Diagnostics All Rights Reserved. -
Supplementary Table S1. Correlation Between the Mutant P53-Interacting Partners and PTTG3P, PTTG1 and PTTG2, Based on Data from Starbase V3.0 Database
Supplementary Table S1. Correlation between the mutant p53-interacting partners and PTTG3P, PTTG1 and PTTG2, based on data from StarBase v3.0 database. PTTG3P PTTG1 PTTG2 Gene ID Coefficient-R p-value Coefficient-R p-value Coefficient-R p-value NF-YA ENSG00000001167 −0.077 8.59e-2 −0.210 2.09e-6 −0.122 6.23e-3 NF-YB ENSG00000120837 0.176 7.12e-5 0.227 2.82e-7 0.094 3.59e-2 NF-YC ENSG00000066136 0.124 5.45e-3 0.124 5.40e-3 0.051 2.51e-1 Sp1 ENSG00000185591 −0.014 7.50e-1 −0.201 5.82e-6 −0.072 1.07e-1 Ets-1 ENSG00000134954 −0.096 3.14e-2 −0.257 4.83e-9 0.034 4.46e-1 VDR ENSG00000111424 −0.091 4.10e-2 −0.216 1.03e-6 0.014 7.48e-1 SREBP-2 ENSG00000198911 −0.064 1.53e-1 −0.147 9.27e-4 −0.073 1.01e-1 TopBP1 ENSG00000163781 0.067 1.36e-1 0.051 2.57e-1 −0.020 6.57e-1 Pin1 ENSG00000127445 0.250 1.40e-8 0.571 9.56e-45 0.187 2.52e-5 MRE11 ENSG00000020922 0.063 1.56e-1 −0.007 8.81e-1 −0.024 5.93e-1 PML ENSG00000140464 0.072 1.05e-1 0.217 9.36e-7 0.166 1.85e-4 p63 ENSG00000073282 −0.120 7.04e-3 −0.283 1.08e-10 −0.198 7.71e-6 p73 ENSG00000078900 0.104 2.03e-2 0.258 4.67e-9 0.097 3.02e-2 Supplementary Table S2. -
Early Growth Response 1 Regulates Hematopoietic Support and Proliferation in Human Primary Bone Marrow Stromal Cells
Hematopoiesis SUPPLEMENTARY APPENDIX Early growth response 1 regulates hematopoietic support and proliferation in human primary bone marrow stromal cells Hongzhe Li, 1,2 Hooi-Ching Lim, 1,2 Dimitra Zacharaki, 1,2 Xiaojie Xian, 2,3 Keane J.G. Kenswil, 4 Sandro Bräunig, 1,2 Marc H.G.P. Raaijmakers, 4 Niels-Bjarne Woods, 2,3 Jenny Hansson, 1,2 and Stefan Scheding 1,2,5 1Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden; 2Lund Stem Cell Center, Depart - ment of Laboratory Medicine, Lund University, Lund, Sweden; 3Division of Molecular Medicine and Gene Therapy, Department of Labora - tory Medicine, Lund University, Lund, Sweden; 4Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands and 5Department of Hematology, Skåne University Hospital Lund, Skåne, Sweden ©2020 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2019.216648 Received: January 14, 2019. Accepted: July 19, 2019. Pre-published: August 1, 2019. Correspondence: STEFAN SCHEDING - [email protected] Li et al.: Supplemental data 1. Supplemental Materials and Methods BM-MNC isolation Bone marrow mononuclear cells (BM-MNC) from BM aspiration samples were isolated by density gradient centrifugation (LSM 1077 Lymphocyte, PAA, Pasching, Austria) either with or without prior incubation with RosetteSep Human Mesenchymal Stem Cell Enrichment Cocktail (STEMCELL Technologies, Vancouver, Canada) for lineage depletion (CD3, CD14, CD19, CD38, CD66b, glycophorin A). BM-MNCs from fetal long bones and adult hip bones were isolated as reported previously 1 by gently crushing bones (femora, tibiae, fibulae, humeri, radii and ulna) in PBS+0.5% FCS subsequent passing of the cell suspension through a 40-µm filter. -
RFC5 Antibody (F54778)
RFC5 Antibody (F54778) Catalog No. Formulation Size F54778-0.4ML In 1X PBS, pH 7.4, with 0.09% sodium azide 0.4 ml F54778-0.08ML In 1X PBS, pH 7.4, with 0.09% sodium azide 0.08 ml Bulk quote request Availability 1-3 business days Species Reactivity Human Format Purified Clonality Polyclonal (rabbit origin) Isotype Rabbit Ig Purity Purified UniProt P40937 Applications Flow cytometry : 1:25 (1x10e6 cells) Western blot : 1:500-1:2000 Limitations This RFC5 antibody is available for research use only. Western blot testing of 1) non-transfected and 2) transfected 293 cell lysate with RFC5 antibody. Western blot testing of human HeLa cell lysate with RFC5 antibody. Predicted molecular weight ~38 kDa. Flow cytometry testing of human HeLa cells with RFC5 antibody; Blue=isotype control, Green= RFC5 antibody. Description The elongation of primed DNA templates by DNA polymerase delta and DNA polymerase epsilon requires the accessory proteins proliferating cell nuclear antigen (PCNA) and replication factor C (RFC). RFC, also named activator 1, is a protein complex consisting of five distinct subunits of 140, 40, 38, 37, and 36 kD. RFC5 is the 36 kD subunit. This subunit can interact with the C-terminal region of PCNA. It forms a core complex with the 38 and 40 kDa subunits. The core complex possesses DNA-dependent ATPase activity, which was found to be stimulated by PCNA in an in vitro system. Application Notes The stated application concentrations are suggested starting points. Titration of the RFC5 antibody may be required due to differences in protocols and secondary/substrate sensitivity. -
Genetic Networks Required to Coordinate Chromosome Replication by DNA Polymerases A, D, and E in Saccharomyces Cerevisiae
INVESTIGATION Genetic Networks Required to Coordinate Chromosome Replication by DNA Polymerases a, d, and e in Saccharomyces cerevisiae Marion Dubarry,* Conor Lawless,* A. Peter Banks,† Simon Cockell,‡ and David Lydall*,1 *Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, †High Throughput Screening Facility, Newcastle Biomedicine, and ‡Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom ORCID IDs: 0000-0002-4186-8506 (C.L.); 0000-0003-2478-085X (D.L.) ABSTRACT Three major DNA polymerases replicate the linear eukaryotic chromosomes. DNA polymerase KEYWORDS a-primase (Pol a) and DNA polymerase d (Pol d) replicate the lagging-strand and Pol a and DNA polymerase e DNA replication (Pol e) the leading-strand. To identify factors affecting coordination of DNA replication, we have performed DNA polymerase genome-wide quantitative fitness analyses of budding yeast cells containing defective polymerases. We Profilyzer combined temperature-sensitive mutations affecting the three replicative polymerases, Pol a,Pold,and DIXY Pol e with genome-wide collections of null and reduced function mutations. We identify large numbers of quantitative genetic interactions that inform about the roles that specific genes play to help Pol a,Pold, and Pol e function. fitness analyses Surprisingly, the overlap between the genetic networks affecting the three DNA polymerases does not (QFA) represent the majority of the genetic interactions identified. Instead our data support a model for division of Saccharomyces labor between the different DNA polymerases during DNA replication. For example, our genetic interaction cerevisiae data are consistent with biochemical data showing that Pol e is more important to the Pre-Loading complex than either Pol a or Pol d. -
RFC5 Antibody Cat
RFC5 Antibody Cat. No.: 23-370 RFC5 Antibody Immunohistochemistry of paraffin-embedded human lung cancer using RFC5 antibody (23-370) at dilution of 1:100 (40x lens). Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse, Rat Recombinant fusion protein containing a sequence corresponding to amino acids 181-340 IMMUNOGEN: of human RFC5 (NP_031396.1). TESTED APPLICATIONS: IHC, WB WB: ,1:500 - 1:2000 APPLICATIONS: IHC: ,1:50 - 1:200 POSITIVE CONTROL: 1) HeLa 2) U-251MG September 26, 2021 1 https://www.prosci-inc.com/rfc5-antibody-23-370.html 3) SKOV3 4) MCF-7 5) Mouse liver 6) Mouse spleen PREDICTED MOLECULAR Observed: 38kDa WEIGHT: Properties PURIFICATION: Affinity purification CLONALITY: Polyclonal ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: PBS with 0.02% sodium azide, 50% glycerol, pH7.3. STORAGE CONDITIONS: Store at -20˚C. Avoid freeze / thaw cycles. Additional Info OFFICIAL SYMBOL: RFC5 ALTERNATE NAMES: RFC5, MGC1155, RFC36 GENE ID: 5985 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References The elongation of primed DNA templates by DNA polymerase delta and DNA polymerase epsilon requires the accessory proteins proliferating cell nuclear antigen (PCNA) and replication factor C (RFC). RFC, also named activator 1, is a protein complex consisting of five distinct subunits of 140, 40, 38, 37, and 36 kD. This gene encodes the 36 kD subunit. BACKGROUND: This subunit can interact with the C-terminal region of PCNA. It forms a core complex with the 38 and 40 kDa subunits. The core complex possesses DNA-dependent ATPase activity, which was found to be stimulated by PCNA in an in vitro system. -
RFC4 (C-9): Sc-28301
SAN TA C RUZ BI OTEC HNOL OG Y, INC . RFC4 (C-9): sc-28301 BACKGROUND APPLICATIONS Replication factor C (RFC) is an essential DNA polymerase accessory protein RFC4 (C-9) is recommended for detection of RFC4 of mouse, rat and human that is required for numerous aspects of DNA metabolism including DNA origin by Western Blotting (starting dilution 1:100, dilution range 1:100- replication, DNA repair, and telomere metabolism. RFC is a heteropentameric 1:1,000), immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml complex that recognizes a primer on a template DNA, binds to a primer of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range terminus and loads proliferating cell nuclear antigen (PCNA) onto DNA at 1:50-1:500), immunohistochemistry (including paraffin-embedded sections) primer-template junctions in an ATP-dependent reaction. All five of the RFC (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA subunits share a set of related sequences (RFC boxes) that include nucleotide- (starting dilution 1:30, dilution range 1:30-1:3000). binding consensus sequences. Four of the five RFC genes (RFC1, RFC2, RFC3 Suitable for use as control antibody for RFC4 siRNA (h): sc-36406, RFC4 and RFC4) have consensus ATP-binding motifs. The small RFC proteins, RFC2, siRNA (m): sc-36407, RFC4 shRNA Plasmid (h): sc-36406-SH, RFC4 shRNA RFC3, RFC4 and RFC5, interact with Rad24, whereas the RFC1 subunit does Plasmid (m): sc-36407-SH, RFC4 shRNA (h) Lentiviral Particles: sc-36406-V not. Specifically, RFC4 plays a role in checkpoint regulation. -
The Synthetic Genetic Interaction Spectrum of Essential Genes
LETTERS The synthetic genetic interaction spectrum of essential genes Armaity P Davierwala1, Jennifer Haynes2, Zhijian Li1,2, Rene´e L Brost1, Mark D Robinson1, Lisa Yu3, Sanie Mnaimneh1, Huiming Ding1, Hongwei Zhu1, Yiqun Chen1, Xin Cheng1, Grant W Brown3, Charles Boone1,2,4, Brenda J Andrews1,2,4 & Timothy R Hughes1,2,4 The nature of synthetic genetic interactions involving essential mapping these genetic interactions2,3. Essential gene function is also genes (those required for viability) has not been previously buffered by both nonessential and other essential genes because hypomorphic (partially functional) alleles of essential genes often http://www.nature.com/naturegenetics examined in a broad and unbiased manner. We crossed yeast strains carrying promoter-replacement alleles for more than have synthetic lethal interactions with deletion alleles of nonessential half of all essential yeast genes1 to a panel of 30 different genes and hypomorphic alleles of other essential genes2,3,7.Genetic mutants with defects in diverse cellular processes. The resulting interactions among essential genes have not been examined system- genetic network is biased toward interactions between atically and objectively because of the inherent difficulty in creating functionally related genes, enabling identification of a and working with hypomorphic alleles. previously uncharacterized essential gene (PGA1) required for specific functions of the endoplasmic reticulum. But there are also many interactions between genes with dissimilar functions, Query gene (crossed to array) Gene Ontology labels (array strains) suggesting that individual essential genes are required for buffering many cellular processes. The most notable feature of the essential synthetic genetic network is that it has an interaction density five times that of nonessential synthetic 2005 Nature Publishing Group Group 2005 Nature Publishing genetic networks2,3, indicating that most yeast genetic © -linked glycosylation -linked interactions involve at least one essential gene. -
Coordinated Regulation of Heterochromatin Inheritance by Dpb3–Dpb4 Complex
Coordinated regulation of heterochromatin inheritance by Dpb3–Dpb4 complex Haijin Hea,1, Yang Lib,c,1, Qianhua Donga,1, An-Yun Changd,e, Feng Gaob, Zhongxuan Chia, Min Sub, Faben Zhangb,c, Hyoju Bana, Rob Martienssend, Yu-hang Chenb,c,2, and Fei Lia,2 aDepartment of Biology, New York University, New York, NY 10003-6688; bState Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; cCollege of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; dHoward Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; and eMolecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794 Edited by Jasper Rine, University of California, Berkeley, CA, and approved October 6, 2017 (received for review July 25, 2017) During DNA replication, chromatin is disrupted ahead of the replica- H3K9 methylation in fission yeast is mediated by the CLCR com- tion fork, and epigenetic information must be restored behind the plex, which contains the H3K9 methyltransferase Clr4/Suv39 and the fork. How epigenetic marks are inherited through DNA replication silencing proteins Rik1, Dos1/Raf1, Dos2/Raf2, and Cul4 (8–12). remains poorly understood. Histone H3 lysine 9 (H3K9) methylation RNA interference (RNAi) plays an important role in H3K9 meth- and histone hypoacetylation are conserved hallmarks of heterochro- ylation and heterochromatin silencing (13). During replication, matin. We previously showed that the inheritance of H3K9 methyl- Cdc20/Pol2, the DNA polymerase (Pol) epsilon catalytic subunit, ation during DNA replication depends on the catalytic subunit of DNA interacts with the CLRC complex.